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Abstract. Fair-cycle detection, a core problem in model checking, is

solvable in linear time in the size of the design model using an explicit-

state representation. Existing cycle-detection algorithms for symbolic

model checking are quadratic or n log n time in the worst case and often

ineÆcient in practice. Which default symbolic cycle-detection algorithm

to implement in model checkers remains an open question. We compare

several such algorithms based on the numbers of external and internal

iterations and the numbers of image operations that they perform on

both randomly-generated and real examples. Unlike recent work by Ravi,

Bloem, and Somenzi, we conclude that model checkers need to implement

at least two generic cycle-detection algorithms: the traditional Emerson-

Lei algorithm and one that evolved from our study, originally due to

Hojati et al. We demonstrate that these two algorithms are complemen-

tary, as the latter algorithm is provably incomparable to Emerson-Lei's

and often dominates it in practice.

1 Introduction

Model checking, whether for LTL, CTL, or !-automata, has linear time com-
plexity in the size of the design model. This well-known result follows from
two facts: �rst, that most model checking techniques reduce to the problem
of locating cycles through a given set of nodes in a graph [3,18]; second, that
cycle detection is solvable in linear time using a depth-�rst search that identi-
�es strongly-connected components (cf, [4]). This depth-�rst strategy provides
a suitable approach to cycle detection in explicit-state model checking, and has
been implemented in several tools [7,11].

Depth-�rst approaches to cycle detection are not suitable for BDD-based
symbolic model checking because BDDs represent sets of states while depth-�rst
search examines individual states. EÆcient BDD-based model checking requires
eÆcient breadth-�rst, set-based cycle-detection algorithms. Most modern sym-
bolic model checkers employ some variant of Emerson and Lei's symbolic cycle-
detection algorithm [5]. CTL model checkers use the Emerson-Lei algorithm
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(henceforth el) to process formulas of the form EG ', which specify in�nite
paths on which every state satis�es '. Linear-time model checkers compose the
design model with an automaton representing the negation of the property, then
check for cycles in the product automaton using the CTL formula EG true. Un-
fortunately, el's time complexity is not linear in the size of the design model: the
algorithm contains a doubly-nested �xpoint operator, and hence requires time
quadratic in the design size in the worst case. The algorithm is also often slow
in practice. el is a so-called SCC-hull algorithm [16]. SCC-hull algorithms com-
pute the set of states that contains all fair cycles. In contrast, SCC-enumeration
algorithms enumerate all the strongly connected components of the state graph.
While SCC-enumeration algorithms have a better worst-case complexity than
SCC-hull algorithms [1], their performance in practice seems to be inferior to
that of SCC-hull algorithms [16]. This paper focuses on SCC-hull algorithms.

Researchers have proposed several alternatives to el [8,10,14]. Ravi, Bloem,
and Somenzi have presented both a classi�cation scheme for such algorithms
and an experimental comparison of several algorithms with el [16]. They con-
cluded that no algorithm consistently outperforms el for cycle detection, and,
consequently, there is no reason to \dethrone" el as the default cycle-detection
algorithm. Their comparison, however, is based primarily on running times, and
secondarily on numbers of image operations. This approach has two signi�cant
drawbacks: it provides no useful feedback on why the algorithms behave as ob-
served, and it suggests no techniques for predicting when one algorithm might
outperform another. Furthermore, their comparison considers some algorithms
that are based on post-image operations and some that are based on pre-image
operations (as is el), making it rather diÆcult to draw �rm conclusions.

This paper demonstrates a methodology that both addresses these concerns
and identi�es a symbolic cycle-detection algorithm that provides a viable al-
ternative to el. Ravi et al. present bounds on the number of image operations
performed by various cycle-detection algorithms. We argue that to understand
the performance of SCC-hull algorithms one needs to measure both the number
of image computations as well as the number of external iterations (de�ned in
Section 2). Our methodology focuses on the number of external iterations per-
formed as a basis for comparing and re�ning symbolic cycle-detection algorithms.
In aiming to balance the numbers of external and internal iterations performed,
we have identi�ed an algorithm that, as we argue, should join el as a generic
cycle-detection algorithm. We demonstrate that this algorithm is incomparable
to el, dominating it in many cases. Our conclusion is that, as in many other as-
pects of model checking, there is no \best" cycle-detection algorithm and model
checkers need to implement at least both el and our algorithm.

Section 2 describes our analyses of three existing symbolic cycle-detection
algorithms and shows how the competitive algorithm evolved from these anal-
yses. Section 3 presents experimental results on randomly generated and real
examples for both the special case of terminal and weak systems and more gen-
eral examples. Section 4 compares the competitive algorithm to a specialized
cycle-detection algorithm for terminal and weak systems. Section 5 concludes.
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2 Symbolic Cycle-Detection Algorithms

Cycle-detection algorithms in the context of model checking search for \bad"
cycles in a directed graph representing a transition system modeling a design
undergoing veri�cation. Two parameters specify which cycles are considered bad:
the invariant and the fair sets. The invariant speci�es a condition, such as a
propositional formula, that must be true of every state on a bad cycle. The fair
sets specify sets of states that every bad cycle must pass through. We write
EGfair' to indicate a search for cycles satisfying invariant ' and passing through
fair sets fair. We will omit the fair annotation when all states are considered fair.

Cycle detection in BDD-based model checking is challenging because the
BDDs co-mingle information about di�erent paths through a design. Symbolic
cycle-detection algorithms maintain a set of states that may lead to bad cycles;
this set is conservative, in that it contains all states that do lead to bad cycles.
We call this the approximation set. The algorithms repeatedly re�ne the approx-
imation set by locating and removing states that cannot lead to a bad cycle; we
call this the pruning step. If a state lies on a bad cycle, then it must have a suc-
cessor and a predecessor on that same cycle (and thus also in the approximation
set). Cycle-detection algorithms use this information in di�erent ways.

Formally, these algorithms search for cycles in nondeterministic transition
systems. A transition system is a tuple hQ;R;Q0;Fi, where Q is a set of states,
Q0 � Q is the initial state set, R � Q�Q is the transition relation, and F � Q

is the set of fair states. A transition system is weak i� (1) there exists a partition
of Q into sets Q1; : : : ; Qn such that each Qi is either contained in F or is disjoint
from it, and (2) the Qi's are partially ordered so that there is no transition from
Qi to Qj unless Qi � Qj. If the Qi's contained in F are the maximal elements of
the partial order, a weak system is called terminal. This de�nition of weak and
terminal transition systems is due to Bloem, Ravi, and Somenzi [2], as re�ned
from Kupferman and Vardi [15]. In model checking, designs commonly have
several fair sets, and bad cycles must pass through each fair set. Such designs
are outside the scope of weak systems, whose de�nition is only meaningful for
one fair set.1

el appears in Figure 1 (left).2 At each iteration through the while loop,
el computes the set of states that can reach every fair set via a non-trivial
path contained in the approximation set, b. We call these iterations external ;
the reachability computations (the EU formula) form the internal iterations. el
does most of its work in the internal iterations: each external iteration performs
only one preimage computation per fair set outside of the internal iterations.

Hardin et al. attempted to reduce the number of external iterations that
el performs as a means of achieving an improved algorithm [8]. Their algo-
rithm, called Catch-Them-Young (henceforth cty), aggressively prunes the set

1 LTL-to-automaton translation algorithms may yield multiple fair sets when one

would suÆce, rendering an otherwise weak system non-weak. Thus, minimizing the

number of fair sets is an important optimization.
2 Figure 1 shows VIS' implementation of el; in SMV, the �nal image computation

(b := b ^ EX d) is outside the for loop.
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b := invariant ;
while b changes do

for each fair set Fi do

d := E[b U (Fi ^ b)] ;
b := b ^ EX d ;

b := invariant ;

while b changes do
for each fair set Fi do

Fi := Fi ^ b ;
b := E[true U Fi] ^ E[true S Fi]

while b changes do

b := b ^ EX b ^ EY b ;
res := EF b;

b := invariant ;
while b changes do

for each fair set Fi do

Fi := Fi ^ b ;
b := E[b U (b ^ EX Fi)] ;

while b changes do
b := b ^ EX b ;

Fig. 1. The el (left), cty (middle), and owcty (right) cycle-detection algo-
rithms. In cty, EP Fi denotes all states that can reach Fi and EY b denotes
the successors of b. A variant of cty, cty+, replaces \true" with b in the EU

and ES computations. Each algorithm initializes the approximation set to states
satisfying the invariant.

of states potentially lying on bad cycles during the internal iterations (a closely
related algorithm was proposed in [10]). This can reduce the number of external
iterations by removing states during an external iteration that a later external
iteration would otherwise handle in el.3 The original cty algorithm does cycle
detection only; it does not compute EG as el does. For consistency, Figure 1
(middle) provides a version of cty that can be used to compute EG; this entails
one di�erence from the original algorithm: the extra EF computation in the last
step of the algorithm.

The external iterations in cty perform two steps: �rst, compute the set of
states that are both reachable from and can reach every fair set (the internal it-
erations); second, repeatedly prune the approximation set until it is closed under
both successors and predecessors. In contrast, el prunes the approximation set
only once and removes only states which have no successor in the approximation
set; el does not iterate the pruning step within one external iteration. cty can
eliminate states from the approximation set earlier than can el, hence the name
\Catch-Them-Young". Like el, cty has quadratic time complexity with respect
to the size of the design. Hardin et al.'s experimental results, conducted over a
large set of randomly-generated designs, were mixed; cty tended to outperform
el when there was no bad cycle, but performed worse than el in the presence of
cycles [8]. cty's aggressive pruning strategy succeeded in reducing the number of
external iterations, but nevertheless incurred a noticeable performance penalty.

In order to understand why cty fails to outperform el, we must examine each
algorithm's actual computations. This paper studies patterns of image compu-
tations and external iterations, as the former are the most expensive operations
in a BDD-based setting and the latter greatly impact the performance of cy-
cle detection algorithms. Section 3 presents numeric data from this analysis. In
summary, while cty performs signi�cantly fewer external iterations than el, it
does not reduce the number of image computations. In essence, el does too little
work outside the internal iterations whereas cty does too much work overall.
Engineering a better balance between the iterations might yield an algorithm
that consistently outperforms both el and cty. One key di�erence between el

3 Though el may eliminate states in earlier iterations than cty.
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and cty is that el prunes based only on successors, whereas cty considers both
successors and predecessors. An intermediate approach could perform cty's re-
peated pruning, but using only pre-image computations, as in el [19]. This could
greatly reduce the number of image computations of cty, though perhaps at the
expense of some additional external iterations. The resulting algorithm, called
One-Way-Catch-Them-Young (henceforth owcty), appears in Figure 1 (right).4

owcty is essentially the pre-image version of Hojati et al.'s el2 algorithm (sans
an initial reachability computation) [10]; its pruning strategy is similar in spirit
to that of Kesten et al.'s algorithm for cycle detection in the presence of strong
fairness [14] (which uses forward instead of backward image operations).

How do owcty and el compare? Hojati et al.'s experiments on a small
set of small examples discussed only running time and were inconclusive for
these two algorithms. Ravi et al.'s experiments compared el and the forward-
operator version of el2/owcty; this is not too meaningful, since the issue of
forward vs. backward reachability [9] is orthogonal to the balance between ex-
ternal and internal iterations (indeed, the upper bounds obtained in [16] for el
and forward-el2 are incomparable). owcty's worst-case running time has only
a linear overhead (see below) over the O(jFjdh) worst-case upper bound that
Ravi et al. identi�ed for el [16] (where jFj is the number of fairness constraints,
d is the diameter of the state graph, and h is the length of the longest reachable
path in the SCC quotient graph). A worst-case analysis as done in [16] provides,
however, only a very coarse comparison between the two algorithms. First, the
overhead of owcty over el is not very signi�cant. Second, the worst-case in-
stances for el may be di�erent than those for owcty, which means that the
comparison of worst-case running times does not tell us how the two algorithms
compare on a given input instance. A more meaningful analysis would compare
how the two algorithms perform on concrete instances. Analysis at this level
shows that the two algorithms are incomparable. Figure 2 illustrates the di�er-
ences between the el and owcty pruning strategies; owcty outperforms el on
the �rst transition system, while el outperforms owcty on the second.

(1)

(2)

Fig. 2. Two transition systems that illustrate the di�erences between el and
owcty. Black circles denote fair states. All states satisfy the invariant.

Consider the �rst transition system. Both algorithms eliminate the rightmost
state in the �rst iteration and capture the remaining states in the approximation
set. During the �rst iteration, owcty eliminates all but the leftmost fair state;

4 A variant of owcty performs pruning inside the for loop; in practice, neither version

consistently outperforms the other.
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el eliminates only the rightmost fair state. el requires an additional iteration to
eliminate each of the four middle fair states. Each iteration involves a reachability
computation that owcty does not perform. If the chain of fair states in the �rst
system contained n fair states, owcty would perform O(n) image computations
while el would perform O(n2) image computations. Thus, el has a quadratic
overhead relative to owcty on such systems.

Now consider the second transition system. In the �rst iteration, both al-
gorithms eliminate the rightmost state and retain the remaining states in the
approximation set. During the �rst iteration, el throws away the rightmost fair
state. The reachability computation in the second external iteration begins at
the middle fair state; thus, el eliminates the non-fair states between the right
two fair states without traversing them explicitly again. owcty, in contrast,
uses an additional image computation to eliminate each of those non-fair states.
The second system currently contains two copies of a chain of states consisting
of four non-fair states, followed by a fair state, followed by a non-fair state with a
self loop. If the system had k consecutive copies of this chain, each with m states
in the initial non-fair chain, el would perform O(k2m) image computations as
compared to owcty's O(k2m + km) = O(k2m) image computations. That is,
the overhead of owcty relative to el is only linear.

In general, the two algorithms are incomparable with respect to their numbers
of image computations. As owcty provably performs no more external iterations
than el, owcty's overhead (if it exists at all) is caused by the last line of the
algorithm, which prunes the approximation set. Thus, owcty's overhead is at
most linear relative to el, while, as we saw, el can have a quadratic overhead
relative to owcty.

To gain a better picture on the comparative performance of el, cty, and
owcty, the experimental analyses in Section 3 gather data on the numbers of
external iterations across several randomly generated and real examples; to com-
plement the Ravi et al. study [16], we also include running time, memory usage,
and BDD size statistics. Our analyses show that owcty requires almost the
same number of external iterations as cty with far fewer image computations;
in practice, owcty almost always matches or improves on el's performance.

3 Comparative Analysis of the Algorithms

3.1 Experiments on Random Systems

Our �rst set of experiments compares the algorithms on random systems. We
generate random systems by generating random directed graphs. We would like
to obtain directed graphs with non-uniform out-degree and linear density (i.e.,
a linear number of edges in the number of nodes); linear density prevents cy-
cle detection from becoming trivial due to an excess or paucity of edges. The
following model of random graphs, due to Karp [13], satis�es these criteria:

De�nition 1 For each positive integer n and each p with 0 < p < 1, the sample

space consists of all labeled digraphs Dn;p with n vertices and edge probability p.
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Given a graph G with vertices V and edges E, the order of G is jV j and the
density of G is jEj=jV j. We will use n and d to represent a graph's order and
density, respectively. We wish to generate graphs in the space Dn;d=n. Generating
the graphs directly based on this model becomes time consuming as n grows
larger: the procedure must decide whether to include each of the possible n(n�1)
edges based on the probability d=n. Instead, we �x the number of edges to be the
expected number dn, and choose dn distinct edges from the n(n�1) candidates.
This approach provides a very good approximation to the given model [19].

Our experiments compare four algorithms: el, cty, cty+, and owcty.
cty+ is a variant of cty that restricts the reachability computations to consider
only paths through the approximation set, rather than through the entire state
space as in cty [19]; in other words, cty+ replaces line 5 of cty with b :=
E[b U Fi] ^ E[b S Fi], where S is the past-time operator since. We present
two sets of results. The �rst measures the number of external iterations that
each algorithm performs, the next measures the number of image computations
that each algorithm performs.5 The experiments use graphs with order 212 and
densities varying over 1.2, 1.6, 2.0, and 2.4. This order is large enough to explore
the behavior of the algorithms, yet small enough to analyze in a reasonable
amount of time. We de�ne a single fair set for each graph, with size varying over
:01n, :1n, :3n, :5n, :7n, and :9n where n is the digraph order. Each experiment
�xes either the density or the size of the fair set and varies the other. The �gures
reported in the rest of this section are averaged over 100 individual experiments.

jFj

:01n :1n :5n :9n

cty 2.18 2.41 2.09 2.00
cty+ 2.18 2.41 2.09 2.00

owcty 2.17 2.37 2.07 2.00

el 2.66 5.36 13.20 20.89

d

1:2 1:6 2:0 2:4

cty 2.00 2.00 2.00 2.00
cty+ 2.00 2.00 2.00 2.00

owcty 2.00 2.00 2.00 2.00

el 20.89 10.37 7.02 5.09

Table 1. Average number of external iterations on digraphs with order 212. The
left table �xes the density at 1.2 and varies the fair set size. The right table �xes
the fair set size at :9� 212 and varies the density.

Table 1 shows the number of external iterations on digraphs with order
n = 212. One set of experiments �xes the density at 1.2 and varies the fair
set size; the other �xes the fair set size at :9�212 and varies the density. The ta-
bles indicate that cty, cty+ and owcty perform far fewer external iterations
than el. Furthermore, owcty performs essentially the same number of external
iterations as cty; thus pruning based on predecessors as well as successors, as
cty does, does not signi�cantly reduce the number of external iterations over a
pruning strategy based only on successors. We therefore expect owcty to con-
sume considerably fewer resources than cty in practice. el requires signi�cantly

5 We refer to post- and pre-image computations collectively as image computations.
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more external iterations as the fair set grows larger, and signi�cantly fewer ex-
ternal iterations as the density increases. In contrast, cty, cty+, and owcty
perform fairly consistent numbers of external iterations in both cases.

The data in Table 1 do not indicate that cty and owcty are more eÆ-
cient than el because the former algorithms may do more work in the internal
iterations. The number of image computations o�ers a more precise eÆciency
comparison. Image computations are the most computationally expensive op-
erations in each of the cycle-detection algorithms. The cost of these operations
depends on the density and order of the underlying graphs [19]. Since we analyze
the four algorithms over the same randomly generated graphs, the cost of indi-
vidual image computations is comparable across the algorithms. The number of
image computations is therefore a fair parameter for comparing the algorithms.
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Fig. 3. Number of image computations for el, cty, cty+ and owcty.

Figure 3 shows the number of image computations performed over graphs
with order n = 212, density d = 1:2, and fair set size ranging over :01n, :1n, :3n,
:5n, :7n, and :9n. For cty, cty+ and owcty the number of image computa-
tions decreases as the fair set gets larger. cty performs more image computations
than cty+ because cty+ restricts reachability computations to the approxi-
mation set, which allows the computation to converge faster. owcty performs
fewer image computations than either cty or cty+ because it does not per-
form forwards reachability. Separate data (not shown) show that the backwards
reachability computations in owcty and cty perform almost the same num-
bers of image computations; furthermore, the pruning step in owcty performs
roughly half as many image computations as that in cty+[19]. Thus, eliminating
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the forward image computations makes owcty less computationally expensive
without adversely a�ecting the number of external iterations required.

Separate experiments (not shown) show that the number of image compu-
tations decreases sharply as the density increases [19]. In the case of el, the
number of image computations drops because the algorithm performs fewer ex-
ternal iterations as density increases, as discussed previously. For the remaining
three algorithms, our experimental data shows that the size of the approximation
set after each iteration becomes larger as the density increases. The approxima-
tion set determines the base set for subsequent reachability computations. The
larger the base set, the faster reachability computations converge [19]. There-
fore, fewer image computations are needed when the digraph density increases.
Although each pruning step removes fewer vertices, the �nal approximation set
is also larger, so the algorithms perform fewer image computations as density
increases. Plots for running time statistics are similar to those for image compu-
tations. In particular, both owcty and cty consistently outperform el. This
contradicts the mixed results in other cty versus el experiments [8,16].

3.2 Experiments on Real Systems

Our real design examples come from the VIS distribution and fromFabio Somenzi.
They include an ethernet protocol with varying numbers of collisions before
failure, a tree-structured arbiter with 8 nodes, a gcd circuit, a 
oating point
multiplier, and two mutual exclusion protocols (bakery and eisenberg). These
examples are written in Verilog and evaluated using the VIS model checker [17].
We implemented owcty within the VIS framework by replacing the original
(el) algorithm for evaluating EG formulas with owcty in a copy of VIS. We
ran the experiments using VIS version 1.3 (with version 1.2 of the vl2mv com-
piler), on an Intel 686 machine with 1GB of memory running RedHat Linux
version 2.2.12-20; our VIS installation uses the CUDD BDD package.

Table 2 summarizes experiments with LTL model checking of terminal and
weak systems. For each LTL experiment, we evaluated EGfairtrue on the product
of the original design and a manually-constructed automaton for the negation of
the property. Table 3 covers examples with multiple fair sets in the context of
CTL model checking. Table 4 covers LTL model checking under multiple fairness
constraints. In each table, stars on experiment names denote that the models
contained cycles or that the property failed. The EX/EY and EU/ES �gures count
the number of image and reachability computations performed, respectively.6

The tables show that owcty generally matches or outperforms el, while
cty and cty+ are clearly not competitive. In many cases, owcty outperforms
el dramatically; in contrast, we have not yet found an example on which el sig-
ni�cantly outperforms owcty. The bene�ts of owcty are particularly evident
on the ethernet and gcd examples in Table 2. As expected, owcty uses fewer
external iterations than el; however, owcty sometimes performs more image
computations than el.

6 The EU/ES counts do not include trivial computations of the form [' U '].
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Experiment Procedure Ext. EX or Time Mem peak live
Iter. EX/EY (sec) (MB) BDD nodes

ethernet 1 el 51 2179 356.6 13.6 339932
cty 2 42/43 187.9 14.6 398280

cty+ 2 41/42 184.8 14.6 398280

G(p! Fq) owcty 3 57 5.5 11.7 175118

ethernet 2 el 107 6506 10656.1 14.4 367135

cty 2 67/68 1893.6 33.6 1365367
cty+ 2 66/67 1887.6 33.6 1365755

G(p! Fq) owcty 3 113 59.6 14.1 404723

ethernet 3 el 171 11914 4371.3 13.7 279823

cty 2 95/96 1962.2 35 1456597

cty+ 2 94/95 1938.0 35 1456597

G(p! Fq) owcty 3 177 24.6 13.8 290593

ethernet 4 el - - (30H) - -
cty 2 130/131 5859.7 53.6 2320201

cty+ 2 130/2 5895 53.6 2320201

G(p! Fq) owcty 3 245 491.4 14.1 368225

treearb 8* el 8 75 6.2 13.6 234021

cty - - (20M) (23) -

cty+ - - (20M) (23) -

G(p! Fq) owcty 2 24 4.2 12.7 206640

gcd el - - (37H) - -

cty 2 15/3 1384.2 59.3 2298351

cty+ 2 14/2 1383.0 59.3 2298351
G(p! XFq) owcty 2 24 2497.5 130.9 6285856

fpmult el 2 18 18345.8 363 17667058
cty 2 26/3 33089.7 369 17619441

cty+ 2 18/2 21994.7 368 17619441

G(p! XXXq) owcty 2 17 22457.2 369 17422253

Table 2. LTL model checking on weak and terminal systems. Parenthesized
times indicate terminated computations; M indicates minutes instead of seconds.
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Experiment Procedure Num Ext. EX / EU or Time Mem peak live
Fair Iter. EX/EY/EU/ES (sec) (MB) BDD nodes

bakery1* el 6 18 554 / 91 1.3 6.2 34447

cty 6 11 1371/650/67/66 10 13.3 176492

cty+ 6 12 344/299/51/50 7.0 13 182755

AG(p! AFq) owcty 6 18 516 / 75 1.6 6.1 36962

bakery2 el 6 18 490 / 92 1.3 6.0 29524

cty 6 11 1239/614/67/66 9.4 13.3 176492
cty+ 6 11 282/246/47/46 6.0 12.7 180657

AG(p! AFq) owcty 6 18 444 / 72 1.4 5.8 28849

treearb8* el 8 15 382 / 106 14.8 13.6 328115

cty 8 - - (194M) (112) -

cty+ 8 - - (170M) (123) -
AG(p! AFq) owcty 8 13 416 / 104 13.1 13.4 309449

eisenberg2 el 6 27 669 / 124 1.6 5.5 17352
cty 6 23 2159/2031/139/138 7.8 11.2 180311

cty+ 6 16 252/506/56/55 3.8 8.6 148353

AG(p! AFq) owcty 6 27 631 / 102 1.4 5.4 18504

elevator* el 8 12 849/97 498.2 13.8 275914

cty 8 - - (104M) (38) -

cty+ 8 - - (104M) (43) -

AG(p! AFq) owcty 8 12 861/79 536.8 13.6 275914

Table 3. CTL model checking on systems with multiple fairness constraints.

Experiment Procedure Num Ext. EX / EU or Time Mem peak live

Fair Iter. EX/EY/EU/ES (sec) (MB) BDD nodes

treearb8* el 9 15 1021 / 135 1397.8 13.8 239731

cty 9 - - (186M) (44) -

cty+ 9 - - (207M) (157) -
G(p! Fq) owcty 9 14 1000 / 126 911.6 13.9 369062

eisenberg2 el 7 24 1332 / 161 5.7 7.2 47704

cty 7 24 5114/5486/169/168 60.3 13.7 240028

cty+ 7 15 229/399/53/52 4.7 8.8 147763

G(p! Fq) owcty 7 24 1197 / 109 5.3 7.1 59802

elevator3* el 3 2 7 / 1 1164.7 87.5 4062730

cty - - - (60M) (270) -

cty+ - - - (60M) (270) -

Gp owcty 3 2 13 / 1 1167.3 87.5 4062730

elevator4* el 1 2 3 / 1 16192.4 282 13308496

cty 1 - - (365M) (278) -

cty+ 1 - - (367M) (278) -
Gp owcty 1 2 5 / 1 16388.0 282 13308496

Table 4. LTL model checking on systems with multiple fairness constraints.
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Exp. Proc. Num Ext. EX Time

Fair Iter. (sec)

A* el 2 6 203 65.49

owcty 2 2 77 32.58

D* el 6 2 147 16.26

owcty 6 2 149 16.33

E* el 4 3 125 6.89

owcty 4 2 87 6.39

F* el 2 10 50 870.0

owcty 2 2 27 897.7

H1* el 2 8 40 633.8

owcty 2 2 23 495.7

H3* el 2 8 40 550.5

owcty 2 2 23 592.7

Exp. Proc. Num Ext. EX Time

Fair Iter. (sec)

I* el 2 2 40 1004.5

owcty 2 2 23 692.9

J1* el 2 8 40 521.9

owcty 2 2 23 426.6

J2* el 2 8 40 447.9

owcty 2 2 23 347.7

K* el 2 7 25 220.3

owcty 2 2 20 165.3

L* el 2 6 24 129.4

owcty 2 2 19 129.4

M1* el 2 7 35 81.5

owcty 2 2 21 53.9

Table 5. Results from Intel on checking EGfairtrue on systems that have (and
require) multiple fairness constraints.

Finally, we compared owcty and el on Intel designs using internal Intel tools
(Table 5). All the table entries re
ect the composition of actual designs with
linear-time properties, using multiple fairness constraints. owcty performed
signi�cantly better than el in all examples except F and H3, where el slightly
outperformed owcty.

4 OWCTY Versus Specialized Algorithms

Our experimental results show that owcty generally outperforms el on terminal
and weak systems. Bloem, Ravi, and Somenzi have presented an algorithm that
is specialized to verify terminal and weak systems eÆciently [2]. Linear-time
model checkers detect bad cycles by using the el algorithm to check EG true

over the product of the design and the negation of the desired property. Bloem
et al. observed that for terminal and weak systems, CTL formulas capture the
search for bad cycles. Speci�cally, the formulas EF fair and EF EG fair are true of
terminal and weak systems, respectively, when they contain in�nite fair cycles.
Accordingly, their algorithm (henceforth brs) checks one of the formulas EF
fair, EF EG fair, or EGfairtrue based on the structure of the input system. This
structure follows from the structure of the property being tested: if a property
corresponds to a weak (resp. terminal) system, the product of that property and
a design model is also a weak (resp. terminal) system. Bloem et al. showed that
brs signi�cantly outperforms el in practice on terminal and weak systems.

Table 6 compares owcty to brs.7 For the examples fromTable 2, we checked
both EGfairtrue and the appropriate formula from brs using owcty. The statis-
7 The gcd and fpmult examples are the same as Bloem et al. used in their paper [2]. Our

resource usage on these examples di�ers widely from theirs due to di�erences between

our two versions of the compiler from Verilog to BLIF, the VIS input language.
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Experiment Procedure EX Time Mem peak

(sec) (MB) BDD nodes

ethernet 1 :EF EG fair 53 4.2 11.2 151306

G(p! Fq) EGfairtrue(owcty) 57 5.5 11.7 175118

ethernet 2 :EF EG fair 109 24.4 13.7 381839

G(p! Fq) EGfairtrue(owcty) 113 59.6 14.1 404723

ethernet 3 :EF EG fair 173 13.3 13.6 287787

G(p! Fq) EGfairtrue(owcty) 177 24.6 13.8 290593

ethernet 4 :EF EG fair 241 145.6 14.0 373531

G(p! Fq) EGfairtrue(owcty) 245 491.4 14.1 368225

treearb 8* :EF EG fair 22 4.1 12.6 200529

G(p! Fq) EGfairtrue(owcty) 24 4.2 12.7 206640

gcd :EF EG fair 20 3351.6 193 8204281

G(p! XFq) EGfairtrue(owcty) 24 2497.5 130.9 6285856

fpmult :EF fair 8 5565.5 329 16109729

G(p! XXXq) EGfairtrue(owcty) 17 22457.2 369 17422253

Table 6. Comparison between the owcty and brs algorithms.

tics on EGfairtrue are reproduced from Table 2. The specialized approach outper-
forms owcty on most of these examples (except the gcd example). This is due
to the di�erence between checking EGtruefair (brs) and EGfairtrue (owcty).
The former restricts the search for a bad cycle to the fair states; the latter looks
for a cycle that intersects the fair states. As a result, both el and owcty can
have non-fair states in their approximation sets, while brs' approximation set
contains only fair states. This restriction usually allows brs to converge faster.

This comparison demonstrates how exploiting structural information about
systems can lead to more eÆcient veri�cation algorithms. Note, however, that
brs is not a generic cycle-detection algorithm. Furthermore, we must also con-
sider the cost of determining whether a system is weak or terminal, which is
not included in our paper or in Bloem et al.'s. In theory, this operation can be
done symbolically in O(n logn) time [1], but experimental results are not yet
available. For the simple properties considered by Bloem et al. and here, this
overhead is insigni�cant; for more complicated properties (such as those includ-
ing complex environmental assumptions) it could be rather substantial. owcty,
which is a generic algorithm, performs well in practice without the overhead of
specialized analyses as required in brs.

5 Conclusions

Symbolic model checking remains a heuristic process, as metrics do not yet exist
to predict BDD behavior under di�ering algorithms. As a result, comparative
analyses of algorithms are extremely useful in helping tool developers choose
which algorithms to implement. In the name of good science, these analyses need
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to be reproducible and portable to the greatest extent possible. Such analyses
provide not only �rm data, but a foundation for future algorithm development.

This paper compares three symbolic cycle-detection algorithms (and a variant
on one of them) based on the number of iterations they take through their
outermost �xpoint operator, as well as the number of image operations they
perform. Each algorithm employs a slightly di�erent strategy for pruning the
set of states potentially lying on cycles. Our analysis shows that the original
Emerson-Lei (el) algorithm [5] performs too little work outside of its internal
iterations, while Hardin et al.'s Catch-Them-Young (cty) algorithm [8] performs
too much. In contrast, Hojati's el2 algorithm [10], which we view as a one-way
version of cty (owcty) does seem to balance the work inside and outside the
internal iterations. On random examples and on terminal and weak systems,
owcty dominates el, while on general systems, owcty is competitive with
el, dominating it signi�cantly in many cases. We have also shown that the two
algorithms are incomparable with respect to the number of image computations
they perform: el can have a quadratic overhead over owcty, while owcty can
have a linear overhead over el. These results support our conclusion that model
checkers need to contain both el and owcty.

In the course of this project, we have identi�ed two desired features for veri�-
cation tools. First, we want tools to implement multiple algorithms for common
problems such as cycle-detection. Both our analysis and the recent one by Ravi
et al. [16] indicate that no algorithm consistently outperforms the others; indeed,
veri�cation tasks may be tractable with one algorithm and intractable with an-
other. Tools providing multiple algorithms a�ord human veri�ers opportunities
to experiment and �nd algorithms that work on their applications. A similar
conclusion in the context of semi-exhaustive reachability analysis was reached
in [6]. Second, we want tools to provide visualizations of computational patterns
during model checking. Intel's Palette [12] does some of this; we wish we had
such a tool to augment VIS and other publicly-available tools. Testbeds support-
ing multiple algorithms and better data collection would provide strong support
for more disciplined approaches to algorithm comparisons in veri�cation.
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