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Abstract. The main ideas behind the implementation of the IALP 
RoboCup team are discussed: an agent architecture made of a hierarchy 
of behaviors, which can be combined to obtain different roles; a memory 
model which relies of the absolute positions of objects. The team is 
programmed using ECL, a Common Lisp implementation designed for 
being embeddable within C based applications. The research goal that we 
are pursuing with IALP is twofold: (1) we want to show the flexibility 
and effectiveness of our agent architecture in the RoboCup domain and 
(2) we want to test ECL in a real time application.  

1 Introduction 

IALP (Intelligent Agents Lisp Programmed) is a team for the simulation league of 
the RoboCup initiative [1, 2, 3]. The team is programmed using ECL, a public 
domain implementation of Common Lisp [4]. 
RoboCup is a real time domain task where players receive perceptions from the 
server and have to react within the allowed time. To make things more realistic, 
the environment is inaccessible (perceptions are restricted to the point of view of 
the player and are limited by the distance) and non deterministic (the effect of 
actions is not completely predictable). 
For the basic architecture of IALP we have adopted a reactive planning approach 
and developed an agent architecture where the global behavior of the planner is 
structured in layers. The requirements we had in mind for the architecture is that 
it must be open and offer different levels of abstraction coping with different 
problems in a modular way. Moreover the architecture is meant to be general and 
flexible enough to allow reuse of code built for the RoboCup initiative in other 
domains.  
The layered approach used in IALP has been inspired by agent architectures for 
robots, as proposed for example in [5, 6] and, in the context of multi agent 
applications such as RoboCup, by the idea that complex behaviors can be learned 
in layers of increasing complexity [7]. In our approach no learning is involved, 
but the complexity of behavior of the planner is obtained by defining suitable 
actions for each layer, by means of a language oriented to action definition built 
on top of Lisp.  
For coping with limited perceptions, we have developed a memory model that 
relies on the absolute positions of objects, and offers a set of predicates allowing 
players to reason about the game at different levels of abstraction. 
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We have implemented IALP using this memory model and the planner 
architecture. IALP uses a model of coordination without communication [8] and a 
concept of role for a player that is built on top of basic abilities, common to all 
the agents. The layered and modular structure of the planner allows an easy reuse 
of the basic capabilities of the players and specialization of roles at the higher 
levels. 
Using Common Lisp to implement IALP offers clear advantages from the AI 
programming point of view; in particular we have exploited the Lisp reader and 
the macro feature. Using the ECL implementation of Common Lisp, designed for 
being embeddable within C based applications, we wanted to see if such language 
can compete with C/C++ written teams in a real time domain such as RoboCup. 
In this paper we report about the main features of the IALP team. Section 2 and 3 
describe the planner architecture and the declarative language used for defining the 
behavior of layers; section 4 is an account of the memory model; section 5 explains 
how the planner and the KB have been used to program the players and the 
coordination model used. 

2 The architecture of the planner 

The core of IALP is a hierarchically structured reactive planner that computes and 
executes plans. There is an ordered chain of layers, with a base layer and a top 
layer. The base layer is devoted to the communication with the RoboCup server: 
thus the outputs are commands like (dash speed) or (turn moment). The 
top layer defines the overall strategy of a player; it contains the most abstract 
plans and fully determines the behavior of the agent. The intermediate layers 
define a hierarchy of actions: each layer decides upon the implementation of an 
action using the actions offered by lower layers. 
The overall architecture of the planner is shown in figure 1. 
A plan built in a layer is a list of actions defined in one of the layers below. A 
while action can be used to repeat a sequence of actions until a specified 
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Fig. 1: The planner architecture 
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condition is verified. Actions are expressed using the classic functional notation 
of LISP. A simple example of plan is the following: 
 
((dash 100) (turn 90) (dash 100)) 
 
Another example, involving the *while* iteration construct is the following: 
 
((*while* (not (can-kick? Kb))((go-ball)))  
 (kick! (enemy-goal kb))) 
 
The plan executor sends to the inferior layer the request to repeatedly execute the 
action (go-ball) until the condition (can-kick? kb) is verified; at this 
point the action (kick! (enemy-goal kb)) will be executed. 
At each cycle, the interpreter of plans requests an action in executable form to the 
base layer; if this layer is executing a plan, the next action of the plan is executed. 
If the layer does not have a plan (has finished executing the previous one), it 
requests a new plan to the upper layer. This chain of requests may propagate to 
the top layer, which must always return an appropriate plan. 
Each intermediate layer receives a plan from the upper layer and must execute the 
actions contained in it. The way an intermediate layer executes an action is by 
computing a particular function that takes into account a number of parameters 
and returns a plan to be executed by the lower layer. If the action is unknown to 
that layer the task of computing the plan is delegated to the inferior layer. 
The execution of an action by a given layer may simply return a standard plan, 
good for any situation (in this case the system is an interpreter of plans) or 
involve a computation of a plan taking into account the knowledge contained in 
the KB. The top layer must necessarily compute a plan. Thus the planner as a 
whole implements a hierarchy of actions that are all available to the top layer to 
solve the task of writing a player for RoboCup in a suitable abstract language. 
Since the top level planner determines the behavior of the underlying planners, 
specific abilities implemented by lower levels may be reused for building 
different roles. In particular the layered approach is suitable for sharing low level 
abilities that all players should possess. 
Each layer can request to reset the executing plans to upper and/or lower layers. 
This feature is important to implement reactive behaviors; for example, in order 
to react promptly to referee messages. 
Another feature of the IALP planner is the possible non-determinism in the 
execution of actions. It is possible to define several alternative implementations 
for an action, all of them considered equivalent with respect to the outcome. In 
this case the interpreter chooses randomly the implementation to be used. With 
this feature, it is quite easy to introduce a richness of behavior. An advantage is 
that it may be difficult for an opponent team to guess the behavior of players.  
The planner executes a standard perception/action cycle but we have extended the 
base layer to allow it to return a list of basic actions, so that all the available slots for 
executing actions can be exploited. Thus the basic cycle of the planner is “read a 
perception from the server, compute the next sequence of actions and execute them”. 
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3 The language for defining the behavior of the planner 

We have developed a simple declarative language based on LISP to define the 
behavior of the various layers.  
Each layer contains the definition of an update function that, testing some conditions 
on the current environment, decides if some of the executing plans must be 
terminated. The function can return four different values: nil, UP, DOWN and ALL. 
When the value returned is nil the planner can continue its execution. UP means that 
the upper layers must abort the execution of the current plans; this capability is useful 
when the changes in the environment affect only the more abstract plans while lower 
layers can continue executing their tasks. DOWN is the dual of UP and aborts the 
executing plans of inferior layers; in this case it is deemed useful to continue with the 
overall strategy but some change in the environment make it necessary a re-planning 
at the lower layers. ALL is equivalent to returning both UP and DOWN and forces the 
planner to rebuild entirely his plans. 
The way to define an update function for a layer is as follows: 
 
(defupdate layer 
  "Optional documentation" 
  body) 
 
where body is the body of the function. In order to define an empty update 
function, that is an update function that always returns nil: 
 
(def-empty-update layer) 
 
The possibility of aborting executing plans instantaneously is important in real 
time domains such as RoboCup where the environment is highly dynamic. An 
example is the referee message that changes the state of the game: each player 
must suddenly change his behavior to adjust to the new state. The update method 
that deals with referee messages is located in the base layer and has the following 
definition: 
 
(defupdate basic-layer 
  "Handles referee messages" 
  (if (and  
        (eql  
          (last-percept-type kb)  
          'REFEREE) 
       (not (last-message-read kb))) 
      (progn 
        (message-read kb) 
      'UP) 
    nil)) 
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The update function aborts all executing plans if the last perception is of type 
referee message. In this case, because the base layer is the bottommost, UP is 
equivalent to ALL. 
In addition to the update function, a layer must define a set of actions. For each 
action at least one implementation must be provided. If there are multiple 
implementations of a given action the interpreter chooses among them with a 
given policy. For the moment the policy consists in choosing randomly among the 
implementations. In our language the list of actions defined in a layer is specified 
by means of the following construct: 
 
(defactions layer 
 (action-list action-name) 
 (action-list action-name imp1 ... impn) 
  ...) 
 
If the action-list statement is followed only by the action-name an 
implementation is assumed with the same name of the action. If imp1 ... impn 
are specified, the action definitions with these names are associated to action-
name. 
A definition of an action is similar to the definition of a function but uses the 
defaction keyword: 
 
(defaction name (params) 
  "Documentation." 
  body) 
 
The name of the action must be one of those declared within the defactions 
construct. The parameter list allows passing some parameter to the action, for 
example the go-ball action must receive as a parameter the speed that must be 
used. The defaction must return a plan. 
As an example of action definition we include a possible implementation for the 
run-with-ball action: 
 
(defaction run-with-ball (speed dir k) 
  "The power of kick is speed * k." 
  (if (can-kick? kb) 
      `((turn ,(ball-dir kb)) 
        (kick ,(* k speed) ,dir) 
        (turn ,dir) 
        (dash ,speed)) 
    '((sleep)))) 
 
This action checks if the player can kick (the ball is close enough) and, when this is 
the case, returns a plan that prescribes: “turn towards the ball, kick in the direction 
requested, turn and dash”. If the player cannot kick, the plan ((sleep))is returned 
and the player does not do anything because the action requested cannot be executed”. 
This plan causes the immediate termination of the action and the request for a new 
action. 
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4 The memory model 

A memory model is used in IALP to record basic properties of the environment 
used to decide which actions should be sent to the server. The memory of a 

player, or KB, keeps track of objects seen recently and is responsible for 
computing the absolute positions of any object and of the other players. The 
memory also stores the messages heard and the physical status of the player. 
The IALP player executes a standard cycle: receives a perception from the server, 
updates the memory, computes a new set of actions and sends them to the server. 
In deciding the next actions the planner uses higher level predicates implemented 
from the information contained in the memory. 
When the perception is received it is parsed using the read-from-string 
function provided by LISP. This is very convenient because the perceptions sent 
by the server are strings containing S-expressions and the LISP reader knows how 
to deal with them. 

Fig. 2: Absolute position 
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If the received perception is see the memory tries to update the absolute position 
of the player. The coordinates are the same used by the server: the (0, 0) position 
corresponds to the center of the field, the x direction is towards the enemy goal 
and the y direction is on the right of a player looking at the opponent’s goal. 
The absolute position of the player is computed using a borderline and a flag. 
When a borderline is visible the player can easily compute his distance from the 
line, and thus one coordinate, which is x or y depending on the line, and the 
direction in the coordinate system chosen. If a flag is also perceived the player 
can compute the second coordinate. Figure 2 shows how the absolute coordinates 
of the player are computed from the perception of a line (i.e. its distance d and its 
relative direction a) and a corner flag (i.e. its distance d’ and its relative direction 
g). 
This method has a good precision and is fast to compute. The basic assumption is 
that the player movements are continuous and if the player at a given time cannot 
compute one or both coordinates he can assume the previous ones without making 
a significant error. 
Once the position of the player has been computed, the absolute coordinates for 
each dynamic object present in the see perception (players and ball) are also 
computed using standard trigonometric calculus. 
Differently from what has been proposed by other researchers [9] we have 
decided to maintain absolute positions for the following reasons. The absolute 
positions kept for all moving objects can be exploited when an object is not in the 
current see perception. For example if the player sees the ball at simulation cycle 
t and another player covers the ball at time t + k, we can assume that the ball is 
near to the last position recorded into memory. This assumption is reasonable 
only if the elapsed time k is reasonably small. Moreover, if the player changes its 
direction, the information stored in the memory is not affected and it is not 
necessary to update object positions. Also the distance among objects can be 
easily computed from their absolute positions. 
The hear and sense body perceptions are treated similarly: they are parsed and all 
the information stored in appropriate structures in the memory of the agent. The 
referee messages are stored separately from other messages since they contain the 
status of the game and it is necessary to make sure that they are acted upon. 
Given this memory model, we have defined functions and predicates and derived 
more abstract properties of the environment useful for defining player behaviors. 
Some of these predicates are used to make qualitative statements about the 
environment: for example the predicate can-kick? is true when the ball is near 
enough to the player, which in terms of lower levels means within 2 meters. 
Two very important functions are distance and dir-x-y. The function 
distance computes the distance between the player and another point (x, y) and 
is fundamental for evaluating distances from objects during the game. This 
function is used instead of the relative distance provided in the perceptions, 
because, by referring to its memory, an agent is able to estimate the distance of an 
object even when the object is not currently perceived. This function is also 
exploited to evaluate the distance from a given point situated in a zone of the 
pitch; this is useful to implement a zone-based strategy. 
The function dir-x-y allows a player to know the moment of which to turn to 
see a point (x, y). This function also exploits the fact that the player can estimate 
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the absolute coordinates of every object. Together with the distance function, 
dir-x-y is very useful to implement a goto-x-y action. 
As an example of the flexibility of our memory model we show the 
implementation of the outside predicate: 
 
(defun outside? (kb) 
 (dolist p (enemies kb) 
   (when (and   
          (not (is-goalie? p)) 
          (> (pos-x kb) 
             (obj-info-x p kb))) 
      (return nil))) 
    T)) 

5 The implementation of IALP 

The Embeddable Common Lisp is an implementation of Common Lisp designed 
for being embeddable within C based applications [4]. ECL uses standard C 
calling conventions for Lisp compiled functions, which allows C programs to 
easily call Lisp functions and vice versa. No foreign function interface is 
required: data can be exchanged between C and Lisp with no need for conversion. 
ECL is based on a Common Runtime Support (CRS) which provides basic 
facilities for memory management, dynamic loading and dumping of binary 
images, support for multiple threads of execution. The CRS is built into a library 
that can be linked with the code of the application. ECL is modular: main 
modules are the program development tools (top level, debugger, trace, stepper), 
the compiler, and CLOS. A native implementation of CLOS is available in ECL: 
one can configure ECL with or without CLOS. A runtime version of ECL can be 
built with just the modules required by the application.  
Using ECL has been our bet. RoboCup is a real-time domain task where system 
level languages like C/C++ seem to be much more effective than traditional AI 
languages like LISP or PROLOG. On the other hand, LISP provides a lot of 
advantages: no need for a parser of the messages sent by the server, automatic 
garbage collection, macros and closures and other high level language features 
traditional in AI programming were all available, so that we were able to 
concentrate on high level programming tasks since the beginning. Preliminary 
experiments have shown that LISP processes, implementing IALP players, are 
capable of maintaining the synchronization between server and clients. 
IALP is built on top of the architecture described in previous sections: we have 
implemented the functions and predicates required in the RoboCup domain and 
defined a number of layers describing the capabilities of the different players. So 
far we have defined a preliminary hierarchy of layers that we intend to evolve and 
adjust by gaining more feedback from actual matches. Figure 3 shows the 
structure of the layers for the team members of the current IALP implementation.  
Since most of the abilities are common to all the agents, players in different roles 
tend to have a great number of shared layers. In fact right now they share all the 
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layers but the topmost. The goalie has an additional layer to implement 
capabilities that are specific of this role. 
This homogeneity among players is justified by the definition of role that we have 

assumed: a role is a prevalence of a behavior. This definition of role implies that 
the basic capabilities of the various players must be the same and only the overall 
strategy of the team and the environment determine the effective behavior of a 
player. To understand why we have chosen this definition, consider a situation 
where a defender finds himself in an attack position for some reason: we want the 
defender to behave like an attacker for the period that he is involved in the action. 
An analogous situation is when all the team is forced in a situation of defence and 
the attackers must behave like defenders. In the real soccer it is impossible to find 
players able to perform top level in any role; players usually specialize in a set of 
tasks. Simulated soccer is different also in that it is not a problem to replicate 
abilities: why shouldn’t we give to all the players the best capabilities in kicking 
and controlling the ball that we were able to develop? The only exception is the 
goalie that must have capabilities of his own inapplicable to the other players. 
The basic layer is the bottom layer of the planner and its outputs are actions that 
are sent to the server. The actions defined at this level are basic actions such us 
turn, dash, kick, say, catch, move, and low level actions such as sleep, 
ndash and turn-ball. The sleep action is a no-action command telling the 
interpreter that no commands must be sent to the server until a new perception is 
received. The ndash action tells the interpreter that n dash commands must be 
sent to the server in sequence, without waiting for a new perception. The turn-
ball sends a sequence of actions to the server to turn the player and the ball of a 
given angle. 
A little preprocessing of the arguments may be done also for the basic actions: for 
example a turn action with a moment less than 1 is not sent to the server because 
it is not relevant. 

top-layer-1

individual

player-base

basic

top-layer-10

goalie-base

top-layer-goalie...

...

Fig. 3: Layers used in IALP 
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The player-base defines a first layer of abstraction. A subset of the actions 
defined in this layer is the following: go-ball, see-ball, pass-ball, 
run-with-ball and goto. The go-ball action causes the player to find and 
reach the ball. The see-ball action makes the player turn until he is able to see 
the ball. The pass-ball action passes the ball to a given player; in this case the 
assumption is made that an upper layer has checked that the player can receive the 
ball. Finally the run-with-ball allows the player to run with the ball using 
the kick, dash and turn actions required to produce this complex behavior. 
The individual layer defines individual behaviors of a player like stay-in-
zone that situates the player in a given zone of the field. Another action is 
handle-with-ball that manages the ball and tries to move the player with 
the ball towards the enemy goal. The free-kick action is devoted to the 
execution of a free kick. 
The three layers described above are shared by all the players because they 
correspond to abilities that all players should possess. Each member of the team 
has its specific top layer that distinguishes the behavior according to the role 
strategy. The top layer code for all players is similar and changes only in those 
aspects accounting for the prevalence of behavior. 
The bigger differences between the goalie and other players are reflected in an 
additional layer, the goalie-base. This layer defines actions like free-kick, 
used to follow a far away action or catch-ball used to catch the ball. 
The model of coordination used to pass the ball does not involve communication. 
The player possessing the ball evaluates the possible candidates for a pass and the 
risk of loosing the ball; if it decides to make a pass to a certain player he does so. 
The coordination is in the fact that a player near the action is typically interested 
in the ball and thus able to recognize the pass.  
The overall strategy of the team emerges from role definitions. A role is 
substantially defined by the zone of the field assigned to a player when he is not 
engaged in the current action. The player is responsible for the ball and opponents 
in his zone. When the player has the ball he checks whether he can pass the ball 
or shoot into the enemy goal; if he can’t, he tries to move in the direction of the 
opponent’s goal until a pass becomes possible or he can shoot. 
The flow of the ball from the defense zone to the attack zone is a consequence of 
the decision function used by the player to establish whether to pass the ball or 
proceed. For deciding whether to pass the ball or proceed, each player, depending 
on his role, has a number for each team mate, used for assigning a preference to 
the candidates for a pass.  Thus defenders prefer to pass the ball to middle players 
and are not happy to pass the ball to the goalie. 
The evaluation function also considers, for each possible target of the pass, the 
gain in case of success and the risk that the pass will be intercepted. The most 
promising target is thus chosen and its value compared with the gain and risk of 
advancing with the ball. 

6 Conclusions and future work 

In this paper we have described the basic ideas behind the implementation of the 
IALP team. We have adopted an agent architecture based on a layered reactive 
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planner. Experience gained in past competitions showed that the low level (the 
communication layer responsible for handling communication with the server) 
was too slow; moreover the memory model, implemented in LISP, proved to be 
too heavy. This suggested rewriting in C both the communication level and the 
memory model for better performance. 
For the future we want to experiment with different arrangements and 
implementations of layers and different means of coordination, besides testing the 
validity of the definition of role as a prevalence of behavior. 
We are also interested in investigating an emotional approach to define the 
behavior of players [10]. Finally we want to observe the emerging behavior due to 
the introduction of non-determinism. 
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