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Abstract. We de�ne a logic called CTL*[DC] which extends CTL* with

ability to specify past-time and quantitative timing properties using the

formulae of Quanti�ed Discrete-time Duration Calculus (QDDC). Al-

ternately, we can consider CTL*[DC] as extending logic QDDC with

branching and liveness.

As our main result, we show a reduction of CTL*[DC] model checking

problem to model checking of CTL* formulae. The reduction relies upon

an automata-theoretic decision procedure for QDDC. Moreover, it pre-

serves the subsets CTL and LTL of CTL*. The reduction is of practical

relevance as model checking of CTL* as well as its subsets CTL and LTL

are well studied and even implemented into a number of tools. We brie
y

discuss an implementation of a model checking tool for CTL[DC] called

CTLDC, based on the above theory. CTLDC can model check SMV, Ver-

ilog and Esterel designs using tools SMV, VIS and Xeve, respectively.

1 Introduction

Logic CTL* is an expressive logic for the speci�cation of properties of transition
systems [8]. It has path quanti�ers for specifying branching time properties as
well as temporal operators for specifying how state of the system evolves along
execution paths. For example, the following formula states that on all execution
paths proposition P will hold in�nitely often. (We only provide an intuitive
explanation of what the properties states. A precise de�nition of the syntax and
semantics of CTL* operators is given in Section 3.)

AGF P

Model checking algorithms for verifying CTL* properties of �nite state transition
systems are well studied [8]. Moreover, subsets CTL [4,5] and LTL [25] of CTL*
have also been formulated and thoroughly investigated. Symbolic model checking
algorithms for verifying formulae of these sub-logics have been implemented in
tools such as SMV [18], VIS [2] and TLV [12].

In spite of its expressive abilities, there are situations where CTL* is re-
strictive. It has long been recognised [17] that availability of past modalities in
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temporal logics considerably facilitates formulation of complex properties. Sec-
ondly, speci�cation of reactive systems must often deal with quantitative timing
constraints [9]. In this paper, we will address these issues in an integrated fashion.

Discrete-time Duration Calculus (QDDC) [21,22] is a highly expressive logic
for specifying quantitative timing properties of �nite sequences of states (be-
haviours). It is closely related to the Interval Temporal Logic of Moszkowski
[19] and Duration Calculus of Zhou et al [26]. It provides novel interval based
modalities for describing behaviours. For example, the following formula holds
for a behaviour � provided for all fragments �0 of � which have (a) P true in
the beginning, (b) Q true at the end, and (c) no occurrences of Q in between,
the number of occurrences of states in �0 where R is true is at most 3.

2(dP e0 _dd:Qe_dQe0 ) (�R � 3))

Here, 2 modality ranges over all fragments of a behaviour. Operator _ is like
concatenation (fusion) of behaviour fragments and dd:Qe states invariance of
:Q over the behaviour fragment. Finally, �R counts number of occurrences of
R within a behaviour fragment. A precise de�nition of the syntax and semantics
of QDDC is given in Section 2. Formula � = 3 states that the behaviour frag-
ment has length 3 (i.e. it spans a sequence of 4 states). QDDC is a convenient
and highly expressive formalism for specifying quantitative timing properties.
However, it cannot specify liveness or branching.

An automata-theoretic decision procedure allows checking of satis�ability
(validity) of QDDC formulae [22]. This algorithm has been implemented into
a tool called DCVALID [21]. The tool is built on top of MONA [11], which
is an eÆcient and sophisticated BDD-based implementation of the Buchi-Elgot
automata-theoretic decision procedure for Monadic Logic over FiniteWords [3,7].
(See [13] for a recent paper on MONA.)

In this paper, we propose a straight-forward extension of CTL* where, in
place of propositions, formulae of Quanti�ed Discrete-time Duration Calculus
QDDC can be asserted within CTL* formulae. A QDDC formula D holds for
a node of a computation tree provided the unique path from the root of the
tree to the node satis�es D. Thus, a QDDC formula D allows speci�cation of
the \past" of the node. Operators of CTL* allow speci�cation of branching and
liveness properties.

For example, the following formula states that on all execution paths QDDC
formula D will become true in�nitely often.

AGF D

The following formula states that once there is overload for 5 steps, there will
be alarm until reset occurs.

AG (true_(ddOverloade ^ � = 5) ) A(alarm U reset))

Logic QDDC provides a useful extension to the expressive power of CTL*
by allowing past-time and quantitative timing properties to be expressed. It also
signi�cantly increases the expressive power of QDDC which is unable to specify
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liveness properties such as in�nitely oftenD or branching. In a separate note [24],
we list a number of real-life properties collected from model checking literature
which are stated to be hard to formulate in CTL. We show that these properties
can be easily captured using CTL[DC].

As our main result, we show a reduction of CTL*[DC] model checking prob-
lem to the model checking of pure CTL* formulae by e�ectively transform-
ing the transition system and the property. This transformation relies on the
automata-theoretic decision procedure for QDDC. Thus, in e�ect, we show that
by combining the model-checking procedures for CTL* and QDDC, we obtain a
model-checking procedure for CTL*[DC].

Our reduction of CTL*[DC] model checking to CTL* model checking pre-
serves the subsets CTL and LTL of CTL*. That is, a CTL[DC] formula reduces
to a CTL formula and LTL[DC] formula reduces to an LTL formula. This reduc-
tion is of practical relevance as model checking of CTL* [8] as well as its subsets
CTL [5] and LTL [16] are well studied and even implemented into a number of
tools such as SMV [18,6], VIS [2] and TLV [12]. Based on this reduction, we have
implemented a model checking tool for CTL[DC] called CTLDC [23]. It permits
model checking of SMV, Verilog and Esterel designs using SMV [18], VIS [2] and
Xeve [1] tools, respectively.

CTLDC permits well established CTL model checking tools to be used for
analysing complex properties involving past and quantitative timing constraints.
While there have been several theoretical formulations extending LTL and CTL
with past [14,15], CTLDC constitutes perhaps the �rst implementation of CTL
with past. Moreover, the fact that we can integrate our approach with a wide
variety of design notations such as SMV, Verilog, Esterel, and tools such as
SMV, VIS, Xeve shows that the approach is rather generic and easy to build
from components.

The rest of the paper is organised as follows. We provide a brief overview of
the logic QDDC in Section 2. The syntax and semantics of CTL*[DC] are given in
Section 3. The reduction from model checking of CTL*[DC] to model checking
of CTL* is given in Section 4. Finally, some examples of use of CTLDC, the
model checker for CTL[DC], are described in Section 5. We conclude the paper
with a brief discussion.

2 Quanti�ed Discrete-Time Duration Calculus (QDDC)

Let Pvar be a �nite set of propositional variables representing some observable
aspects of system state. Let

V AL(Pvar)
def
= Pvar! f0; 1g

be the set of valuations assigning truth-value to each variable.

We shall identify behaviours with �nite, nonempty sequences of valuations,
i.e. V AL(Pvar)+.
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Example 1. The following picture gives a behaviour over variables fp; qg. Each
column vector gives a valuation, and the word is a sequence of such column
vectors.

p 1 0 1 1 0

q 0 0 0 0 1

The above word satis�es the property that p holds initially and q holds at the
end but nowhere before that. QDDC is a logic for formalising such properties.
Each formula speci�es a set of such words.

Given a non-empty �nite sequence of valuations � 2 V AL+, we denote the
satisfaction of a QDDC formula D over � by

� j= D

We now give the syntax and semantics of QDDC and de�ne the above satisfaction
relation.

Syntax of QDDC Formulae Let Pvar be the set of propositional variables. Let
p range over propositional variables, P;Q over propositions and D;D1; D2 over
QDDC formulae.

The set of propositions Prop has the syntax

0 j 1 j p j P ^Q j :P

Operators such as _;);, can be de�ned as usual.

The syntax of QDDC is as follows.

dP e0 j ddP e j D1
_D2 j D1 ^D2 j :D j 9p:D

� op c j �P op c where op 2 f>;=g

Let � 2 V AL(Pvar)+ be a behaviour. Let #� denote the length of � and
�[i] the i'th element. For example, if � = hv0; v1; v2i then #� = 3 and �[1] = v1.
Let dom(�) = f0; 1; : : : ;#� � 1g denote the set of positions within �. The set
of intervals in � is given by Intv(�) = f[b; e] 2 dom(�)2 j b � eg where each
interval [b; e] identi�es a subsequence of � between positions b and e.

Let �; i j= P denote that proposition P evaluates to true at position i in �.
We omit this obvious de�nition. We inductively de�ne the satisfaction of QDDC
formula D for behaviour � and interval [b; e] 2 Intv(�) as follows.

�; [b; e] j= dP e0 i� b = e and �; b j= P

�; [b; e] j= ddP e i� b < e and �; i j= P for all i : b � i < e

�; [b; e] j= :D i� �; [b; e] 6j= D

�; [b; e] j= D1 ^D2 i� �; [b; e] j= D1 and �; [b; e] j= D2

�; [b; e] j= D1
_D2 i� for some m : b � m � e :
�; [b;m] j= D1 and �; [m; e] j= D2
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Entities � and �P are called measurements. Term � denotes the length of the
interval whereas �P denotes the count of number of times P is true within the
interval [b; e] (we treat the interval as being left-closed right-open). Formally,

eval(�; �; [b; e])
def
= e � b

eval(�P; �; [b; e])
def
=

Pe�1

i=b

�
1 if �; i j= P

0 otherwise

�

Let t range over measurements. Then,

�; [b; e] j= t op c i� eval(t; �; [b; e]) op c

Call a behaviour �0 to be p-variant of � provided #� = #�0 and for all i 2
dom(�) and for all q 6= p, we have �(i)(q) = �0(i)(q). Then,

�; [b; e] j= 9p:D i� �0; [b; e] j= D for some p-variant �0 of �

Finally,

� j= D i� �; [0;#�� 1] j= D

We can also de�ne some derived constructs. Boolean combinators _;);,

can be de�ned using ^;: as usual.

{ ddP ee
def
= (ddP e_dP e0) states that proposition P holds invariantly over the

closed interval [b; e] including the endpoint.

{ d e
def
= d1e0 holds for point intervals of the form [b; b].

{ ext
def
= :d e holds for extended intervals [b; e] with b < e.

{ unit
def
= ext ^ :(ext_ext) holds for intervals of the form [b; b+ 1].

{ 3D
def
= true_D_true holds provided D holds for some subinterval.

{ 2D
def
= :3:D holds provided D holds for all subintervals.

{ t � c
def
= t = c _ t > c. Also, t < c

def
= :(t � c).

{ D� def
= (9p: (dpe0 _true_dpe0)^

2((dpe0 _unit_(dd:pe _ d e)_dpe0) ) D) )

FormulaD� represents Kleene-closure of D under the _ operator. It states that
D� holds for interval [b; e] if there exists a partition of [b; e] into a sequence of
sub-intervals such that D holds for each sub-interval. Each sub-interval is char-
acterised by p holding at both endpoints and nowhere in between, i.e. satisfying
the formula (dpe0 _unit_(dd:pe _ d e)_dpe0). It is not diÆcult to see that

�; [b; e] j= D� i� b = e _ b < e and 9n; b0; : : : ; bn:
(b = b0 and 80 � i < n: bi < bi+1 and bn = e and �; [bi; bi+1] j= D)
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Decidability of QDDC The following theorem characterises the sets of models
of a QDDC formula. Let pvar(D) be the �nite set of propositional variables
occurring within a QDDC formula D. Let V AL(Pvar) = Pvar ! f0; 1g be the
set of valuations over Pvar.

Theorem 1. For every QDDC formula D, we can e�ectively construct a �nite

state automaton A(D) over the alphabet V AL(pvar(D)) such that for all � 2

V AL(pvar(D))� ,

� j= D i� � 2 L(A(D))

We omit the proof of this theorem as it can be found elsewhere [22]. In outline,
the proof relies on the following steps. Firstly, we can eliminate all measurement
formulae of the form � op c and �P op c from a QDDC formula D and �nd an
equivalent formulaD0 without these. Such formulae are said to belong to subset
QDDCR. Next we embed QDDCR into monadic logic over �nite words. Thus
for every formula D0 2 QDDCR we construct a formula  of monadic logic
over �nite words which has the same set of models as D0. This embedding was
�rst presented by Pandya [20]. Finally, the famous theorem due to Buchi [3] and
Elgot [7] states that for every formula  of monadic logic over �nite words, we
can construct a �nite state automaton which accepts exactly the word models
of  . By combining these steps, we can obtain the automaton A(D) accepting
word models of QDDC formula D. ut

Corollary 1. Satis�ability (validity) of QDDC formulae is decidable.

Proof outline For checking satis�ability of D 2 QDDC we can construct the
automaton A(D). A word satisfying the formula can be found by searching for
an accepting path within A(D). Such a search can be carried out in time linear
in the size (number of nodes + edges) of A(D) by depth-�rst search. ut

Example 2. The property of Example 1 can be stated in QDDC as formula
dP e0_dd:Qe_dQe0. The automaton corresponding this formula is given be-
low. Each edge is labelled with a column vector giving truth values of vari-
ables P;Q as in Example 1. Also, letter X is used to denote either 0 or 1.

4

2
X
X

1

0 1
X,1

3

1
0

X
X

X
1

X
0
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DCVALID The reduction from formulae of QDDC to �nite state automata as
outlined in Theorem 1 has been implemented into a tool called DCVALID [21],
which also checks for the validity of formulae as in corollary 1. This tool is built
on top of MONA [11,13]. MONA is a sophisticated and eÆcient BDD-based
implementation of the automata-theoretic decision procedure for monadic logic
over �nite words [3,7]. DCVALID works by reducing QDDC formulae to this
logic [22]. The automaton in Example 2 was automatically generated from the
formula by this tool.

Complexity It must be noted that there is a non-elementary lower bound on the
size of the automaton A(D) accepting word models of a QDDC formula D. In
the worst case, the complexity of the output automaton can increase by one
exponent for each alternation of : and _ operators. However, such blowup is
rarely observed in practice and we have been able to check validity of many
formulae which are 5-6 pages long with our tool DCVALID [21,22].

3 Logic CTL*[DC]

A transition system (also called Kripke structure) is a quadruple (S;R; L; S0)
where

S is the set of states,
S0 � S is the set of initial states.
R � S � S is the transition relation
L : S ! V AL(Pvar) is the labelling function.

Recall that V AL(Pvar) = Pvar ! f0; 1g is the set of valuations over Pvar.
The labelling function L(s) gives the truth-value of propositional variables at
state s.

Syntax We have three sorts of formulae: QDDC formulae, path formulae and
state formulae. Let P range over propositions. Let D range over QDDC formu-
lae; �; � range over path formulae and �;  range over state formulae.

Let L(s) j= P denote that proposition P evaluates to true in state s with
labelling function L. Also, for a given nonempty sequence of states hs0; : : : ; sni,

let L(hs0; : : : ; sni)
def
= hL(s0); : : : ; L(sn)i give the corresponding sequence of val-

uations in V AL(Pvar)+. Hence for QDDC formula D over Pvar, we can de�ne
L(hs0; : : : ; sni) j= D as in Section 2.
State Formulae of CTL*[DC]

P j D j A� j E� j :� j � ^  

Path Formulae of CTL*[DC]

� j � U � j X� j � ^ � j :�

We can de�ne some abbreviations for the path formulae. Let F�
def
= true U �

and G�
def
= :F:�.
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Given M = (S;R; L; S0) and s 2 S, let Tr(M; s) denote the (unique) tree
obtained by unfolding the state graph M starting with state s. In this tree,
each node is labelled by a state from s. Moreover, a node n labelled s has as
its immediate successors nodes labelled with s0 for each distinct s0 such that
R(s; s0). We call such a tree a computation tree. Let St(T; n) denote the state
labelling the node n of tree T .

Given a computation tree T and an internal node n, let hist(n) denote the
�nite sequence of states s0; : : : ; sn labelling the nodes on the unique path from
the root to n. A trajectory from n0 is an in�nite sequence of nodes n0; n1; : : :
going into the future. Let paths(n) be the set of all trajectories starting from n.

It should be noted that the label s of a node uniquely de�nes the subtree
under it. However, distinct nodes n1 and n2 with same state label will have
distinct hist(n). The truth of formulae in our logic CTL*[DC] will depend upon
both the subtree at n as well as hist(n).

We now de�ne the truth of state and path formulae. Let T = Tr(M; s) be a
computation tree. Let n be a node of T and let � = n0; n1; : : : be a trajectory
in T . Then, the truth of state formula T; n j= �, and the truth of path formula
T; � j= � are de�ned as follows.

State formulae:

T; n j= P i� L(St(T; n)) j= P

T; n j= D i� L(hist(n)) j= D

T; n j= E� i� T; � j= � for some � 2 paths(n)
T; n j= A� i� T; � j= � for all � 2 paths(n)

The boolean combinators have their usual meaning.

Path formulae: Let � = n0; n1; : : : denote a trajectory in T starting at a (not nec-
essarily root) node n0. For any m 2 Nat, let �m denote the suÆx nm; nm+1; : : :

of � starting with node nm.

T; � j= � i� T; n0 j= �

T; � j= X� i� T; �1 j= �

T; � j= � U � i� for some m 2 Nat;

T; �m j= �; and T; �j j= �; for j : 0 � j < m

Finally,

T j= � i� T; nr j= � where nr is the root of the tree T
M; s j= � i� Tr(M; s) j= �

M j= � i� M; s j= � for all s 2 S0

Subset CTL[DC] In this subset every temporal operator X; U ; G; F is preceded
by a path quanti�erA; E. If path formulae are restricted to the following syntax,
we have the subset CTL[DC]

� U  j X� j F� j G� where �;  are state formulae
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Subset LTL[DC] In this subset the formula is of the form A� where the path
formula � is free of path quanti�ers A; E. If path formulae are restricted to the
following syntax, we have the subset LTL[DC]

P j D j � U � j X� j � ^ � j :�

Subsets CTL*, CTL and LTL If a formula of CTL*[DC] does not contain any
QDDC formula, then it is called CTL* formula. Similarly, we can de�ne CTL
and LTL formulae.

Example 3. The following CTL[DC] formula states that on all nodes of the com-
putation tree which are at even distance from the root, proposition P must be
true. Nothing is said about the truth of P on nodes which are at odd distance
from the root.

AG((� = 2)� ) P )

This property cannot be expressed in logic CTL*. Thus our extension increases
the expressive power of logic CTL*.

4 Decidability of Model Checking CTL*[DC]

Given a transition system M and CTL*[DC] formula �, we construct a trans-
formed transition system M 0 and CTL* formula �0 such that

M j= � i� M 0 j= �0 (1)

Thus, we reduce the model checking of CTL*[DC] to model checking of CTL*.
In the rest of this section, we will de�ne this transformation and prove its cor-
rectness.

Let the transition system M = (S;R; L; S0) and the CTL*[DC] formula be
�(D1; : : : ; Dn), where D1; : : : ; Dn are the syntactically distinct QDDC formu-
lae occurring within �. We construct the transformed transition system M 0 as
follows.

Let A(Di) be the automaton recognising models of Di as in Theorem 1. Such
an automaton is called synchronous observer for Di. We assume that A(Di) is in
total and deterministic form. By this we mean that from any state q and for any
valuation v 2 V AL(pvar(D)) there is a unique transition leading to the state
given by a total function Æi(q; v).

We de�ne the synchronous product of M with the list of automata A(Di).
Since each A(Di) is a �nite-state acceptor andM is a Moore machine, we de�ne
the product such that we get a Moore machine. Let A(Di) = (Qi; Æi; q

0

i ; Fi). If
M starts in state s 2 S0, the observers A(Di) observe this state and go to state
qis = Æi(q

0

i ; L(s)) respectively. Also, if M moves from state s ! s0, each A(Di)
moves from state qi ! Æi(qi; L(s

0)). The observable propositions of the resulting
system are valuations over Pvar[fEndi j 1 � i � ng. Proposition Endi holds
when automaton A(Di) is in its �nal state. Thus, Endi holds precisely when the
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behaviour from start up to the current node satis�es the formula Di. Formally,
let

M 0 = (S0; R0; L0; S00)

where

S0
def
= S � Q1 � : : :�Qn

S0
0

def
= fhs; qs

1
; qs

2
; : : : ; qsni j s 2 S0 and q

s
i = Æi(q

0

i ; L(s))g

R0
def
= f(hs; q1; q2; : : : ; qni; hs

0; q01; q
0

2; : : : ; q
0

ni) j R(s; s0) ^ q0i = Æi(qi; L(s
0))g

L0(hs; q1; : : : ; qni)
def
= L(s) [ fENDi 7! (qi 2 Fi)g

The transformed formula �(End1; : : : ; Endn) is obtained by replacing each oc-
currence of QDDC sub-formula Di by a proposition Endi which witnesses the
truth of Di.

Theorem 2. Let ŝ = hs; qs
1
; : : : ; qsni where q

s
i = Æi(q

0

i ; L(s)). Then,

M; s j= �(D1; : : : ; Dn) i� M 0; ŝ j= �(End1; : : : ; Endn)

Proof Outline Consider the computation tree T = Tr(M; s) in M and corre-
sponding computation tree T 0 = Tr(M 0; ŝ) inM 0. There is a bijection � : T ! T 0

between the nodes of T and T 0 as follows. For every node k 2 Tr(M; s) with
state label St(T; k) = sk, we have a node �(k) with label

(sk; Æ1(q
0

1
; L(hist(k))); : : : ; Æn(q

0

1
; L(hist(k)))).

(Here, we have extended the transition function Æi over V AL to Æi over V AL
+).

From the above bijection, it is easy to prove that,
T; k j= P i� T 0; �(k) j= P .

The central property of T 0 is that
T; k j= Di i� T 0; �(k) j= Endi.

From these, by structural induction on �, we can prove that
T; k j= �(D1; : : : ; Dn) i� T 0; �(k) j= �(End1; : : : ; Endn). ut

Corollary 2. M j= �(D1; : : : ; Dn) i� M 0 j= �(End1; : : : ; Endn) ut

Note that, ifM is �nite state thenM 0 is also a �nite state Kripke structure. More-
over, �(End1; : : : ; Endn) is a pure CTL* formula which can be model checked
as follows.

Theorem 3 (Emerson and Lei [8]). For a �nite-state Kripke-structure M 0

and CTL* formula �0, there exists an algorithm to decide whether M 0 j= �0.

Corollary 3. M j= �(D1; : : : ; Dn) is decidable if M is �nite-state. ut
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5 CTLDC: A Tool for Model Checking CTL[DC]

We have implemented the reduction outlined in Corollary 2 into a tool called
CTLDC. The tool is constructed on top of QDDC validity checker DCVALID
[21,22]. The tool allows CTL[DC] speci�cations of SMV, Verilog and Esterel
designs to be model checked in conjunction with veri�ers SMV[18], VIS[2] and
Xeve [1], respectively. A separate report gives the details of usage and working
of this tool [23].

Given an SMV moduleM and a formula �(D1; : : : ; Dn) 2 CTL[DC], our tool
CTLDC gives the transformed SMV modules corresponding to M 0 of Theorem
2 and also the formula �(End1; : : : ; Endn). We can then use SMV [18] to model
check whether M 0 j= �(End1; : : : ; Endn). The tool works in a similar fashion
for Verilog and Esterel designs. The reader may refer to [23] for details of these
transformations.

5.1 An Example: Vending Machine

A vending machine accepts 5p and 10p coins. A chocolate costs 15p. We model
the working of such a machine by the following SMV module.

MODULE vend

VAR

bal:{0,5,10,15};

event: {p5,p10,choc, null};

INIT

bal = 0 & !(event=choc)

TRANS

next(bal) = case

bal <= 10 & event=p5 : bal+5 ;

bal <=5 & event=p10 : bal+10 ;

bal = 15 & event=choc : 0 ;

event=null : bal;

esac

The following QDDC formula holds for all behaviour fragments satisfying the
condition that 15p worth of coins have been deposited and no chocolate has been
obtained.

fifteenp
def
= (ddevent 6= chocee ^

(�(event = 5p) = 3 _ (�(event = 5p) = 1 ^�(event = 10p) = 1) ))

Then, a possible extension of any behaviour ending with fifteenp is that a
chocolate is obtained next.

AG (true_fifteenp ) EX(event = choc))

Moreover, the only possible extensions are that a null event can occur or a
chocolate can be obtained.

AG (true_fifteenp ) AX(event = choc _ event = null))
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We consider the vending machine behaviours under a fairness condition which
states that in�nitely often non-null events are performed, i.e. GF(event 6= null)
holds. The following speci�cation holds for all fair behaviours of vending ma-
chine. Here the path quanti�er Af ranges over all fair behaviours.

AfGAfF ((fifteenp_unit_devent = choce0)�)

The above three properties were checked using the tool CTLDC. In checking the
last property, we made use of the fair CTL model checking abilities of SMV.

Synchronous Bus Arbiter In a more substantial veri�cation using CTLDC, we
checked some properties of the historic synchronous bus arbiter as modelled in
SMV by McMillan [18]. A synchronous bus arbiter with n cells has request lines
reqi and acknowledgement lines acki for 1 � i � n. At any clock cycle a subset
of the request lines are high. It is the task of the arbiter to set at most one of
the corresponding acknowledgement lines high. Preferably, the arbiter should be
fair to all requests. We refer the readers to McMillan's book [18] (Section 3.4.1)
for a detailed description of a speci�c synchronous arbiter circuit. Here, we are
mainly interested in its properties.

The following property states that if reqi is held high for any interval of m
cycles then there must be an acki during such an interval.

AG 2((ddreqie ^ (� = m) ) true_dackie
0 _ext)

For an n = 5 cell arbiter, we found using CTLDC that the property holds for the
�rst cell for m = n. But for all other cells it, does not hold if m < 2n. For these
cells, the property does holds for m = 2n. Hence we concluded that the �rst cell
is guaranteed access to bus if its request is held high for n cycles whereas for all
other cells, the request must be held high for 2n cycles to guarantee access.

The following property asserts that the arbiter will not service a request reqj
�rst if an earlier request reqi is still pending (the so called \�rst come �rst serve"
policy (see [27])).

Let fifo(i; j) be de�ned as

AG 2:(d:reqje
0 _ddreqi ^:ackiee => :3dackje

0)

Surprisingly, McMillan's bus arbiter with 5-cells satis�es fifo(i; j) for the fol-
lowing pairs and for no other pairs. This was determined experimentally using
CTLDC.

(1; 2); (1; 3); (1; 4); (1; 5); (2;3); (3;4); (4; 5)

A much more comprehensive analysis of the performance of McMillan's arbiter
circuit, and its variants, can be found on the DCVALID web page [21].

6 Conclusions

In this paper, we have proposed an extension of the logic CTL* to CTL*[DC].
This extension allows speci�cation of past-time properties in CTL* using formu-
lae of Quanti�ed Discrete-time Duration Calculus (QDDC). In our opinion, this
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simple extension considerably facilitates formalisation of complex requirements.
CTL*[DC] is especially useful for expressing past-time requirements and quan-
titative timing constraints. In a separate note, we give many such examples [24].
The properties in previous section are also illustrative. Formally, the expressive
power of the logic CTL* is increased as shown by Example 3. CTL*[DC] can
also be considered as a signi�cant extension of QDDC which allows liveness and
branching properties to be stated.

We have shown a reduction of CTL*[DC] model checking problem to CTL*
model checking problem. The reduction relies upon the automata theoretic deci-
sion procedure for QDDC. We believe that this approach is practically relevant
as a number of tools exist for CTL* and its subsets, CTL and LTL. We have
implementated this reduction into a tool called CTLDC which permits model
checking CTL[DC] speci�cations of �nite-state transition systems.

The tool CTLDC can model check SMV, Verilog and Esterel designs by
reducing the model checking to a form which can be checked by SMV, VIS and
Xeve tools respectively. In this sense, CTLDC is not a new model checker. It

enhances the functionality of SMV [18], VIS [2] and Xeve [1] by adding ability

to model check a much more richer logic CTL[DC]. It enables complex properties

involving past and quantitative timing to be checked using existing checkers. A
separate report gives details of implementation [23]. Currently, CTLDC is one
of the very few available tool for model checking CTL with past and timing. In
context of Duration Calculi, CTLDC is the only tool allowing model checking.
(It should be noted that our original tool DCVALID [21] only checked for the
validity of QDDC formulae.)

The symbolic model checking algorithm for CTL has been extended to fair
CTL model checking [18]. It is easy to see that our reduction of CTL*[DC] model
checking to CTL* model checking by transforming the transition system M to M'
(Theorem 2) preserves fair paths. Hence, our reduction also gives a method for
CTL[DC] model checking under fairness constraints by reduction to Fair CTL.

An important aspect of model checking is error trace generation. In our re-
duction, an error trace of the transformed modelM 0, in fact, gives an error trace
for the original modelM if we disregard (project out) the extra variables which
have been added by the transformation. Hence, existing facilities of counter ex-
ample generation in reduced model can be used for CTL[DC].

Our approach of combining QDDC with CTL* can equally be used with any
other logic, say X, which speci�es properties of �nite state sequences. Moreover,
if the logic permits an automata theoretic decision procedure, this can be used
to reduce the model checking problem for CTL*[X] to CTL* by using exactly the
same transformation proposed here. One could consider a form of LTL over �nite
sequence, or monadic logic over �nite words which both have automata theoretic
decision procedures. Or one could use a form of regular expressions. Hence, the
approach presented here is quite generic. However, the expressive power (in a
pragmatic sense) and facilities for quantitative timing constraint speci�cations
which are found in QDDC may not be so easily available in all such logics.
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The issue of complexity of CTL*[DC] merits discussion and further investi-
gation. As stated in Section 2, even the subset QDDC of CTL*[DC] has a non-
elementary lower bound on the complexity of validity checking [22]. The same
lower bound carries over to model checking of CTL*[DC] formulae. Such high
complexity can potentially be a source of in-feasibility and may sound hopeless.
However, this complexity is rarely seen in practice. In fact, we have been able to
check many formulae which are 5-6 pages long with our tool (see Pandya [21,22]
for substantial examples and performance measurements). However, we have also
encountered a few pathological formulae leading to state space explosion.

It has been long recognised [17] that availability of past time modalities in
temporal logics can considerably facilitate formulation of complex properties.
There have been several formulations extending LTL and CTL with past. Their
model checking problem has also been investigated [14,15]. Extensions of CTL
such as RTCTL [9] allow quantitative timing properties to be expressed and to
be model checked using tools such as NuSMV [6]. A precise comparison of the
formal expressive power of our logics CTL[DC] and CTL*[DC] with these logics
is currently under investigation. We conjecture that CTL[DC] is strictly more
expressive than the logic CTLlp proposed by Kupferman and Pnueli [14].
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