
The ASM Workbench

A Tool Environment

for Computer-Aided Analysis and Validation

of Abstract State Machine Models

Tool Demonstration

Giuseppe Del Castillo?

Heinz Nixdorf Institut, Universit�at Paderborn, F�urstenallee 11,

33102 Paderborn, Germany (giusp@uni-paderborn.de)

Abstract. Gurevich's Abstract State Machines (ASMs) constitute a

high-level state-based modelling language, which has been used in a wide

range of applications. The ASM Workbench is a comprehensive tool en-

vironment supporting the development and computer-aided analysis and

validation of ASM models. It is based on a typed version of the ASM

language, called ASM-SL, and includes features for type-checking, sim-

ulation, debugging, and veri�cation of ASM models.

1 Introduction

The ASMWorkbench is a comprehensive tool environment supporting the devel-
opment and computer-aided analysis and validation of Abstract State Machine
models. Abstract State Machines (ASMs), de�ned by Yuri Gurevich in [4], are
an e�ective approach for specifying and modelling state-based systems, which
combines transition systems, used for modelling the dynamic aspects of a sys-
tem, i.e., its behaviour, with �rst-order structures (algebras), used to model the
static aspects, e.g., data types.

The ASM Workbench is based on a language called ASM-SL (ASM-based
Speci�cation Language), which extends the ASM language as de�ned in [4] by
a type system and by constructs to de�ne data types and functions (such ex-
tensions are very convenient in order to provide tool support for ASMs). The
Workbench itself consists of a kernel, providing basic support for ASM tool de-
velopment, and a set of tools built upon this kernel, which include a type-checker,
a simulator, a debugger-like GUI, and a model-checker interface for formal veri-
�cation support.

In this abstract, after recalling the basic ideas of Abstract State Machines
(Sect. 2), we give an overview of the ASM-SL language (Sect. 3) and of the
architecture of the ASM Workbench and of the tools it includes (Sect. 4). A
complete account of ASM-SL and of the ASM Workbench, as well as of the
underlying concepts and techniques, can be found in [1].
? Currently guest scientist at: Siemens AG, ZT SE 4, Otto-Hahn-Ring 6, 81739

M�unchen, Germany | E-Mail: Giuseppe.DelCastillo@mchp.siemens.de.

T. Margaria and W. Yi (Eds.): TACAS 2001, LNCS 2031, pp. 578{581, 2001.
c
 Springer-Verlag Berlin Heidelberg 2001

The ASM Workbench 579

2 Gurevich's Abstract State Machines

Abstract State Machines (ASMs), introduced by Yuri Gurevich in [4], are a
high-level state-based language for modelling discrete dynamic systems, which
has been used in a wide range of applications, such as speci�cations of hardware
and software architectures and operational semantics of programming languages
(see [5] for a comprehensive overview of applications of ASMs).

The underlying computational model is essentially the well-known model of
transition systems. Computations (runs) are �nite or in�nite sequences of states
fsig, obtained from the initial state s0 by repeatedly executing transitions Æi:

s0
Æ1
�! s1

Æ2
�! s2 : : :

Æn

�! sn : : :

In the simple case of deterministic ASMs without any communication with an
external environment, there will be exactly one run. Otherwise, the set of possible
runs can be represented, as usual, by means of a set S0 � S of initial states and
a transition relation R � S � S.

The peculiarity of ASMs is that states are �rst-order structures (algebras)
over a given vocabulary � . In the traditional de�nition of transition systems,
states are identi�ed by the value of a �nite number of state variables. In ASMs,
instead, states are identi�ed by the interpretation of function names from � ,
which are classi�ed as static, dynamic, and external . Each transition may change
the interpretation of dynamic function names in a �nite number of places.1

External function names are used to model the environment (their interpretation
may change from state to state depending on the environment behaviour, like
inputs of �nite state machines), while static function names never change their
interpretation (they typically correspond to operations on some data types).

A language of transition rules is de�ned in [4], which allows to specify ASM
transitions. The most essential transition rule is the so-called update rule, of the
form \f(t1; : : : ; tn) := t", where f is a n-ary dynamic function name, and ti, t are
terms over the vocabulary � . This rule has the e�ect of changing the interpre-
tation of f such that f si+1(si(t1); : : : ; si(tn)) = si(t). More complex transition
rules can be built by means of additional rule constructors, such as conditionals,
parallel composition, non-deterministic choice, etc.

3 The ASM-SL Notation

For the purpose of equipping the ASM method with tool support, it is necessary
to extend the basic ASM language of [4]. In particular, the ASM de�nition
does not indicate how to de�ne universes and (static) functions, i.e., the data
model underlying the transition system. Clearly, there are several options for
specifying data, e.g., axiomatic descriptions in the style of algebraic speci�cation.
However, in order to obtain executable speci�cations, a model-based approach

1 In this sense, ASMs constitute a generalization of transition systems (which can be

considered as a special case of ASMs, where all dynamic function names are 0-ary).

580 Giuseppe Del Castillo

ASM2SMV
Translator

ASM-SL Parser

Type Checker

Interpreter
ASM-SL

ASM-SL

SMV
Model Checker

Graphical
User Interface

Annotated AST

Abstract Syntax Tree (AST)

ASM-SL Specification

SMV System Specification
CTL Formulae

ASM-WB Kernel

(Code Generator) . . .

.

Fig. 1. The ASM Workbench Tool Environment

was adopted, in the style of VDM [6]. A type system was also added (originally,
ASMs are untyped). The result is ASM-SL2, the source language of the ASM
Workbench, which extends the ASM language by some constructs borrowed from
ML and VDM. The main features of ASM-SL can be summarized as follows:

{ Speci�cation of behaviour based on the ASM language of transition rules [4].

{ Polymorphic type system based on the type system of Standard ML [8].
{ Model-based approach to data speci�cation, including: prede�ned elemen-
tary types (booleans, integers, strings) and type constructors (tuples, lists,
�nite sets, �nite maps), user-de�nable free types, comprehension notation,
pattern matching, recursive and mutually recursive function de�nitions.

4 The ASM Workbench Tools

The ASM Workbench consists of a kernel , a set of modules implemented in
the functional language Standard ML [8], which provide basic functionalities
(such as parser, type-checker, pretty-printer, and an interpreter-based evalua-
tor), and a few additional components (Graphical User Interface, model-checker
interface), built on the top of the kernel. Figure 1 shows the rough architecture
of the Workbench, which includes the mentioned tools and could be easily ex-
tended by additional components (e.g., code generators), by reusing the kernel

2
ASM-based Speci�cation Language.

The ASM Workbench 581

functionalities. For reasons of space, it is not possible to go into details of the
tool architecture. Instead, we give an overview of the existing tools.

The type-checker for ASM-SL is based on an eÆcient implementation of the
well-known uni�cation-based type inference algorithm [2]. In addition to type-
checking, it performs other simple static checks. It can be used as a standalone
tool or as a preprocessor for further elaborations.

The interpreter allows to simulate ASM runs, while keeping track of the com-
putation history. In this way, computation steps can also be retracted (backward
step feature). It also possible to simulate ASM models which interact with the
environment by means of external functions. This can be done by means of an
oracle process, which communicates with the interpreter in order to provide it
with the values of the external functions, whenever needed.

A Graphical User Interface (GUI) allows to control the simulation and
inspect its results, providing all the typical features of a debugger (browsing
through the code, performing single steps forward or backward, setting break-
points, observing the values of some terms, etc.).3

Finally, a model-checker interface provides support for formal veri�cation of
�nite-state ASMmodels. Although ASMmodels have, in general, an in�nite state
space, the ASM-SL language provides a syntactic construct|so-called \�niteness
constraints"|by which the �niteness of the model can be enforced by local
modi�cations (restricting the ranges of dynamic and external functions to �nite
sets). Then, the ASM model is translated, by applying transformation techniques
(unfolding and
attening of transition rules), into a model amenable to model-
checking. The actual veri�cation is performed by the SMV model-checker [7].
The ASM model is translated into the SMV language and then checked against
a set of CTL formulae, to be provided separately (for details, see [3,1]).

References

1. G. Del Castillo. The ASM Workbench: A Tool Environment for Computer-Aided

Analysis and Validation of Abstract State Machine Models. PhD thesis, Universit�at

Paderborn (to appear in 2001).
2. L. Damas and R. Milner. Principal type schemes for functional programs. In Proc.

of the 9th ACM Symposium on Principles of Programming Languages, 1982.
3. G. Del Castillo and K. Winter. Model checking support for the ASM high-level

language. In Tools and Algorithms for the Construction and Analysis of Systems,

TACAS'2000, LNCS 1785. Springer, 2000.

4. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. B�orger, editor, Speci�ca-

tion and Validation Methods. Oxford University Press, 1995.

5. J.K. Huggins. Abstract State Machines home page. EECS Department, University

of Michigan. http://www.eecs.umich.edu/gasm/.

6. C.B. Jones. Systematic Software Development using VDM. Prentice Hall, 1990.
7. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
8. R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press,

1990.

3 A snapshot of the GUI can be found in the appendix.

	Introduction
	Gurevich's Abstract State Machines
	The ASM-SL Notation
	The ASM Workbench Tools

