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Abstract. We present an approach to shape robots on their sensorial
ability. We argue that the interface with the external world may strongly
condition the design of a robot, from the mechanical aspects to reasoning
and learning. We show the implementation of this philosophy in the
RoboCup middle-size player Rullit, shaped on its omnidirectional vision
sensor.

1 Introduction

We argue that the way a robot perceives the environment should strongly a�ect
the design of each component of the robot. As it happens for animals, and human
beings, the modality of interaction with the external world is strongly related to
the survival behaviors, neural structures, actuators and reasoning. For instance,
all the most evolved predators in natural life have eyes pointing forward, since
this makes easier to follow a prey; all the preys have lateral eyes, since this is
e�ective to be aware of the presence of predators. In some special cases (e.g.,
the chameleon) predators have highly movable eyes that enable cost-e�ective
chasing strategies. We share the opinion that in a systemic perspective all the
components of an agent are inter-related. However, in designing an arti�cial
autonomous agent we should start from somewhere; here, we propose to start
by considering the component that provides input, since this is the most critical
to achieve the desired behavior. In the F-2000 Robocup [3] [14] environment, for
instance, a black and white camera or a sonar belt, could hardly be enough to
play e�ectively, whereas they may provide enough information to achieve many
other tasks.

We have followed this approach of "shaping an agent on its sensor"(SAS)
in many projects, designing both real [5] [1], and simulated [4] [8] robots by
starting from the de�nition of the sensors the agent can exploit to operate in
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its environment. We have implemented Rullit, our F-2000 Robocup player (see
�gure 1), following this philosophy, after the �rst experience in Robocup98 [2].
In Rullit, the importance of a sensor adequate to the soccer playing task in the
Robocup environment becomes evident, and we take it as a running example to
discuss the SAS approach. In this paper, we �rst motivate the need for accurate

Fig. 1. Rullit, our Robocup F-2000 player.

design of the sensorial apparatus able to extract the needed information from
the environment; we discuss the general issues exempli�ed in the Robocup en-
vironment. Then, we will describe our sensor. Finally, we discuss how a sensor
may condition the design of a robot, considering the kinematics and mechanical
aspects, low level control, behaviors, and learning mechanisms. This also gives
us the possibility to describe the main features of our robotic agent.

2 Designing the sensor

An agent needs information to perform a task. It obtains such information by
elaborating sensor data. Reasoning may somehow ful�ll lacks of information by
completing the available data by inference, possibly increasing uncertainty and
approximation. An accurate design of the sensorial apparatus may reduce such
undesired factors. We �rst discuss general properties that should be considered,
exemplifying them in the Robocup context.
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2.1 What kind of information?

The �rst question we have to ask ourselves is: "What kind of information will
my agent need?" From the answer to this question we may decide the kind of
sensor we need to acquire data, and how to extract the information from raw
data. Here below, we mention some relevant aspects.

Information contents What the agent has to know? For instance, in the
Robocup context, we may decide that it is interesting to know the position
of the agent and the relative positions of ball, goals, and other agents, maybe
discriminating between teammates and opponents, or maybe identifying each
single robot. Moreover it may be interesting to know this information for any
object on the �eld: the more the agent can perceive, the less it has to rely on
inference, presuppositions, expectations, and information explicitly coming from
teammates.

Information quality Should the agent be certain about the facts it is inferring
from data? Can it work also with uncertain facts? Should it explicitly represent
uncertainty? What kind of precision is needed? In Robocup it may be interesting
to have a good precision in the neighborhood of the agent, for instance to control
the ball, and to interact with close players. What happens at a great distance
may be considered qualitatively, since the environment is rapidly changing, and
whatever happens far from the agent do not require precise intervention before
than signi�cant changes may occur.

Information acquisition rate How frequently should the information be up-
dated? The acquisition rate should allow to build an e�ective model of the events
that characterize the task. The fastest event on a Robocup F-2000 �eld is the
movement of the ball, which may run at more than 1 m/sec. The information
acquisition and management should be fast enough to allow enough time to act
(or react), but, at the same time, it should not be too fast since this would pro-
duce a large amount of data that has to be interpreted with the computational
resources available (on board).

Information abstraction level Which kind of abstraction from raw data do
we expect to need, in order to obtain the required information? Can we reason
on raw data or on abstractions, and which kind of abstractions? In Robocup,
we are interested in the above mentioned information, which requires a good
abstraction and classi�cation activity on raw data.

Acquisition robustness and adaptation Is the environment known, stable
and static? If it is not so, data acquisition should be robust and possibly able
to adapt to changing conditions. Although the Robocup rules seem to de�ne a
highly structured environment, it is not so on the real �eld. Illumination is never
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as expected, and the presence of objects in the visual �eld may make it changing
a lot during a match.

2.2 Why omnidirectional vision?

At Robocup98, most of the robots relied on vision sensors, since the organizers
seem strongly oriented to give colors a primary role in the �eld setting. Most
of the players (included those in our team, ART { Azzurra Robocup Team [12])
had a �xed, color camera, that could hardly match some of the speci�cations
mentioned above. For instance, it gives information only about a small number
of objects on the �eld, so that, in many situations, it is hard to self-localize the
agent, to know where is the ball (which runs really fast), or to understand what
is happening. Our team, as others, implemented strategies to patch this lack of
information, based on information exchanging, which partially failed because of
transmission problems. Other teams had mobile cameras (or high mobility of
the body), but most of them still seemed too slow and imprecise to keep track
of the fast events on the �eld. The '98 winner [10] had a sensor system matching
perfectly all the design requirements mentioned above, and it was one of the few
teams showing really interesting behaviors. It is also to be noticed that their
sensor did not follow the organizers' implicit suggestion to rely on color vision,
thus avoiding most of the problems related with this type of sensor on the Paris
Robocup �eld.

We have decided to answer to the above introduced "�rst question" with an
omnidirectional vision sensor, which is described in details elsewhere [7]. It con-
sists of a camera pointed upwards beneath a coaxial, revolution mirror obtained
by the intersection of a truncated cone and a sphere (see �gure 2). A single im-
age contains all the objects around the agent. The data acquisition system can
give with suÆcient precision distance and direction from all the objects around
the agent. We have designed it to exploit the camera resolution and to improve
radial resolution in the peripheral areas of the circular image, containing far
objects. It is thus possible to reliably detect objects such as the ball, up to 6
meters from the agent. The precision about the distance from the objects is in-
versely proportional to the distance itself. Uncertainty about data classi�cation
is very low, due to the image analysis system we have implemented. This is also
optimized to provide all the information once every 30 ms, giving an informa-
tion acquisition rate very close to the limit of the PAL European standard for
video frame acquisition, which is 25 frames/sec. Since an omnidirectional image
contains at the same time a large portion of the �eld, the average brightness
is quite stable, and adaptation to light intensity is limited to the �rst frames,
to become acquainted with a new �eld. In case of a standard camera pointing
towards the environment, the image may contain objects with di�erent colors
(e.g., black robots, or white walls), and this requires some compensation on the
average brightness, which can be obtained either by mechanical adjustment of
the camera iris (slow), or electronically, requiring the analysis of at least two im-
ages unavailable for object recognition. In the next section, we give some details
about the speci�c choices we have done in the implementation of our sensor.
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2.3 Our omnidirectional vision sensor for Robocup

The sensor we are proposing is represented in �gure 2. You can see that the

Fig. 2. The mirrror, the camera pointing upwards, the plexiglass cylinder supporting

the mirror and the visual angle of the camera.

central part of the mirror consists of a truncated sphere, making it possible to see
objects very close to the robot (15 cm). Tangent to this is a truncated, reversed
cone, giving enhanced radial resolution from 2 m to 6 m. This design does not
require adjustment of the focal length of the camera, as proposed by [17], thus
avoiding the time loss due to mechanical movements. The camera with which
we took the image shown in �gure 3 is a low cost card camera, having 512x582
sensible elements, and a view angle of about 600. We are now mounting a Sony
XC-999P. In �gure 3, in black, on the center of the image the body of the robot,
on the right the yellow goal and the goalie, on the top a ball and, at a distance,
another robot and the blue goal. To implement a fast image recognition system
we took hints from biology, basing it on the idea of receptor. The generic term
"receptor" is used for any biological unit able to perceive speci�c stimuli from
the outside world and to transform them in nervous signals, then transmitted to
the central nervous system. In computer vision, image pixels are often considered
as receptors. To improve computational speed, we consider specialized receptors,
each consisting of a 3 by 3 pixel matrix, and characterized by the averagedHSV
value. Our receptors are distributed in a pattern designed to detect the smallest
object on the �eld (the ball) in any position of the image. Thus, we analyze only
a grid of receptors on the image, thus reducing the amount of information to be
considered by more than two orders of magnitude.

The vision system we have designed �rstly estimates on the image the likely
position of the possibly interesting objects, by classifying the receptors, and
aggregating them in clusters (called target) by color similarity and adjacency. A
target is a part of the image where it could be present an interesting objects.
Once identi�ed the targets, it is possible to operate on the part of image de�ned
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Fig. 3. A typical image taken by our sensor.

by each of them by adopting classical image processing (such as blob growing) on
single pixels, object recognition and localizazion techniques. The application of
these techniques signi�cantly reduces the amount of information to handle and
increases the processing speed. The image acquisition and processing requires
less than 30 ms, on the on board PC, a 266 MHz AMD K6 CPU, with 32 Mb
of RAM, a Matrox Meteor frame grabber, Linux RedHat 5.2 (Kernel version
2.0.36), and real-time kernel ETHNOS [13].

3 Sensors and behaviors

Now, let us discuss the impact of the type of available, sensorial information
on the behaviors that can be implemented on the agent. We �rst consider the
low-level control aspects, and then the higher level behaviors and strategies

3.1 Low-level control

In our viewpoint about robot architecture, a low-level control system may be
present on an agent to provide the higher levels with reliable actions. If the
higher level behavior activation cycle is long, low-level control should ensure
that the desired actions are actually done as expected. For instance, if the high
level control states that the agent should turn 30 degrees on the left at a speed of
0.2 m/sec, it expects that this happens; if, as usual, the actuation is imperfect,
the actual action may be di�erent. We may either have a low level control sys-
tem trying to realize what the higher-level control states, or have a higher-level
control designed to cope with low level problems such as imperfect actuators,
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and running fast enough. The information for such a kind of low-level control is
di�erent from that discussed above. Here, we need precise information about the
movement of the robot wheels. We have to cover this need with other sensors,
appropriate for this component of the control system, namely encoders on the
wheels or on the engine axis.

Rullit, our Robocup agent, has two independent traction wheels, and we
decided to attach encoders to each wheel. The precision of each measure is less
than 0.1 mm, enough to implement a good, speed and jog control. We have
implemented it as a fuzzy controller, so that it is also quite robust with respect
to noise [11]. Notice that this same sensor (encoder) is known to be inappropriate
for position control [9], and that we did not implement such a kind of controller.
This is another example of the relevance to select the proper sensor to achieve
a task.

3.2 Behaviors

The Robocup environment changes so rapidly that we have decided to leave to
the behavioral control the decision about where to go: a plan to reach a position
should be probably continuously re�ned, since situations change rapidly, so a
controller able to bring the agent at a given position would be restarted too
often.

Information provided by the omnidirectional sensor is appropriate for high
level control, and in
uences the design of behavioral modules. We may notice
that the same behavior (for instance, Go To Ball, that brings the agent on the
ball) may be implemented in di�erent ways according to the available informa-
tion. If we had reliable information only about objects that are in the range of
a camera pointed forward, probably the behavior can reliably trigger only when
the ball is in the range of the camera, and another behavior will make the agent
searching for the ball. Moreover, probably, Go to Ball will bring the agent on
the ball, only while keeping it in sight; this may bring the agent in undesired
situations, such as bumping the ball against the wall. Another implementation
of Go to Ball with the same sensor may infer the position of the ball from past
information and from information coming from other players. This may help,
but may also lead to clumsy behaviors, such as that happened in the challenge
during the ART-Freiburg semi-�nal at Robocup99, where the player didn't check
often enough the ball position and originated a situation hard to manage.

By contrast, having reliable information about the ball in any position with
respect to the agent from a suitable sensor, such as omnidirectional vision, a dif-
ferent Go to Ball may decide how to approach the ball, while keeping it in sight.
In �gure 4 you may see some of the ball approaching behaviors we have imple-
mented relying on the available omnidirectional information; these include going
on the ball by moving backwards (tracks 3 and 4 in �gure 4), or tracking the ball
by the side (track 2 in �gure 4). We have implemented the behavioral control
by fuzzy behaviors [15] [8], that is control modules that trigger on conditions
consisting of fuzzy predicates. We consider two sets of such fuzzy preconditions:
the cando preconditions enable the behavior, and the want preconditions give the
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Fig. 4. Three possible trajectories (1', 3' and 4') to reach a position behind the ball
(respectively in positions 1, 3, 4), and one (2') to track a moving ball(2).

amount of motivation for it. For instance, if we have the ball we can kick it, but
we want to do it only if this makes sense, e.g., we are aligned with a free portion
of the opponent's goal. Fuzzy predicates make it possible to classify the informa-
tion coming from the sensor into higher level classes, which give it a meaning.
Thus, it is possible to perform reasoning at a high level of abstraction, on a rel-
atively small set of concepts [6], thus achieving high speed and robustness [11].
Moreover, a fuzzy interpretation gives the possibility to reason on overlapping
classi�cations, which seems to be exactly what human beings, and some animals,
do in most situations. For instance, in �gure 5 we show the membership functions
de�ning three fuzzy sets (close, medium, far) used to implement fuzzy predicates
that classify the distance from objects. In the example, the measured distance
(1 m) is classi�ed as close with truth value 0.4 and medium with truth value 0.6.
In real life, usually we adopt classi�cations which can be naturally represented
by fuzzy predicates [11] whose de�nitions overlap, such as those presented in
�gure 5.

We associate to behaviors other two parameters: the static and the dynamic
relevance. The �rst implements an a priori, partial ordering among behaviors,
allowing to state, for instance, that avoiding crashes is always better than taking
the ball. The dynamic relevance also implements a partial ordering, but it can be
modi�ed according to the situation faced by the agent, and it is used to imple-
ment strategies and learning mechanisms, as discussed in the next sections. At
each high level control step we compute for each behavior instance whose cando
preconditions are true above a given threshold, its triggering level, by composing:
its two relevance values, the motivation coming from its want preconditions, and
the possibility coming from its cando preconditions. As done by most biological
beings, and in contrast with most of arti�cial fuzzy agents, the behavior with
the highest triggering level is activated, and its actions done. We have a winner-
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Fig. 5. An example of fuzzy classi�cation: the distance value 100 [cm] is classi�ed as
close with truth value 0.4, and as medium with truth value 0.6.

take-all activation, instead of a composition of proposed actions typical of fuzzy
systems, since this gives more coherence to behavior selection. If we decide that
it is better to go on the ball instead than towards the goal expecting a passage,
it does not make any sense to compose the two actions to obtain an hybrid
whose success possibilities are questionable: it is better to take a decision and
act coherently with it. If it was a wrong decision, it means that the activation
conditions of the behavior modules have to be tuned, and this can be done also
automatically, but only if it is clear which is responsible for the action taken [5].
This structure for behavioral modules is independent from the information we
have decided to be needed for the Robocup task, but it can support it e�ectively.
We adopt the same structure in other projects based on di�erent information
(and sensors). On the other side, the speci�c behaviors strongly depend on the
available information both for their existence (a behavior needing unavailable
information would have not been implemented), and for their speci�c implemen-
tation as discussed above for Go to Ball. The whole behavior system runs in
only 7 ms on the on board PC.

3.3 Strategy

We consider that basic skills for an agent are implemented by behavioral mod-
ules. A higher level decision module may in
uence the behavior activation, acting
on the priorities among behaviors, by modifying their dynamic relevance values.
The strategic module we have implemented recognizes a situation by classifying
high level data interpretations, again implemented as fuzzy predicates. According
to this, it rearranges the dynamic relevance of the behaviors, to give the pref-
erence, in case of similarity of the other parameters, to a behavior or another.
For instance, if a teammate has the ball, we may either protect it by hindering
opponents, or follow its action expecting a passage. A deeper discussion of this
topic is beyond the scope of this paper.
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Also the instance of this module strongly relies on the available information.
For instance, an omnidirectional vision sensor gives the possibility to detect a rich
variety of situations without communicating with teammates. Probably, a �xed,
front camera would not give by itself enough information to justify the existence
of a strategic module, and also a mobile camera would be probably too slow to
catch enough from the environment to detect the relevant facts that could make
it possible to select strategies. For these reasons, most of the teams involved in
the F-2000 Robocup Championship in 1998 either relied on communication to
select strategies [10], or had simple, sel�sh strategies. In Robocup99, an increased
number of teams had robots equipped by omnidirectional vision.

4 Sensors and learning

Learning and adaptation are interesting approaches to implement, or improve,
control modules. We believe that, given that the present learning techniques,
learning behaviors from scratch on the �eld is not cost-e�ective: a designer may
develop by hand nice behaviors in less time and using less resources. The goal-
keeper task [17] is simple enough to be either learnt or programmed, whereas the
behaviors of the other players have to be developed on a large number of really
complex situations, and have to be adapted to the behaviors of the speci�c
opponents. Some researchers have proposed to learn more complex behaviors
in the F-2000 league (such as ball passing [18]). The behaviors were learned
in simulation, but hand-coded behaviors were preferred on the �eld. In these
conditions, we consider that it is more e�ective to program simple behaviors
and strategy modules, and then adapt them on line.

The role of sensors in learning in simulated environments is questionable.
Having worked since long time on learning behaviors for simulated robots [4],
we have come to the conclusion that in most cases the problems with simu-
lation are far di�erent from those in real world, apart from the cases where
enough resources are devoted to produce sophisticated simulation environments.
In particular, sensor models, and the quality of the information they provide,
are usually oversimpli�ed. Therefore, we would not like to discuss about the role
of sensors in learning in simulated environments.

Adaptation is even more important than learning in applications such as a
Robocup match among real robots, where the opponent's strategy is usually
unknown. The quality of the incoming information is relevant for the quality of
adaptation: the more and nicer information we have, the more the adaptation
algorithms can exploit it to �nd regularities. On the other side, it would be hard
to manage in real time a large amount of data.

Given the topics introduced above, we can easily imagine an adaptation
mechanism it could be implemented to improve strategies to face speci�c op-
ponents. For instance, an agent with the ball has to take di�erent behaviors to
contrast opponents that tend to rush on the ball, or opponents that tend to
block actively any possible way to their goal. Moreover, this can only be decided
on line, in real time, while playing against a speci�c team a speci�c match. We
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have implemented an adaptation system based on reinforcement. At present,
it works only on one-to-one strategies. The strategic module classi�es the sit-
uation by evaluating fuzzy predicates that interpret the incoming information,
compared with information previously acquired. Then, it selects one among some
prede�ned strategies (each corresponding to a set of relevance values for the be-
haviors), and provides a value of dynamic relevance for the involved behaviors.
This is repeated at each high level control step, always considering the same
strategy, for coherence reasons, until the situation changes. At this time, a rein-
forcement is computed by evaluating the new situation, and it is used to update
the value Q(s) of the selected strategy s according to the standard formula:

Qt(s) = Qt�1(s) + �
�
r �Qt�1(s)

�

We share the motivation for using this formula, and the general background
with other researchers who studied learning in the Robocup framework in other
leagues [16], but we consider di�erent models to learn, more appropriate for
adaptation in the F-2000 league.

5 Conclusions

While in nature we assisted to the co-evolution of sensor, motor and neurological
apparati, we claim that in robotic agent design we need to design �rst the appro-
priate sensors to get the quantity and quality of information we need to achieve
a task; then, we may try to shape the other components of the robot architec-
ture on this. We have discussed in details how we have applied this approach in
the development of Rullit, our Robocup F-2000 player. We argue that most of
the other components of a robot architecture could be designed in many di�er-
ent ways, but that the information provided by our sensor is appropriate and
essential to e�ectively face the Robocup task. We have also shown how many
problems may be solved at the sensor level, thus reducing the computational
e�ort.

Rullit is built on our Mo2Ro (Modular Mobile Robot) base, which also pro-
vides the mechanical and electronic basic modules for other robots, built around
other sensors, namely: Pop-eye, which has a camera mounted on top of a 5 DOF
ultra-light arm on board, and RoboCOPIS, which adopts a standard black and
white COPIS sensor [19].

References

[1] G. Agazzi and A. Bonarini. Problems and solutions in acquisition and interpreta-
tion of sensorial data on a mobile robot. In IEEE Instrumentation and Measure-

ment Tecnology Conference { IMTC99, Piscataway, NJ, 1999. IEEE Computer
Press.

[2] M. Asada, editor. RoboCup 98: Robot Soccer World Cup II, Paris, F, 1998. Eurobot
Project - CEC.

[3] M. Asada, P. Stone, H. Kitano, A. Drogoul, D. Duhaut, M. Veloso, H. Asama,
and S. Suzuki. The robocup physical challenge: goals and protocols for phase

220 A. Bonarini



i. In H. Kitano, editor, RoboCup 97: Robot Soccer World Cup I, pages 42{61.
Springer-Verlag, Berlin, D, 1997.

[4] A. Bonarini. ELF: Learning incomplete fuzzy rule sets for an autonomous robot.
In Hans-J�urgen Zimmermann, editor, First European Congress on Fuzzy and Intel-
ligent Technologies { EUFIT'93, volume 1, pages 69{75, Aachen, D, 1993. Verlag
der Augustinus Buchhandlung.

[5] A. Bonarini. Evolutionary learning of fuzzy rules: competition and cooperation.
In W. Pedrycz, editor, Fuzzy Modelling: Paradigms and Practice, pages 265{284.
Kluwer Academic Press, Norwell, MA, 1996.

[6] A. Bonarini. Reinforcement distribution to fuzzy classi�ers: a methodology to ex-
tend crisp algorithms. In IEEE International Conference on Evolutionary Com-
putation { WCCI-ICEC'98, volume 1, pages 51{56, Piscataway, NJ, 1998. IEEE
Computer Press.

[7] A. Bonarini, P. Aliverti, and M. Lucioni. An omnidirectional vision sensor for fast
tracking for mobile robots. In IEEE Instrumentation and Measurement Tecnolo-
gyConference { IMTC99, Piscataway, NJ, 1999. IEEE Computer Press.

[8] A. Bonarini and F. Basso. Learning to compose fuzzy behaviors for autonomous
agents. Int. J. of Approximate Reasoning, 17(4):409{432, 1997.

[9] J. Borenstein, H.R.Everett, and L. Feng. Where am i? sensors and methods for
mobile robot positioning. Technical report, The University of Michigan, Ann
Arbor, MI, 1996.

[10] J-S Gutmann, W. Hatzack, I. Herrmann, B. Nebel, F. Rittinger, A. Topor,
T. Weigel, and B. Welsch. The cs freiburg team. In M. Asada, editor, RoboCup
98: Robot Soccer World Cup II, pages 451 { 457, Paris, F, 1998. Eurobot Project
- CEC.

[11] G. J. Klir, B. Yuan, and U. St. Clair. Fuzzy set theory: foundations and applica-
tons. Prentice-Hall, Englewood Cli�s, MA, 1997.

[12] D. Nardi, G. Clemente, and E. Pagello. Art azzurra robot team. In M. Asada,
editor, RoboCup 98: Robot Soccer World Cup II, pages 467{474, Paris, F, 1998.
Eurobot Project - CEC.

[13] M. Piaggio and R. Zaccaria. Distributing a robotic system on a network: the
ethnos approach. Advanced Robotics Journal, 12(8), 1998.

[14] Robocup. The robocup initiative. http://www.RoboCup.org/, 1999.
[15] A. SaÆotti, K. Konolige, and E. H. Ruspini. A multivalued-logic approach to

integrating planning and control. Arti�cial Intelligence, 76(1-2):481{526, 1995.
[16] P. Stone and M. Veloso. Tpot-rl: Team-partitioned, opaque-transition reinforce-

ment learning. In M. Asada, editor, RoboCup 98: Robot Soccer World Cup II,
pages 221 { 236, Paris, F, 1998. Eurobot Project - CEC.

[17] S. Suzuki, T. Kato, H. Ishizuka, Y. Takahashi, E. Uchibe, and M. Asada. An
application of vision-based learning for a real robot in robocup - a goal keeping
behavior for a robot with omnidirectional vision and an embedded servoing. In
M. Asada, editor, RoboCup 98: Robot Soccer World Cup II, pages 467 { 474, Paris,
F, 1998. Eurobot Project - CEC.

[18] E. Uchibe, M. Nakamura, and M. Asada. Cooperative and competitive behavior
acquisition for mobile robots through co-evolution. In Proceedings of the Genetic
and Evolutionary Computation Conference { GECCO99, pages 1406{1413, San
Francisco, CA, 1999. Morgan Kaufmann.

[19] Y. Yagi, S. Kawato, and S. Tsuji. Real-time omnidirectional image sensor (copis)
for vision-guided navigation. IEEE Transactions on Robotics and Automation,
10(1):11{22, 1994.

221The Body, the Mind, or the Eye, First?


	1 Introduction
	2 Designing the sensor
	2.1 What kind of information?
	2.2 Why omnidirectional vision?
	2.3 Our omnidirectional vision sensor for Robocup

	3 Sensors and behaviors
	3.1 Low-level control
	3.2 Behaviors
	3.3 Strategy

	4 Sensors and learning
	5 Conclusions
	References

