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Abstract. A three-level functional architecture for a team of mobile
robots is described in detail, including the de�nition of the role assigned
to each level, the main concepts involved, and the corresponding imple-
mentation for each individual robot. The architecture is oriented towards
teams of fully autonomous cooperative robots, able to carry out di�erent
types of cooperative tasks. Complexity is reduced by the decomposition
of team strategies into individual behaviors, which in turn are composed
of primitive tasks. Relationships among robots of the team are modeled
upon the joint intentions framework. An application to Robotic Soccer
and some of its preliminary results are presented.

1 Introduction and Motivation

Di�erent functional architectures have been proposed in distributed arti�cial
intelligence and intelligent control literature to handle the complexity of con-
trolling a fully autonomous mobile robot or a team composed of such robots. A
common concept among those approaches is the existence of atomic primitive

tasks or behaviors which are the kernel of the architecture. Tasks executed by
the robot result from the composition of those entities.

The main di�erence between the existing approaches concerns the interaction
among the atomic entities. While some authors allow full exibility, so that a
team behavior emerges from a negotiation between running behaviors [3], others
prescribe, with di�erent exibility levels, the task decomposition into primitive
tasks [1], to an extent which may even forbid any direct communication between
primitive tasks [7].

A three-level functional architecture for a team of mobile robots is introduced
in this paper. The architecture is oriented towards teams of fully autonomous
cooperative robots, able to carry out di�erent types of cooperative tasks. The

? This work was supported by the Science Service of the Calouste Gulbenkian Foun-
dation and by the Portuguese Foundation for Science and Technology (ISR/IST
programmatic funding).

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 378−389, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000



level splitting is inspired by the work of Drogoul and his co-workers [3], but
there are important di�erences regarding the modeling of the relational level,
which describes inter-agent negotiation and role assignment. The joint intentions
framework [8, 5, 2] provides a solid foundation for teamwork modeling, and will
be used in this work to support the implementation of the relational level.

Complexity is reduced by the decomposition of team strategies (i.e., what
should be done) into individual behaviors, which in turn are composed of prim-
itive tasks. A set whose elements are the behaviors assigned to each robot of
the team is designated as the tactics (i.e., how to do it) for a given strategy.
An application to Robotic Soccer and some of its preliminary results developed
during and after the RoboCup'98 contest are presented.

The paper is organized as follows. Section 2 describes the team and individual
architectures, with details of teamwork modeling at the relational level and of
the foreseen/current implementation for the introduced concepts. Section 3 maps
the concepts onto a robotic soccer team. Section 4 closes the paper with some
preliminary conclusions and reference to future work.
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Fig. 1. The functional architecture of the ISocRob team.

2 The Functional Architecture

2.1 Team Architecture

The team architecture, based on the 3-level agent team architecture �rst pro-
posed by Drogoul and his co-workers [4], is depicted in Fig. 1. Our interpretation
of Drogoul's three-levels follows:
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{ Organizational level: establishes the strategy to be followed by the whole
team, given the team and world states. The team state corresponds to the
current set of behaviors under execution. The following examples, taken from
the robotic soccer context, illustrate the concept of world (game) state, which
is divided in two classes:
1. game situations reached upon the application of RoboCup tournament

rules (e.g., kicko�, end-of-game, penalty-for, penalty-against);
2. team evaluation of current game status (e.g., losing & close to the end of

the game, ball close to our goal).
Strategies can be divided in, at least, two major categories:
� pre-programmed scenarios for game situations in game state category 1
above;

� dynamic strategies (e.g., defend, attack, counter-attack), corresponding
to game state category 2 above.

{ Relational level: at this level, relationships among robots are established.
The robots negotiate and eventually come to an agreement about some team
and/or individual goal. Moreover, behaviors are assigned to the individual
robots, after a selection from within behavior sets representative of alterna-
tive tactics for the strategy selected by the organizational level. The selected
behavior set depends on the current world plus team states. Behavior as-
signments may also be temporarily modi�ed as a result of inter-robot nego-
tiations.

{ Individual level: encompasses all the available robot behaviors. Those in-
clude the primitive tasks (e.g., SeekBall, KickBall, RotateLeft) and their re-
lations.

A behavior corresponds to a set of purposive (i.e., with a goal) primitive tasks
sequentially and/or concurrently executed. A primitive task is a sense-think-act

loop (STA loop), a generalization of a closed loop control system which may
include motor, ball tracking or trajectory following control loops, to name a few.

STA loops are composed of the following key components:

{ goal: the objective to be accomplished by the primitive task (e.g., moving
to a given position plus orientation (pose) set-point, tracking the ball in the
image);

{ sense: sensor data required to accomplish the goal (e.g., distance to an
object, object position in an image);

{ think: the actual algorithm which, using the sensor data, does what is re-
quired to accomplish the goal (e.g., motion controller, ball visual servoing);

{ act: the actions associated to the think algorithm (e.g., moving the wheel
motors).

The sequence of primitive tasks is traversed as the logical conditions associ-
ated with the connections among them become true. The logical conditions are
de�ned over a predicate set. There are two predicate classes:

{ predicates which check the value of a given variable (e.g., the variable goal

in lastseen(goal)=left);
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{ predicates which check the occurrence of a given event (e.g., the see(ball)
predicate checks whether the ball became visible).

A world model is required to provide information to the relational and or-
ganizational levels regarding the world state. Since all computation is supposed
to be distributed over the team members, with no external storage available, a
distributed world model representation is required, containing all the relevant
information for negotiation between agents, and in general the result of process-
ing raw data, for primitive tasks usage. A distributed blackboard is proposed to
implement the world model [9].

2.2 Individual Robots Architecture

Each individual robot is provided with all the three levels of the team func-
tional architecture. However, the organizational level is only active in one of
the robots, assigned as the team captain. The remaining robots have a dormant
organization level, to ensure fault-tolerance: whenever the captain robot has a
malfunction, the next robot in the list takes over as the captain. The list has
no special order since, from the hardware standpoint, all robots of the team are
currently homogeneous. In an non-homogeneous population, the potential cap-
tains (from a computational capacity standpoint) should be sorted according to
their descending computational power.

An agent-based programming language has been speci�ed and is currently
under development [9, 10], to provide the team strategist (e.g., the coach, in
robotic soccer) with the means to program the population in order to achieve
the strategic objectives, embedded in the behaviors and in the primitive task
STA loops.

Each of the above concepts will be implemented as follows:

{ the strategy is determined at the organizational level by a state-machine

whose transitions are traversed upon the matching of speci�c world states,
and whose states de�ne the current strategy. Therefore, strategies change
when the world state (as perceived by the team) changes;

{ tactics selection, including behavior selection, negotiation, and temporary
behaviors modi�cation, is implemented by relational rules at the relational
level;

{ a behavior consists of a state-machine, where each state corresponds to an
STA loop and each transition has associated logical conditions de�ned over
the predicate set described in subsection 2.1;

Team organization is necessarily a centralized operation. As such, decisions on
strategies must be taken by a single agent, designated as the captain. Thus, the
organizational state machine runs in the captain. To increase team robustness,
whenever the current captain does not signal that it is alive for more than a
timeout period, a new captain must take control of the team.
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Fig. 2. Implementation of team functional architecture at each individual robot: a)
Blackboard, relational rules, organizational state-machine and communications. b) Be-
havior selection and coordination.

A blackboard implements global shared memory and event-based1 communi-
cation. The blackboard is the sole medium of communication between the agents,
supporting the message exchange required for negotiation. One of the key factors
will be the distribution of data per robot, which should minimize the need to
communicate in order to obtain information (e.g., data obtained from process-
ing an image should be stored in the robot where the image was acquired). The
global team strategy is also stated in the blackboard, as a variable which triggers
some of the relational rules.

The schematic block diagram of the implementation, at each individual robot,
of the team architecture is depicted in Fig. 2 - (a). The behavior selection and
spatial coordination are detailed in Fig. 2 - (b): the behavior coordinator selects
the correct behavior for the robot, based on the world state and on the strategy
and tactics provided by the organizational and relational levels of the team
architecture. When a behavior is selected, the corresponding spatial supervisor

is also activated. The spatial supervisor ensures that the robot always stays
within the inuence zone associated to its active behavior (see Section 3).

2.3 Relational Rules

Relationships among the team robots are established at the relational level of the
team functional architecture. Given a strategy established by the organizational
level, di�erent tactics can be used to implement it. Tactics consist of behavior
sets, whose elements are the behaviors assigned to each individual robot of the

1 Event is interpreted here in the context of a computational model.
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team. A tactics is chosen based on the current world state, but also on each
agent's current internal state. The strategy must specify not only the goal to be
attained (e.g., attack, defense) but also criteria to check how close to the goal
the team is. Behaviors can be temporarily modi�ed as a result of inter-robot
negotiation, as part of the tactics to attain the goal.

An example is the situation where two teammates, both assigned a forward-
like behavior, actively try to get the ball. In such a case, one of them should signal
the other its intention. A negotiation process would follow, where the teammates
would determine their distances to the ball, to decide which one should pursue
it. After taking such a decision, the other player should temporarily modify its
normal forward-like behavior.

The absence of such a relational mechanism leads to situations where team
behavior is poor. Consider the case of two forward-like players with similar be-
haviors, that often conict with each other while trying to reach the ball. The
key to solve this problem is to endow the team members not only with individual
goals, but also make them knowledgeable of the team goals. This is clearly related
to concepts such as joint persistent goal, joint intentions and joint commitment

[8, 5, 2]. Moreover, it requires communication between team members.

For instance, a joint persistent goal is de�ned in [5] as follows: A team of

agents has a joint persistent goal, relative to q, to achieve p i�: they all mutually

believe that p is currently false; they all mutually believe that they all want p to

be eventually true, and until they all come to mutually believe either that p is

true, that p will never be true, or that q is false, they will continue to mutually

believe that they each have p as a weak achievement goal relative to q.

The example above can be interpreted under this de�nition. The strategy p

(e.g., attack) is a weak achievement goal relative to the main goal q of scoring
a goal. Suppose the two players both assumed the Forward behavior as part of
the selected tactics. They will pursue the strong goal q (i.e., they will attempt to
score a goal) by executing their Forward behaviors so as to attain p. A criterion
to check whether p is attained is to determine whether the players are able to
keep playing within their assigned inuence zone. Both players will continue
to work towards meeting this and the other criteria which de�ne the attack

strategy until they all come to mutually believe either that all the criteria were
met, that the criteria will never be attained (e.g., after a timeout), or that
'scoring a goal' is no longer the main team endeavor (e.g., because the game
is over). Working towards meeting the criteria includes temporarily modifying
their behaviors to cope with the team goal (e.g., refraining from pursuing the
ball). This distinguishes a group of non-cooperative agents whose individual
goals just happen to be the same, from a group of cooperative agents which
share a common aim. The latter exhibits cooperation and coordination, while in
the former the individual agents compete when the resources are scarce [5].

The relational rules implement a recipe which is commonly agreed by all the
agents of a team [5]. This recipe is embedded in the rules and may either be
prescribed initially (i.e., before joint action is started) or evolve over time. We
are currently looking at the possibility of changing the recipe over time using re-
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inforcement learning techniques, based on a performance function which weights
the reliability (i.e., the ability to meet speci�cations) and the cost (computa-
tional or other) of a given recipe [6]. Reinforcement learning should be able to
determine the recipe (to achieve a joint intention) that best balances cost and
reliability.

3 Application to a Soccer Robot Team

Some of the concepts described in the previous section will now be mapped onto
a team of fully autonomous soccer robots.

Fig. 3 presents a functional division of the �eld in several regions. These are
zones where robots try to locate themselves inside the �eld, according to their
assigned behaviors, e.g., defenders should stay inside the D zone and Forward
players should stay inside the F zone. This division helps the assignment of
inuence areas to players.

L

C

D MD MF F

R

X

Y

Fig. 3. The �eld division in actuation areas.

Besides Defense (D), MidDefense (MD), MidForward (MF) and Forward (F),
further divisions are introduced to increase the �eld resolution. Along the �eld
longitudinal axes, the �eld is divided in Left (L), Center (C) and Right (R)
parts. This division is particularly useful when the team has more than one
player acting in the same functional area (e.g., L and R defenders).

3.1 Player Behaviors

As explained before, behaviors are composed of primitive tasks sequentially or
concurrently executed. A �eld inuence zone is associated to each behavior. Sev-
eral behaviors must be implemented in a robot soccer team. The most signi�cant
ones, whose inuence zones are depicted in Fig. 4, are:

{ GoalKeeper { Defends the goal. To do that, it continuously looks for the ball
and, if necessary, leaves the goal area and kicks it away. The inuence zone
is de�ned by the goal area lines and is shown in Fig. 4 - a).
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Fig. 4. Inuence zones for individual behaviors.

{ Defender { The defender mission is to move the ball from the vicinity of its
team goal to the opponents �eld. If possible, it should try to move the ball
to the vicinity of a MidFielder. It should return to its original position (D)
when the ball is once again in the opponent's �eld (see Fig. 4 - b)).

{ MidFielder { Such as in real soccer, the Mid�elder is able to play in a variety
of positions. Its inuence zone lies within the MD and MF areas (see Fig. 4 -
c)). This player natural ability is to receive the ball from its own team �eld
and decide what to do, based on the other players availability. If a Forward
is in the near vicinity of the opponents goal (F area), the MidFielder should
try to pass it the ball.

{ Forward { The Forward behavior induces the player to be in the F zone (see
Fig. 4 - d)). If the ball goes into our �eld, the Forward's mission is to keep
track of the ball, although it should not move out of its zone by its own
initiative. When the ball moves into the F zone, it must try to take control
over it and kick it into the opponents goal. Such a behavior is implemented
by the state machine of Fig. 5 - a).
An alternative implementation would consist of letting the Forward players
move up and down the �eld, using the lateral L and R corridors.

3.2 Relational Behavior Modi�cation

Individual behaviors can be temporarily modi�ed to allow cooperative rela-
tions between teammates, as explained in Subsection 2.3. Fig. 5 - b) depicts
the state machine which implements the Forward behavior endowed with states
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Fig. 5. State machines for the Forward behavior: a) With no cooperation. b) With
cooperation. States and state transitions representing relational rules are �lled and
dashed in the diagram, respectively.

and state transitions representing relational rules. The negotiation implemented
corresponds to the example in Subsection 2.3 concerning two Forward players
who actively try to get the ball. The additional state ShouldIGo is entered by a
Forward player upon its detection of the ball (predicate see(ball)). In this state,
a message is broadcasted through the blackboard to all teamates stating that
this Forward player saw the ball and also the estimate of its distance to the ball.
The occurrence of messages from the the other teamates stating that they saw
the ball and including the estimate of their distance to the ball is also checked
in the ShouldIGo state. The distance to the ball of all the Forward players who
saw the ball recently is continuously sorted. The sorted distances are checked
by the closest(distance) predicate, associated to all the dashed arcs of the state
machine in Fig. 5 - b), which are responsible by the temporary behavior mod-
i�cations with respect to the non-relational Forward behavior of Fig. 5 - a).
The most important modi�cation consists of not immediately kicking (KickBall
state) or following (FlwBall state) the ball upon its detection in state SrcBall,
but rather moving to state ShouldIGo where distances to the ball are compared.
Should the Forward be the closest the ball among all its Forward teammates (or
the only one who sees the ball), the state machine execution proceeds as in the
non-relational Forward behavior. Otherwise, the behavior is modi�ed by making
the player move to a location close to the other team's goal (states SrcGoal and
Move2Goal).

3.3 Game State

The game state refers to either situations reached as a result of the application
of RoboCup rules or to an evaluation of the current game status. State changes
are induced by the time ow and teams actions during the game. Examples of
game states are as follows:

Game situations
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{ game-start { This happens in the beginning of the game, after a goal or when
the game restarts after a break;

{ penalty-for, penalty-against;
{ end-of-game { This is signaled by an external event (e.g., two whistle blows).

Evaluation of game status

{ ball-our-o�eld { One of our players has ball possession. The ball is in our
�eld;

{ ball-nour-ot�eld { None of our players has ball possession. The ball is in the
other team �eld;

{ losing & close to the end of the game;

{ ball close to our goal.

3.4 Scenarios for Game Situations

Pre-de�ned scenarios are usually associated with the game states corresponding
to game situations (see above). An example is the game-start situation, where
the players must move to their pre-determined start positions (see Fig. 6). Self-
location of the players must be accomplished at this state as they must be
correctly positioned prior to the start of the game. After positioning, the players
will wait for the external kicko� signal (e.g., a whistle blow) that signals the
start of the game.

L

C

D MD MF F

R

Fig. 6. Players position at game start-up.

3.5 Dynamic Strategies and Tactics

During the game the ball moves inside and outside of the team mid-�eld. De-
pending on factors such as the ball position and motion, the current game state,
the current score, the number of available players and their behaviors, the op-
ponents positions, the elapsed time, and the current strategy, the team strategy
may change. This is inspired by real soccer. Possible strategies are:
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{ defense { The ball must be prevented from entering our �eld. Should that
happen, it must be moved into the opponents �eld. Several defense tactics
exist. Two examples of tactics for the Defense strategy are:

� Strong Defense (SD) { This strategy points towards creating a continu-
ous, physical barrier between the ball and our goal. It is aimed at avoiding
opponent players from moving towards our goal. When re-positioning,
the Defender players should try to avoid occluding the GoalKeeper visi-
bility of the �eld, i.e., the DC zone should be free of players (see Fig. 7 -
a)).

L

C

D MD MF F

R

a) Strong defense initial positions.

L

C

D MD MF F

R

b) Medium Defense initial positions.

Fig. 7. Strong and Medium Defense tactics for the Defense strategy.

� Medium Defense (MD) { Points towards a strong defense and a good re-
covery mechanism, essential to counter-attack. The concept is illustrated
in Fig. 7 - b). The di�erence between the SD and the MD is that in MD
not all players are moved into our �eld. This makes the transition to
Counter-Attack easier, as one of the players stays in the opponent �eld.

{ counter-attack { A counter-attack happens if the team is positioned to move
the ball quickly into the opponent �eld and score a goal. It requires a De-
fender, to handle a possible interception of the ball by an opponent, a Mid-
Fielder, to pass the ball into the Forward area, and a Forward player to kick
the ball into the opponent goal.

{ attack { Under this strategy, the whole team moves forward. Besides the GK,
there is only one player in our �eld. This movement requires two MidFielders
(one in the MD zone and another in MF zone), and one Forward. The idea
is to have the ball passed from the M zone into the F zone, where a Forward
player is to pick it up and kick at the goal.

4 Preliminary Conclusions and Future Work

Currently, our mid-size real robots are capable of simple but essential behaviors,
composed of primitive tasks, such as following a ball, kicking a ball, scoring
goals and defending the goal, using vision-based sensors (see Fig. 5). Current
available behaviors include shooting at an empty goal starting from increasingly
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more di�cult situations or defending the goal by permanently tracking the ball
and kicking it out of the goal area as soon as it gets too close. One Forward vs

one Defender and a GoalKeeper have also been successfully tested in live action.
Our current and future work is centered on four main topics:

{ development of the self-localization system based on a vision camera and a
mirror;

{ update and tuning of the primitive tasks software;
{ design and implementation of an agent-based programming language suitable

for multi-agent systems;
{ study and development of a teamwork model and its integration with the

team functional architecture.

Among those, self-localization is perhaps the most essential. The functional
architecture described in this paper relies on a (at least rough) awareness by
each robot of its location in the �eld and, consequently, of the team current
disposition in the �eld.

The work has been carried out in a bottom-up fashion, since we believe that
many conceptual issues can be raised from and are strongly constrained by the
actual implementation problems. Nevertheless, the basic framework described
in the paper, concerning hardware, software and functional architectures, was
designed in a top-down fashion in the beginning of the project and has been
essentially kept unchanged so far.
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