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Abstract. In this paper we describe Big Red, the Cornell University
Robot Soccer team. The success of our team at the 1999 competition
can be mainly attributed to three points: 1) An integrated design ap-
proach; students from mechanical engineering, electrical engineering, op-
erations research, and computer science were involved in the project,
and a rigorous and systematic design process was utilized. 2) A thor-
ough understanding of the system dynamics, and ensuing control. 3) A
high fidelity simulation environment that allowed us to quickly explore
artificial intelligence and control strategies well in advance of working
prototypes.

1 Introduction

In this paper we describe Big Red, the Cornell University Robot Soccer team.
The success of our team at the 1999 competition can be mainly attributed to
three points:

1. An integrated design approach; students from mechanical engineering, elec-
trical engineering, operations research, and computer science were involved
in the project, and a rigorous and systematic design process[6] was utilized.

2. A thorough understanding of the system dynamics, and ensuing control.
3. A high fidelity simulation environment that allowed us to quickly explore AI

and control strategies well in advance of working prototypes.

The paper is organized as follows. In Section 3, we describe the electrical and
mechanical aspects of the project, followed by a description of the global vision
system in Section 4. The team skills are described in Section 5, followed by the
artificial intelligence and strategy in Section 6. We include some of the other
features of our team in Section 7.

2 Team Development

Team Leader: Raffaello D’Andrea[Assistant Professor]

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 49−60, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000



Team Members:
Dr. Jin-Woo Lee[Visiting Lecturer]
Andrew Hoffman[Master of Engineering student]
Aris Samad-Yahaya[Master of Engineering student]
Lars B. Cremean[Undergraduate student]
Thomas Karpati[Master of Engineering student]

Affiliation: Cornell University, U.S.A
Web page http://www.mae.cornell.edu/RoboCup

3 Electro-mechanical System

3.1 Mechanical Design

The Cornell University team consists of two mechanical designs, one for the field
players and the second for goalkeeper. All of the robots have a unidirectional
kicking mechanism powered by one solenoid (two for the goalkeeper).

The robots have a design mass of 1.5 kg, a maximum linear acceleration
of 5.1 m/s2, and a maximum linear velocity of 2.5m/s. The goalkeeper has a
different design from the field players. It is equipped with a holding and kicking
mechanism that can catch a front shot on goal, hold it for an indefinite amount
of time, and make a pass. All of the designs were performed using ProE[10].

Listed below are the main characteristics of our robots:

Characteristic Goal Keeper Field Player

Weight 1.78 kg 1.65 kg
Max. Acceleration 5.90 m/s2 5.10 m/s2

Max. Velocity 1.68 m/s 2.53 m/s
Max. Kicking Speed 4.18m/s 2.6 m/s
Operating time 30 min per battery pack
Special function Ball Holding mechanism

3.2 On-Board Electronics

The main function of the on-board electronics is to receive left and right wheel
velocity signals via wireless communication and to implement local feedback
control to ensure that the wheel velocity were regulated about the desired val-
ues. Considering the speed, memory space, I/O capability, and the extension
flexibility, 16bit 50MHz microcontrollers are used.

In order to get a precise kick, a ball detecting system separate from the global
vision system is implemented. An infrared system is used to detect the ball. It
informs the microcontroller when the ball has come into contact with the front of
the robot. When the global vision system makes the observation that the robot
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is in a position to kick, a command is sent to inform the robot to kick the ball if
and only if the infrared system detects the ball. All the capture and layout for
the on-board electronics were performed in-house using OrCad[11].

3.3 Communication

After careful considerations and trade-off analysis, the wireless communication
was limited to one-way transmission from the global AI workstation to each
robot. The main justification for the decision is the lack of on-board local sens-
ing information. The one-way transmission saves the communication time, as
compared to the two-way communication, and simplifies the AI strategy and the
on-board firmware. The wireless communication system takes 12.5ms to transmit
the information from the AI workstation to the robots.

With the experimentally verified assumption that the robots do not drift
far from the desired position between frames, the need for local sensing and
correction is minimal. Based on the current design, the robots can drift 5cm
at maximum speed. For debugging purposes, each robot has the capability to
transmit data back to the AI workstation.

4 Visual Tracking Algorithm

A dedicated global vision system identifies the ball and robot locations as well
as the orientation of our robots. In order to determine the identity of each robot
and their orientation, blob analysis[5] is used as a basic algorithm. The vision
system perceives the current state of the game and communicates this state to
the AI workstation allowing decisions to be made in real-time in response to the
current game play. The end result of the vision system is the reliable real-time
perception of the position and velocity of the ball and the players, and also the
orientation and the identity of the Cornell players. The vision system captures
frames at a resolution of 320x240 and a rate of 35 Hz.

4.1 Interest Determination

Color segmentation of a frame often results in spurious blobs that do not corre-
spond to the ball, or the robots. These points can be resultant from areas outside
of the field, highlights from the lighting, deep shadows, the goals, and aliasing.
Computation time of features of these blobs can result in a significant slowdown
in system performance. To eliminate this slowdown and to produce a clean image
of only the objects of interest, a single frame is captured and saved previous to
the beginning of game play. This frame consists of the empty field only, without
robots or the ball. This frame is later subtracted from the currently captured
frame producing a difference image. Regions of this image where the disparity
is high are postulated as areas where objects of interest lie.
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4.2 Color Segmentation and Feature Extraction

Once areas of interest are determined, color segmentation is performed on the
image. The segmentation is done by independently thresholding each of the Red,
Green, and Blue color channels and performing a logical AND on the results of
color thresholding. This logical operation extracts a sub-cube from the RGB
color space. All objects are then classified based on the sub-cube that the cor-
responding blob falls into. This approach is well suited for the colors that are
determined by the RoboCup Federation. The ideal pure colors that are defined:
Orange (which is mainly Red), Green, Blue, Yellow, White, and Black, can be
found on the corners of the RGB color cube. Two remaining colors exist and
are used for our purposes, Cyan for initial orientation information and Magenta
for robot identification. Since these eight colors are so separated in RGB color
space, no color space conversion is performed on the input image, which is com-
putationally costly.

Once the color segmentation is completed, blob features are computed in-
cluding position, size, and perimeter length. These features are then used to
filter any salt and pepper noise that may have been the result of incorrect color
thresholding.

4.3 Tracking

Further rejection of false object classification is performed in the tracking stage.
During tracking each orientation and identification blob is attempted to be reg-
istered to the blobs that correspond to the appropriate Cornell team color. All
blobs that are not located within an appropriate physically realizable distance
from the team color blob are thrown away. This step will reject any colors that
are of interest, but are found on the opponent robots, for example. The team
marker blobs which have an orientation marker and one or more identification
markers registered with them are considered initially for identification and local-
ization. The other team markers are afterward considered if there are any robots
that are not found in the first set.

From these markers, and initial orientation is computed and the positions of
the identification marker with respect to this orientation marker. The identifi-
cation markers can be located in three of the four corners of the robot cover.
The cover is divided into four quadrants, and each marker is classified by the
angle that is produced relative to the orientation marker. The pattern of the
identification markers can then be determined and the robot identified invariant
to the robot orientation on the field. Once the robot pattern is identified, the
final orientation is computed using all of markers on the cover.

Robot identification is also simplified by the physical constraints imposed by
the maximum velocity and acceleration attainable. Each candidate position for a
specific robot is compared to a predicted location and velocity determined by the
two previous locations. If the position is outside the physically realizable radius
of this predicted position, the candidate is rejected. Among several candidate
positions that are located within this attainable radius, the necessary velocity
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to reach that position is computed and the position that most closely matches
the predicted position and velocity is chosen as the true position of the robot.

4.4 Filtering

Although, the resolution of the camera is quite high and the blob analysis can
compute the center of gravity of a blob to sub-pixel accuracy, these centers of
gravity contain noise that may be modeled as white Gaussian noise in the system.
While position calculations are fairly accurate, the orientation calculation suffers
from this noise. The spatial proximity of the orientation marker and the team
marker on the cover of the robot results in orientation errors of up to 10 degrees.
To compensate for these errors all of the markers on top of the robot are used for
the orientation. The true positions of the markers are known, thus the optimal
rotation of the robot can be computed by using a least squares fit of the perceived
marker locations and the actual locations on the cover. This fit becomes more
precise as the number of markers on the cover of the robot increases.

5 Skills

The sophistication of the trajectory control algorithms described below together
with very tight PID velocity control[4] enable our robots to get to a desired final
state (of position, orientation and wheel velocities) in a fast manner.

This, combined with a prediction algorithm[3] for the ball, makes for effective
real-time interception for both a stopped ball and a moving ball. The limitation
on robot speed of maneuverability comes primarily from a system latency, de-
scribed later in this paper.

Ball control is achieved with a front surface that is slightly recessed from the
front corner bumpers, nominally allowing a player to change the direction of the
ball’s motion. An energy absorbing contact surface affords greater control. Drib-
bling is not a dominant skill. Passing is accomplished in an emergent manner,
as a result of clever positioning of players that are not assigned to the ball.

Kicking is accomplished by a unidirectional solenoid with a front plate at-
tached to its shaft. Robots will only kick in potential goal-scoring situations,
and the timing of the kick is done with the use of an infrared sensor circuit that
detects when the ball is directly in front of the robot. Typical kicks impart an
additional 1 m/s to the ball.

The goalkeeper design is independent of the field player design, and thus the
goalkeeper exhibits significantly different skills. The goalkeeper is equipped with
a holding and kicking mechanism that can catch a front shot on goal, hold it for
an indefinite amount of time required to find a clear pass to a teammate, and
make this pass.
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Fig. 1. Schematic diagram for Robot Control

6 Artificial Intelligence

6.1 Role Based Strategy

The artificial intelligence subsystem is divided into two parts. The high-level
AI takes the current game state (robot and ball positions, velocities, and game
history) as input, and determines the role of each robots, such as shooter, de-
fender, mid-fielder, goalie, etcetera. Please see [2], and the references therein,
for a thorough description of the application of role based systems in robotic
soccer. Once the role is determined, desired final state such as time-to-target,
robot orientation and robot velocity at the final position are computed from the
current state. More than 20 roles are preprogrammed. The low-level AI subsys-
tem resides on the each roles, and generates the trajectory to the target point
and computes the wheel velocities to transmit to a robot.

6.2 Trajectory Control

The task of low-level AI is to generate trajectories and to control the robot to
follow the trajectories. It takes as inputs the current state of the robot and the
desired ending state. The current state of a robot consists of the robot x and
y coordinates, orientation, and left and right wheel velocities. A desired target
state consists of the final x and y coordinates, final orientation, final velocity as
well as the desired amount of time for the robot to reach the destination.

Compared to reactive control strategies, such as those in [1] for example,
we perform a global trajectory optimization for each robot and take advantage
of the mechanical characteristics of the robots. Two position feedback loops are
employed for the robot’s trajectory control. The first is a local feedback loop and
the other a global feedback loop. The local feedback loop resides on the micro-
controller of each robot and is in charge of controlling the motor position[4]. The
global feedback control also has a position feedback loop via the global vision
system and makes the robot follow the desired trajectory. These two position
feedback controls improve the robot’s staying performance. The performance en-
hancement shows up especially when the goalie is facing an opponent robot. The
desired velocity of each of the robot wheels are generated and then transmitted
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Fig. 2. Trajectory Generation

to the robots through the RF communication link at every sixtieth of a second.
Fig. 1 shows the schematic diagram for the entire trajectory control loop.

The low-level AI needs to be efficient and robust to imperfections in robot
movement. Currently, our algorithm can run more than 60 times per one com-
putation cycle, which is sufficient considering it only needs to be run at about
four times per cycle (for four robots excluding the goalkeeper).

This complex problem is solved by breaking the problem of trajectory gener-
ation into two parts. The first part generates a geometric path. The second part
calculates wheel velocities such that the robot stays on the path and completes
it in the allocated time.

Generating a Geometric Path Our geometric path is represented by two
polynomials in the x and y coordinates of the robots. The x coordinate poly-
nomial is a fourth-degree polynomial and the y coordinate polynomial is third
degree.

x(p) =
4∑

k=0

αkp
k (1)

y(p) =
3∑

k=0

βkp
k (2)

The task is to solve for the nine polynomial coefficients for a particular path
requirement[7]. The 9 constraints on the polynomial path are: initial x coordi-
nate, initial y coordinate, initial orientation, initial curvature (determined by
the initial left and right wheel velocities), initial speed, final x coordinate, final
y coordinate, final orientation, and final speed.

Generating Wheel Velocities Every point on the geometric curve has a
curvature value, which defines a relationship between the left wheel velocity vl
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and the right wheel velocity vr at that point in the curve. This relationship is:

v = (vl + vr)/2 (3)

vl(1 + κ · r) = vr(1 − κ · r) (4)

where κ is the curvature of the path, and r is the half distance between the two
wheels and v is the forward moving velocity of the robot(See Figure 2). Thus,
we simply need to choose a forward moving velocity of the robot to solve for vl
and vr at every point on the curve, which can then be sampled at the cycle rate
of our AI system. Obviously, the forward moving velocity is constrained by the
time-to-target as well as mechanical limits of the robot.

Even though each run of this algorithm generates a preplanned path from
beginning to end, it can be used to generate a new path after every few cycles
to compensate for robot drift. The continuity of the paths generated is verified
through testing. However, this algorithm breaks down when the robot is very
near the target because the polynomial path generated might have severe cur-
vature changes. In this case, the polynomials are artificially created (and not
subject to the above constraints) on a case-by-case basis, and these are guaran-
teed to be smooth.

7 Other Team Features

7.1 Vision Calibration

The vision calibration consists of 4 main parts. They are:

– barrel distortion correction
– scaling
– rotation
– parallax correction

The barrel distortion correction is performed using a look-up table to map a
point in image-coordinates into a new coordinate equidistant coordinate system.
Due to the necessity for a wide angle lens barrel distortion becomes a significant
problem in the image processing. Barrel distortion is a function of the lens of
the camera and is radially symmetric from the center of the image. To invert
the distortion, points are measured from the center of the image to the corner of
the image. Since the points are measured equidistantly, a scaling can be done to
convert corresponding points in image coordinates, which tend not to be equidis-
tant. A look-up table is generated which contains the scaling factor and indexed
by the distance from the center point in the image. Points between the indices
are linearly interpolated from the two surrounding points. This transformation
ensures that straight lines in reality are mapped back into straight lines.

The scaling is then computed such that the sides of the field are computed
as accurately as possible. These values are computed so that the transformation
from image coordinates to field coordinates is accurate for the center of each of

56 R. D’Andrea et al.



Fig. 3. Testing platform for the Simulation
.

the sides of the field, i.e. the x-coordinate of the center of the goals, and the
y-coordinate for the centers of the lengthwise walls. This anchors the transfor-
mation to the sides of the field, ensuring that the walls of the field correspond
to exactly where the artificial intelligence system expects them to be.

Since the camera cannot be mounted perfectly, the rotations about the center
axis of the camera also need to be taken out. The points are rotated so that the
sides of the field have constant x-coordinates along the widthwise walls and
constant y-coordinates along the lengthwise walls.

Finally the parallax error that results from differences in object height is
removed by scaling the x- and y-coordinates proportionally to the distance that
the object is from the center of the camera projected onto the field plane.

7.2 High Fidelity Simulation

To provide a realistic testing platform for our artificial intelligence system, we
have constructed a simulation of the playing field that models the dynamics of
our environment.

The dynamic modeling of our system is performed by a Working Model 2D[8]
rendering of the complete playing field. The model includes two teams of five
individual players, the game ball, and the playing field. Real world forces and
constraints are modeled, including the modeling of the motion of the tires and
the inertia of the robots and ball. Additionally, the physical interactions between

57Big Red: The Cornell Small League Robot Soccer Team



the players and each other, the ball, and the playing environment are all modeled
in Working Model’s two dimensional environment.

The simulator accepts external input and output 60 times per simulated
second, the rate at which the artificial intelligence operates, and the rate at
which new robot commands are issued. To simulate the time lag and noise we
encounter in our real world simulation, the Working Model parameters are passed
into Matlab[9], where random noise, error, and delay are introduced to model the
limitations of our vision and communication systems. In addition, the kicking
mechanisms and simple referee functions are managed, such as the detection of
a team goal, and the reset of the playing field. This information is then passed to
the artificial intelligence module. Information normally transmitted across the
communications link is then passed back to Matlab from the artificial intelligence
module, and is interpreted in Matlab before it is applied to the model of our
system, to simulate the delay associated with our real world communications
link.

The transition of our intelligence code between the simulated environment to
the real playing environment is fairly smooth. However, there are some under-
lying differences that need to be considered when making the transition. In the
simulator, the intelligence must run synchronously with the rest of the system,
unlike in our final playing environment. In addition, simpler feedback control
mechanisms are implemented into the physical model to increase the speed of
the simulator, which are slightly different than the control methods that we use
on our actual robots. Despite these limitations, we have found the differences
between the environments to be small enough that we can make the transition
between them without the need to significantly alter the functionality of the
system intelligence and control code.

In the time before we had a fully operational real world system, the simula-
tor provided us with a means of testing the artificial intelligence play-by-play,
allowing code and strategy development to begin a full four months before the
first robots were built. In addition, it allowed us to run competing strategies
and full games without the need for a full complement of ten robots and two
workstations running different intelligence algorithms simultaneously.

The simulator is a simple and manageable platform that allows us to recreate
the real-world problems that exist in our system. At the same time, it removes
several annoying physical constraints of the real-world system, such as limited
battery life and operating time, providing a more convenient environment for
new algorithms to be tested. Because the simulator performs more reliably than
the real-world system, problems can be traced more quickly and more reliably to
problems within the intelligence code. The simulator is a convenient and fairly
accurate rendering of our real-world system, and an invaluable tool in the design
and implementation of our artificial intelligence system.

7.3 System Delay Test

In any feedback control system, a change in the system delay can cause unwanted
oscillations and loss of system control. To prevent unwanted oscillations, we have
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created a simple testing procedure to accurately measure our system delay. We
measure the delay by sending a command to a robot to change the state of the
playing field, and then we measure the time needed to detect the arrival of the
change back at the place in the system where we issued the command.

There are two major reasons that we chose to implement the delay measure-
ment in this manner. First, this method of measurement provided us with an
accurate representation of the system delay that could be used when modifying
the trajectory controller, which is responsible for modeling the system and prop-
erly handling the system feedback. Second, a quick measurement of the system
delay allows us to easily check if the system is functioning normally.

The results of our delay measurements have reflected a total system delay
of approximately 83 to 117 milliseconds. The total delay time can be attributed
to specific components within the system. Our intelligence contributes a single
frame delay of about 16 milliseconds (ms) to the total system delay. The commu-
nications link approximately adds an average of 13.3 ms of delay due to the time
needed to buffer our 13 byte packets into the device, send the packets across the
data channel, and to decode the packets at the robot.

The time that is needed for the vision system to capture the field state and
relay it to the intelligence system is approximately 45 ms. This can be attributed
to a delay of 16 ms to capture a new frame from the camera and the time needed
to interpret a single frame, which is approximately 29 ms.

The vision information is incorporated into the next artificial intelligence
cycle, which begins a new cycle every 17 milliseconds. The entire system delay
breakdown gives us a minimum system delay rate of 75 ms, with the possibility
of additional delay due to the asynchronous nature of the links between the
camera, vision, and artificial intelligence subsystems.

8 Conclusion

Even though our team performed well at the competition last year, there are
many subsystems and components that need to be improved. The main ones are
outlined below:

– A more robust vision system. The current vision system performs well when
operational, but does fail on occasion. In addition, it takes a very long time
to calibrate the system. One of our objectives for next year is to construct
a reliable vision system that can be set up in less than 30 minutes.

– Role coordination. This will allow us to implement set plays.
– More refined trajectory generation, obstacle avoidance, and trajectory con-

trol.
– Reduce the system latency.
– Innovative electro-mechanical designs.
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