
The Finite Graph Problem for Two-Way
Alternating Automata

Miko laj Bojańczyk1

Uniwersytet Warszawski, Wydzia MIM, Banacha 2, Warszawa, Polska
bojan@mimuw.edu.pl

Abstract. Two-way alternating automata on trees were introduced by
Vardi [Va98]. Here we consider alternating two-way automata on graphs
and show the decidability of the following problem: ,,does a given au-
tomaton with the Büchi condition accept any finite graph?” Using this
result we demonstrate the decidability of the finite model problem for a
certain fragment of the modal µ-calculus with backward modalities.

1 Introduction

In this paper we consider the propositional µ-calculus with backwards modalities.
It is an extension of the propositional µ-calculus introduced by Kozen [Ko83],
which in itself is a very strong logic, subsuming such formalisms as Program
Decision Logic, various temporal logics such as CTL and process logics such as
YAPL. The various propositional µ-calculi are subject to much research, because,
while being expressive, they still have reasonable computational complexity.

The propositional µ-calculus extends propositional logic with least and great-
est fix-point operators µ, ν and modal quantification ∃, ∀ (sometimes written
as 3, 2). The calculus with backwards modalities, aside from the above, allows
for quantification over backward modalities, denoted by ∃− and ∀−. Thus, for
example, a formula of the form ∃−φ (respectively ∃φ) states that φ occurs in
some predecessor (respectively succsessor) of the current state. This calculus
is notably stronger than the propositional modal µ-calculus without backward
modalities, in particular it no longer has the finite model property, i. e. it ad-
mits sentences which are satisfiable only in infinite structures. This gives rise to
the following natural decision problem: ,,Is a given sentence of the propositional
modal µ-calculus with backward modalities satisfiable in some finite structure?”

The more or less standard way to tackle this problem would be to use au-
tomata on infinite trees. Extensions of modal logic often have the tree model
property, which states that structures can be unraveled into indistinguishable
tree-like structures. This allows one to reap from the rich resources of automata
on infinite trees. And thus, for instance, the decidability of the satisfiability prob-
lem for the propositional µ-calculus can be proven by a reduction to the empti-
ness problem for alternating automata on infinite trees with the parity condition,
while the satisfiability problem for the µ-calculus with backward modalities can
be reduced to the emptiness problem for alternating two-way automata on infi-
nite trees with the parity condition [Va98].

F. Honsell and M. Miculan (Eds.): FOSSACS 2001, LNCS 2030, pp. 88–103, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

The Finite Graph Problem for Two-Way Alternating Automata 89

As much as the tree model property is helpful in researching the satisfiability
problem of the µ-calculus with backward modalities, things get more complicated
where the finite model problem is concerned. The reason is that, unfortunately,
finite models rarely turn out to be trees. On the contrary, the class of sentences
satisfiable in finite tree models is a small subset of the class of sentences with
arbitrary finite models, a class for which the finite model problem is quite easily
decidable. For this reason, while investigating the finite model problem we will
consider automata on arbitrary graphs, not on trees. Using a close correspon-
dence between such automata and the µ-calculus with backward modalities, we
will reduce the finite model problem to the question of whether a given automa-
ton accepts some finite graph, the finite graph problem.

In this paper we consider alternating two-way automata with the Büchi ac-
ceptance condition. The Büchi acceptance condition means the automaton has a
special, accepting, subset of the set of all states and in order for a run of the au-
tomaton to be accepting, one of the accepting states must occur infinitely often
on every computation path. Even though it is weaker than the full parity condi-
tion of normal two-way automata, the Büchi condition is sufficient to recognize
a large class of graph languages. The main result of this paper is a proof of the
decidability of the finite graph problem for two-way alternating automata with
the Büchi acceptance condition. Having done this, we decide the finite model
property for a certain subset of the µ-calculus with backward modalities by a
reduction to the finite graph problem for alternating two-way Büchi automaton.

For the decidability proof of the finite graph problem, given an alternating
two-way automaton A, we construct a nondeterministic automaton A′ on trees
that accepts unravelings of finite graphs accepted by A. In order to find a way of
distinguishing unravelings of finite and infinite graphs, we introduce the concept
of a graph signature. A two-way alternating automaton’s signature in a particular
vertex of a graph says what is the longest sequence of non-accepting states that
can appear in a run of the automaton beginning with that vertex. It can be
proven that finite graphs have finite signatures, moreover, unravelings of finite
graphs also have finite signatures. It also turns out that accepting a graph,
perhaps infinite, of finite signature is in a way sufficient for accepting a finite
graph; we discover one can ,,loop” a finite signature tree into an acceptable finite
graph. The essential technical ,,small signature” theorem allows us to find a
tractable bound on the signature of finite graphs. The proof of this theorem uses
a new approach of successive tree approximations of the final bound signature
tree. The automaton A′ accepts trees where the signature of the automaton A
is bound by the constant in the small signature theorem.

In the last sections of the paper we introduce the µ-calculus with backward
modalities and, closely following a paper by Vardi [Va98], show its correspon-
dence with alternating automata with the parity condition. We then show what
fragment of the calculus corresponds to Büchi condition automata and prove the
decidability of the finite model problem for this fragment. Finally, we comment
on the possibility of further work regarding the so-called Guarded Fragment.

90 M. Bojańczyk

2 Games with the Parity Condition

Games with the parity condition are an important concept in the theory of infi-
nite tree automata. In particular, the semantics of two-way alternating automata
used in this paper are defined by a certain game with the parity condition.

Definition 2.1 (Parity condition game) A game with the parity condition is
a tuple G = 〈V0, V1, E, v0, Ω〉, where V0 and V1 are disjoint sets of positions, the
function Ω : V = V0∪V1 → {0, . . . , N} is called the coloring function, E ⊆ V ×V
is the set of edges, and v0 ∈ V is some fixed starting position. We additionally
assume that for every position v ∈ V , the set of outgoing edges (v, w) ∈ E is
finite.

The game is played as follows. The play starts in the vertex v0. Assuming
the game has reached in turn j a vertex vj ∈ Vi, i ∈ {0, 1}, the player i chooses
some vertex vj+1 such that (vj , vj+1) ∈ E. If at some point one of the players
players cannot make a move, she loses. Otherwise, assume v0, v1, . . . is the infinite
sequence of vertices visited in the game. This infinite play is winning for player
0 if the sequence Ω(v0), Ω(v1), . . . satisfies the parity condition, otherwise it is
winning for player 1.

Definition 2.2 (Parity condition) A sequence {ai} of numbers belonging to
some finite set of natural numbers is said to satisfy the parity condition if the
smallest number occurring infinitely often in {ai}i∈N is even.

The notions of strategy and winning strategy are introduced in the usual
manner. We say a strategy is memoryless if the choice of the next vertex depends
solely upon the current vertex. A very important theorem [EJ91,Mo91], which
will enable us to consider only memoryless strategies, says:

Theorem 2.1 (Memoryless determinacy theorem). Every game with the
parity condition is determined, i. e. one of the players has a winning strategy.
Moreover, the winner also has a memoryless winning strategy.

3 Two-Way Alternating Automata on Graphs

Two-way alternating automata were introduced by Vardi in [Va98] as a tool
for deciding the satisfiability problem of the modal µ-calculus with backward
modalities. As opposed to ,,normal” alternating automata, two-way automata
can travel backwards across vertices. Here we consider automata not on trees,
as in the original paper, but on arbitrary graphs.

Given a set of states Q, we consider formulas built using the logical connec-
tives ∨ and ∧ from atoms of the form ∀Q, i. e. from the set {∀q, ∀−q : q ∈ Q} and
∃Q i. e. {∃q, ∃−q : q ∈ Q}. We will denote the set of such formulas by Form(A).
Moreover, we partition the set Form(A) into conjunctive formulas Con(A), i. e.
either atoms from ∀Q or formulas of the form φ1 ∧ φ2 and disjunctive formulas
Dis(A), i. e. atoms from ∃Q and formulas of the form φ1 ∨ φ2.

The Finite Graph Problem for Two-Way Alternating Automata 91

Definition 3.1 (Two-way alternating automaton) A two-way alternating
automaton on Σ-labeled graphs is the tuple:

〈Q, q0, Σ, δ, Ω〉
Q is a finite set of states, q0 ∈ Q is called the starting state and Ω is a

function assigning to each state q ∈ Q a natural number Ω(q) called the color
or priority of q. The transition function δ is of the form δ : Q × Σ → Form(A).

In this paper, when speaking of graphs, we will use Σ-labeled graphs with a
starting position, where Σ is some finite set of labels. Such a graph is a tuple
G = 〈V, E, e, v0〉, where V is the set of vertices, E ⊆ V × V is the set of edges,
the labeling is a function e : V → Σ and v0 ∈ V is the starting position.

To define the semantics of two-way alternating automata, we shall use games
with the parity condition. Given a Σ-labeled graph G = 〈V, E, e, v0〉 and a two-
way alternating automaton A = 〈Q, q0, Σ, δ, Ω〉 , we define the game G(A, G) =
〈V0, V1, E

′, v′
0, Ω

′〉. The set of positions of G(A, G) is defined V0 = Dis(A) × V
and V1 = Con(A) × V .

For briefer notation, let ∃
∀ stand for any one of the quantifiers ∃± and ∀±.

For any edge (u, w) ∈ E we will write (u, w)−1 to denote the reverse of the edge,
that is (w, u). To further simplify notation, assume for (u, w)1 the edge (u, w),
similarly let ∃1 = ∃, ∃−1 = ∃−, ∀1 = ∀ and ∀−1 = ∀−.

The edges of the game are set as follows:

– For an atom (∃
∀q, v) ∈ (∀Q × V) ∪ (∃Q × V) there exists an edge to

(δ(q, e(w)), w) if (v, w)i ∈ E, where i is 1 if the quantifier is positive and
−1 otherwise.

– For a non-atomic formula (φ, v) there exists an edge to (φ′, v) for each sub-
formula φ′ of φ.

The coloring Ω′ in the game G(A, G) is defined as follows: for (∃
∀q, v) ∈

(∀Q × V) ∪ (∃Q × V) we set Ω′(∃
∀q, v) = Ω(q). For the remaining positions we

set, say, max(Ω(Q)) + 1, so that their color is irrelevant. The starting position
in G(A, G) is (δ(q0, e(v0)), v0).

Definition 3.2 (Acceptance by the automaton) We say the automaton A
accepts a graph G under strategy s if s is a winning strategy for player 0 in the
game G(A, G). Such a strategy s is called accepting. We say A accepts graph G
if there exists a strategy s such that A accepts G under s.

A very important concept that will be used here is the tree unraveling of a
graph. By a two-way path in a graph G = 〈V, E, e, v0〉 we mean any sequence of
neighboring vertices, that is, any sequence v0, . . . , vi such that (vj , vj+1) ∈ E or
(vj+1, vj) ∈ E.

Definition 3.3 (Tree unraveling) Given a graph G = 〈V, E, e, v0〉, its tree
unraveling is the graph Un(G) = 〈V ′, E′, e′, v0〉, where the set of vertices V ′ is
the set of finite two-way paths in G starting in v0, the set of edges is defined

92 M. Bojańczyk

E′ = {((π, v), (π, v, w))i : (π, v, w) ∈ V ′, (v, w)i ∈ E} and the labeling is set as
e′(π, v) = e(v).

Note that this is a two-way tree, that is, edges between a son and father can
be either forward or backward. The depth of a vertex π = (v0, . . . , vn) is the
number n. For two vertices π1 and π2 of such a tree, we say π1 is a successor of
π2 if π2 is an initial fragment of the path π1. For a tree T we use T |π to signify
the subtree of T with the root at π, T |iπ is the subtree with the root at π and of
depth i and T |i is defined as T |iλ, where λ is the root of T .

Having a tree unraveling we define the canonical projection Π : V ′ → V , so
that Π(π, v) = v and expand this projection onto the positions of G(A, Un(G))
and G(A, G) so that Π(x, (π, v)) = (x, v).

Definition 3.4 (Strategy unraveling) We say the strategy Un(s) is the un-
raveling of strategy s if Π ◦ Un(s) = s ◦ Π.

We omit the trivial proof of:

Lemma 3.1. The automaton A accepts a graph G under strategy s iff A accepts
Un(G) under Un(s).

It can be shown that one-way alternating automata on graphs have a certain
finite graph property, that is, if a given one-way alternating automaton accepts
any kind of graph, it also accepts a finite graph. This, however, is not the case
when speaking of two-way alternating automata. We will conclude this section
with an example of an automaton that accepts only infinite graphs.

Example 3.0.1

Consider the following two-way automaton A = 〈Q, q0, Σ, δ, Ω〉, where Q =
{q0, q1}, Ω(q0) = 0, Ω(q1) = 1, and Σ = {a}. The transition function δ is
defined as follows:

δ(q0, a) = ∃q0 ∧ ∀−q1

δ(q1, a) = ∀−q1

We will consider a play in the game G(A, G) where G = 〈N, {(n, n + 1) : n ∈
N}, e, 0}〉, such that e(n) = a for all n ∈ N. The play starts in formula ∃q0 ∧∀−q1
at vertex 0. This is a position for player 1, let’s assume he chooses the sub-
formula ∃q0 (the play stays at 0). Now player 0 has to choose a neighboring
(in G) vertex along a forward edge. He has to choose 1; the position is now
∃q0 ∧ ∀−q1 at vertex 0. This goes on until, say, we reach 10. Now let’s assume
player 1 chooses the subformula ∀−q1. Now it is his choice to choose a neigh-
boring vertex in G, along a backward edge; he has to choose vertex 9. The
play then goes on through positions (∀−q1, 9), . . . , (∀−q1, 0) in which last posi-
tion player 1 loses for a lack of possible moves. Consider now a different play
– player 1 always chooses the subformula ∃q0. The play goes through positions
(∃q0∧∀−q1, 0), (∃q0, 0), . . . , (∃q0∧∀−q1, k), (∃q0, k), The only color appearing
infinitely often in this play is 0, thus player 0 wins.

The Finite Graph Problem for Two-Way Alternating Automata 93

Analyzing the game G(A, G), one will notice that in the graph G, player 0
has a winning strategy. It can also be proven, that the automaton A accepts
only graphs with an infinite forward path where no infinite backward path is
ever reachable. In particular A accepts only infinite graphs.

3.1 Automaton Paths

Let us fix a two-way alternating automaton A. Given a play r in the game
G(A, G) we can define r̃ as the sequence of state-vertex pairs visited in the
play r. For instance, in the example above, for the first play r, we have
r̃ = (q0, 0), (q1, 1), . . . , (q0, 10), (q1, 9), (q1, 8), . . . , (q1, 0) The following is a key
definition:

Definition 3.5 (Automaton path) Let r be a play consistent with the strat-
egy s in G(A, G) and let r̃ = (q1, v1), . . . be the projection of r onto Q × V . Any
contiguous subsequence of π(r) is called an automaton path G consistent with
the strategy s, or, more concisely, an automaton path in G, s.

We use ω(G, s) to denote the set of all automaton paths in G, s. Sometimes
we shall omit the word automaton and simply say path, where confusion can
arise we shall distinguish automaton paths from graph paths. The length of a
path is denoted by |ω|. Given a path ω = (q1, v1), . . . , (qn, vn), we say the path
ω′ = (q2, v2), . . . , (qn−1, vn−1) leads from (q1, v1) to (qn, vn), which is written as
(q1, v1) →ω′

(qn, vn). By ωi we denote the i-th element of the path ω, that is
(qi, vi) Sometimes we shall simply write ωi to denote simply either qi or vi, where
the context clearly defines what type of result is needed. A path ω is a sub-path
of ω′, written as ω v ω′, if ω is a contiguous subsequence of ω′. We define ||ω||Q
as the set of states visited in ω and ||ω||V as the set of vertices visited in ω.

We say that a finite path ω ends well under the strategy s if it corresponds to
a finite play f in G(A, G) winning for 0, that is one where player 1 cannot make
a move. The following lemma gives a path characterization of the acceptance of
automata:

Lemma 3.2. The automaton A accepts a graph G under the strategy s iff
every maximal (in terms of v) finite path ends well under s and every in-
finite path (q0, v0), (q1, v1), . . . satisfies the parity condition for the sequence
Ω(q0), Ω(q1), . . .

Corollary 3.1. If the automaton A accepts the graph G under s there is no
cycle ω in which the lowest priority in the set Ω(||ω||Q) is odd.

4 The Finite Graph Problem

The example in Section 3.0.1 is a motivation for the following problem: ,,does a
given alternating two-way automaton accept some finite graph?”. Let us denote

94 M. Bojańczyk

this problem by FIN-ALT . We are not able to prove the decidablity of this full
problem and we consider a simpler case. Fix a set of states Q and some subset
F ⊆ Q. We say that the sequence of states {qi}i∈N, qi ∈ Q satisfies the Büchi
acceptance condition, if there exists a state q ∈ F which appears infinitely often
in the sequence {qi}i∈N. This condition is obviously equivalent to the parity
condition where we put Ω(q) = 0 for q ∈ F and Ω(q) = 1 for q ∈ Q/F . Note
that the example automaton in the previous section is is an automaton with
the Büchi acceptance condition. It is thus meaningful to consider the FIN-ALT
problem restricted to automata with the Büchi acceptance condition; we shall
call this problem FIN-ALT(B). Consider a graph G = 〈V, E, e, v0〉 accepted by
A. We shall now define the concept of an automaton signature, used in the key
Theorem 4.1 of this paper.

Definition 4.1 (Signature) Let v ∈ G, ω ∈ ω(G, s), and k, i ∈ N.

– Sig(ω, i) ≡def min{j : Ω(ωi+j) = 0}
– SigG,s(q, v) ≡def max{Sig(ω, i) : ω ∈ ω(G, s), ωi = (q, v)}.
– SigG,s(v) ≡def (SigG,s(q, v))q∈Q

If the context is clear as to what graph and strategy are concerned, instead
of SigG,s(q, v) we shall write simply Sig(q, v). Intuitively, Sig(q, v) gives the
longest possible length of an automaton path consisting of odd states starting
in (q, v). We shall assume Sig(q, v) = ∞ if there is no such bound.

The following theorem is the main technical result of this paper.

Theorem 4.1 (Small signature theorem). For any alternating two-way au-
tomaton with the Büchi acceptance condition A = 〈Q, q0, Σ, δ, Ω〉 there exists a
constant M doubly exponential on |Q| such that the following three conditions
are equivalent:

1. There exists a finite graph G such that A accepts G.
2. There exist a bound N ∈ N, a tree T and an accepting strategy s such that

for every vertex v ∈ T and every state q ∈ Q, SigT,s(q, v) < N .
3. There exist a tree T and an accepting strategy s, such that for every vertex

v ∈ T and every state q ∈ Q, SigT,s(q, v) < M .

Let us fix the automaton A = 〈Q, q0, Σ, Ω〉. The proof of this theorem is long
and will be distributed across three subsections.

4.1 Proof of 1 ⇒ 2

First we shall state two lemmas, whose trivial proofs will be omitted.

Lemma 4.1. If the automaton A accepts the finite graph G = 〈V, E, e, v0〉 under
s, then for every q ∈ Q, v ∈ V we have SigG,s(q, v) ≤ |V ||Q|.

The Finite Graph Problem for Two-Way Alternating Automata 95

Lemma 4.2. The tree unwinding does not increase the signature, i. e.

SigUn(G),Un(s)(q, (πv)) ≤ SigG,s(q, v)

For the proof of 1 ⇒ 2, assume A accepts the graph G. Then A accepts Un(G)
under the strategy Un(s) (Lemma 3.1). Moreover, for every vertex πv of the tree
Un(G) and every state q ∈ Q we have SigUn(G),Un(s)(q, πv) ≤ SigG,s(q, v) ≤
|V ||Q|. The first inequality is due to Lemma 4.2, the second due to 4.1.

4.2 Proof of 3 ⇒ 1

It can be shown that for each graph G accepted by A, one can reduce the edge
set of G, obtaining a graph G′ also accepted by A, where the degree of each
vertex is bounded by a certain constant Â, linear with respect to the size of
the formulas in the transition function of A. We will now try to think of a
way to encode strategies. Generally speaking, an accepting strategy can choose
potentially any vertex for existential atoms, making a bounded representation
difficult. Fortunately however, one can show that in graphs of degree bounded
by Â a strategy can be encoded as a number from 1 to a constant Ã, where Ã
is exponential over Â.

With every vertex v of the tree T = 〈V, E, e, λ〉 we shall associate two pieces
of information constituting the type of v: the strategy s in the vertex v and
Sig(v). Because strategies are encoded by a number from 1 to Ã and since by
assumption we have Sig(q, v) < M for every q ∈ Q, there exists a finite number
of vertex types. We can thus find such a number i that all vertex types in the
subtree T |i+1 appear already in the subtree T |i.

Let f : T |i+1 → T |i be any function such that f restricted to T |i is the
identity mapping and for every vertex v ∈ T |i+1, the equalities s(f(v)) = s(v)
and Sig(f(v)) = Sig(v) hold. In other words f assigns to vertices in T |i+1

vertices of the same type from T |i. Such a function exists by assumption on i.
Consider now the following graph T ′ = 〈T |i, E′, e◦f, λ〉 resulting from ,,looping”
the tree T on the level i. We define the set of edges E′ of the graph T ′ as follows:
E′ = {(f(v), f(v′)) : (v, v′) ∈ E}, where E is the set of edges of the original tree
T .

It is an easy exercise to show that the function SigT,s satisfies the conditions
in the below lemma for the tree T ′, thus proving that A accepts the finite graph
T ′.

Lemma 4.3. A accepts a finite graph G under the strategy s iff there exists a
number N ∈ N and a function σ : Q × V → {0, .., N} such that if (q, v)(q′, v′) ∈
ω(G, s) then σ(q′, v′) ≤ σ(q, v) and the inequality is proper if Ω(q) = 1.

Proof. For the left to right implication it is sufficient to notice that the signature
Sig satisfies the above conditions. For the other direction, one has to show that
the function σ majorizes Sig, so that each state with odd priority appears at
most N times before an even priority state appears. ut

96 M. Bojańczyk

4.3 Proof of 2 ⇒ 3

Let T, s be as in condition 2 of Theorem 4.1. By assumption we know there exists
a certain, if perhaps difficult to estimate, bound N on the signature. We will
now modify the tree T in such a way as to bound the signature by a tractable
constant M .

First, we shall introduce the following definitions. We say a path ω ∈ ω(G, s)
is bad iff Ω(||ω||Q) = {1}. We say (q, w) is 1-accessible from (q′, v) in G, s,
written as (q′, v) →1 (q, w) in G, s, if there exists a bad path ω ∈ ω(G, s) such
that (q′, v) →ω (q, w). Moreover, we write v →1 w if there exist states q, q′ ∈ Q
such that (q′, v) →1 (q, w). We define the bad neighborhood XD,s(v) of a vertex
v in the tree D under the strategy s as the set of v’s 1−accessible (both ways)
successors, i. e. XD,s(v) ≡def {w ∈ D|v : w →1 v ∨ v →1 w in D, s}

Let M ′ be a constant whose exact size depending on the size of the automaton
A we will estimate later in this paper. For a tree D, strategy s and vertex v of
the tree D, denote the following property as (*):

(∗)XD,s(v) ⊆ D|M ′
v

We will now construct a sequence of trees and accepting strategies
(D0, s0), (D1, s1), . . . such that each two tree-strategy pairs (Di, si) and (Dj , sj)
are identical up to depth min(i, j) − 1 and, moreover, if a vertex v of the tree
Di has a depth less than i, then the property (*) holds for v in Di, si.

We will define the trees inductively with respect to i. Let D0, s0 be simply
T 0, s0. The above condition obviously holds for (D0, s0) since there are no ver-
tices of depth less than zero. Assume now that we have constructed (Di, si).
We will define (Di+1, si+1) by iterating the following Lemma 4.4 for successive
vertices of depth i. Of course the conditions in the lemma are satisfied by D0, s0.

Fig. 1. The tree D

Lemma 4.4. Let D, s be such that

1. A accepts D under s
2. XD,s(w) is finite for every vertex w of the tree D.
3. (*) holds for some contiguous subset of vertices X closed under the ancestor

relation.

The Finite Graph Problem for Two-Way Alternating Automata 97

Let v be the successor of any vertex in X. There exist a tree D′ and strategy s′

identical with D, s on the set X ∪ {v} such that the above three conditions hold
for D′, s′ and (*) holds for v.

Proof. We prove 4.4 by iterating Lemma 4.5. ut

Lemma 4.5. Assume D, s and v satisfy the assumptions of Lemma 4.4. If (*)
does not hold for v, there exists a tree D′ and strategy s′, identical with D, s
on the set X ∪ {v} such that D′, s′ satisfies the assumptions of Lemma 4.4 and
moreover the following inequality holds (the cardinality of both sets is finite by
assumption 3):

|XD′,s′(v)| < |XD,s(v)|
Proof. We will consider a certain equivalence relation ' defined on XD,s(v).
Vertices equivalent under this relation are in a sense interchangeable (along
with their subtrees). First, introduce for any two vertices v, w in the tree D the
following symbol O(v, w) ⊆ Q × P ({0, 1}) × Q. Let O(v, w) = {(q, R, q′) : ∃ω ∈
ω(D, s).(q, v) →ω (q′, w)∧Ω(||ω||Q) = R}. Using this notation, we write w ' w′

if and only iff all the following conditions hold:

1. s(w) = s(w′)
2. O(w, w) = O(w′, w′)
3. O(v, w) = O(v, w′)
4. O(w, v) = O(w′, v)

Let M ′ be the number of abstraction classes of the relation '. It is easy to
see that the bound M ′ is exponential with respect to |Q|. Assume now that the
depth of XD,s(v) is greater than M ′. In such a case we can find two vertices
w, w′ ∈ XD,s(v), w < w′ such that w ' w′. Now take for D′ (from Lemma 4.5)
the tree resulting from substituting D|w for D|w′ , and let s′ be the strategy s
restricted to the new, smaller tree.

Fig. 2. Before and after the cut (D|v and D′|v)

Definition 4.2 (Clean path) We say the path ω is clean, if w′ 6∈ ||ω||V . Clean
paths can be either upper, that is contained in D′|w′ , or lower – the remainder.

98 M. Bojańczyk

Fact 4.1 For any state q ∈ Q, if (q, w′) is accessible in D′, s′, then both (q, w)
and (q, w′) are accessible in D, s.

Proof. Let ω be such that (q0, v0) →ω (q, w′) in D′, s′, where v0 is the root
and starting vertex of D′. The proof is by induction on the number of times
w′ appears in ω. For clean paths this is obvious, using condition 3 of w ' w′.
Assume ω is not clean. Then ω = ω1(q′, w′)ω2, where ω2 is clean. Let us just
consider the case where ω2 is upper, the proof of the other is analogous. If ω2

is upper then it is a correct path in D, s such that (q′, w′) →ω2
(q, w′) in D, s.

By condition 2 of w ' w′ we have (q′, w) →ω3
(q, w) in D, s for some path ω3.

By induction hypothesis, both (q′, w′) and (q′, w) are accessible in D, s, say by
paths ωA and ωB . Linking the paths ωA and ωB with ω2 and ω3 respectively we
obtain the desired assertion. ut

Corollary 4.1. For any q ∈ Q, u ∈ D′, if (q, u) is accessible in D′, s′ then it is
also accessible in D, s.

Now we are in a position to prove Lemma 4.5. That A accepts the tree D′

under s is a rather tedious technical result whose proof we omit here. Secondly,
we want to show that XD′,s′(u) is finite for each vertex u in the tree D′, s′. Take
any bad path ω that goes through u and consider two cases:

– ω is clean. Using Corollary 4.1, we show ω ∈ ω(D, s), so we can, according
to the assumptions of Lemma 4.5, bound the depth of ω by a constant
dependent only on the vertex u.

– ω is not clean. Again – divide ω into clean sub-paths:

ω = ω(1)(w′, q(1))ω(2) . . . (w′, q(n−1))ω(n)

By easy induction we can prove that if ω(i) upper, then w′ →1 ω(i) w D, s.
This proves that the depth of the path ω is no greater than the depth of
XD,s(w′), in particular it is bound.

Finally, the facts that the cut preserves the property (*) for vertices u ∈ X
and that |XD′,s′(v)| < |XD,s(u)| are implied by the following fact:

Fact 4.2 If u ∈ X ∪ {v}, then XD′,s′(u) ⊆ XD,s(u) ∩ D′

To prove Fact 4.2, we need to prove the following lemma:

Lemma 4.6. If (q, v) →1 (q′, w′) [respectively (q′, w′) →1 (q, v)] in D′, s′, then
we have both (q, v) →1 (q′, w) and (q, v) →1 (q′, w′) [(q′, w′) →1 (q, v) and
(q′, w) →1 (q, v)] in D, s.

The proof is wholly analogous to the proof of Lemma 4.1 and will be omitted.
Thus equipped we can finish the proof of Fact 4.2 and along with that, the whole
Lemma 4.5.

The Finite Graph Problem for Two-Way Alternating Automata 99

Let u ∈ X ∪{v} and u′ ∈ XD′,s′(u). We want to show that u′ ∈ XD,s(u)∩D′.
We will only consider the first case in the definition of XD′,s′(u), the other one
is similar. Assume then that u →1 u′. There exists states q, q′ ∈ Q and a bad
path ω ∈ ω(D′, s′) such that (q, u) →ω (q′, u′). If ω is clean, then obviously
(q, u) →ω (q′, u′) holds also in D, s and so u′ ∈ XD,s(u) ∩ D′. In the other case,
let ω = ω1(q′′, w′)ω2, where ω2 is clean. Consider two cases:

– ω2 is upper. According to Lemma 4.6, we have (q, u) →1 (q′′, w′) in D, s.
Since the path ω2 is a correct path in D, s, we have (q, u) →1 (q′, u′) in D′, s′

and, consequently, u′ ∈ XD,s(u) ∩ D′.
– ω2 is lower. Analogously to the above, except using (q, u) →1 (q′, w).

ut
(end of proof of 4.5)

Having thus proven 4.5 we can conclude by using the trees
(D0, s0), (D1, s1), . . . to prove the 2 ⇒ 3 implication. Since the trees
(Di, si), (Dj , sj) are identical up to depth min(i, j) − 1, we can define
the limit tree D and strategy s which are identical with each Di, si up to
depth 1 − i. Now take a vertex v ∈ D and let n = |v| + M ′. Since XDn,sn(v)
contains only vertices of depth less than n, we see that XD,s(v) ⊆ D|M ′

v , or, in
other words, (*) holds for all all vertices of D, s. It is now a trivial observation
that the maximal length M of a bad path contained within D|M ′

v is at most
exponential with respect to M ′, otherwise we would have a cycle.

4.4 The FIN-ALT(B) Problem Is Decidable

Armed with Theorem 4.1 we are ready to show the decidability of the FIN-
ALT(B) problem.

Theorem 4.2. The FIN-ALT(B) problem is decidable in DEXPTIME.

Proof. Given an automaton A we shall construct a nondeterministic automaton
A′ on full Â-ary trees over the alphabet Σ × {1, . . . , Ã}. The automaton A′ will
recognize an infinite tree T labeled by the strategy s iff for every vertex v of
the tree T , the signature SigT,s is smaller than the constant M from Theorem
4.1. The automaton A′ guesses a function σ : V × Q → {1, . . . , M} defined on
vertices of the tree T and then checks if the assumptions of Lemma 4.3 hold.

This kind of local property can be checked by a nondeterministic automaton
whose number of states is doubly exponential with regards the size of Q of the
automaton A (this is how big the constant M is). The fact that A′ works on
Â-ary trees is not limiting, as we have observed before. Thanks to Theorem 4.1,
we need only look for trees whose signature is bounded by M , so the emptiness
problem for A′ (in terms of nondeterministic automata) is equivalent to the
emptiness of A (in terms of two-way alternating automata).

Since the automaton A′ checks only a local consistency, it has the following
nice property: if A′ has an infinite run, then it has an accepting run. It can be
proved that for such automata the emptiness problem is decidable in polynomial
time and thus we obtain the time in the theorem’s conclusion. ut

100 M. Bojańczyk

5 The Propositional µ-Calculus

Let AP = {p, q, . . .} be a set of atomic propositions, and let V AR = {X, Y, . . .}
be a set of propositional variables.

Definition 5.1 (Formulas of the calculus) The set of formulas of the µ-
calculus is the smallest set such that:

– Every atomic proposition p ∈ AT and its negation ¬p are formulas
– Every variable X ∈ V AR is a formula
– If α and β are formulas and X ∈ V AR then the following are formulas:

α ∨ β, α ∧ β,∃α,∀α,∃−α,∀−α, µX.α, νX.α

We call µ and ν, respectively, the least and greatest fix-point operators. We
will write ϑ to signify any one of the two operators. Formulas of the calculus are
interpreted in so-called Kripke structures.

Definition 5.2 (Kripke structure) A Kripke structure K = 〈V, E, S〉 con-
sists of a graph 〈V, E〉 along with a function S : V → P (AP) which assigns to
each vertex the set of atomic propositions true in that vertex.

Let K = 〈V, E, S〉 be a Kripke structure, v a valuation, i. e. any function
v : V AR → P (V). As usual, we define v[W/X] as the valuation obtained from
v by substituting the set W ⊆ V for the variable X. The interpretation of a
formula φ in a given Kripke structure under the valuation v, written as φK [v],
is defined inductively as follows:

– For atomic propositions p ∈ AP , pK [v] = {u ∈ V : p ∈ S(u)}
– For variables X ∈ V AR, XK [v] = v(X)
– (φ1 ∧ φ2)K [v] = φK

1 [v] ∩ φK
2 [v]

– (φ1 ∨ φ2)K [v] = φK
1 [v] ∪ φK

2 [v]
– (∃kφ)K [v] = {u ∈ V : ∃w ∈ V.(u, w)k ∈ E ∧ w ∈ φK [v]}, k ∈ {1,−1}
– (∀kφ)K [v] = {u ∈ V : ∀w ∈ V.(u, w)k ∈ E ⇒ w ∈ φK [v]}, k ∈ {1,−1}
– (µX.φ)K [v] =

⋂{V ′ ⊆ V : φK [v[V ′/X]] ⊆ V ′}
– (νX.φ)K [v] =

⋃{V ′ ⊆ V : V ′ ⊆ φK [v[V ′/X]]}

5.1 Enhanced Automata

For a briefer notation we will add two new mechanisms to two-way alternat-
ing automata which do not expand their expressive power. Let ◦Q be the set
{◦q : q ∈ Q}. Our new enhanced automata are identical to alternating two-way
automata, save they have a more complicated transition function. In an enhanced
automaton, δ assigns to each state-label pair (q, a) ∈ Q × Σ a formula δ(q, a)
built from atoms of the form ∃Q, ∀Q (as before) and, additionally, ◦Q and true
and false.

We interpret true and false as follows: when player 0 reaches true, he wins,
while when he reaches false, he looses; the reverse holds for player 1. On the
other hand, ◦q means the automaton stays in the same vertex, only changes its
state to q. We omit the easy, yet technical, proof of:

The Finite Graph Problem for Two-Way Alternating Automata 101

Lemma 5.1. Every enhanced automaton is equivalent to a two-way alternating
automaton with only a polynomial blowup of size. The finite graph problem for
enhanced automata with the Büchi condition is decidable in double exponential
time with respect to the size of states.

5.2 Automata on Models

In this section we sketch the correspondence between the µ-calculus and en-
hanced automata. Let AP (φ) be the set of atomic predicates p ∈ AP occurring
in φ. Let Σφ = P (AP (φ)).

Definition 5.3 (Encoding) The encoding of a Kripke structure K = 〈V, E, S〉
from vertex v0 ∈ V is the graph G(K, v0) = 〈V, E, e, v0〉 where e : V → Σφ is
the restriction of S to Σφ.

Let φ be a sentence of the µ-calculus. We will construct an enhanced automa-
ton Aφ on graphs that will recognize the encodings of models for φ. By cl(φ) we
mean the smallest set of formulas closed under subformulas such that φ ∈ cl(φ)
and if ϑX.ϕ(X) ∈ cl(φ) then ϕ(ϑX.ϕ(X) ∈ cl(φ). Let Aφ = 〈cl(φ), φ, Σφ, δ, Ω〉.
The transition function δ is defined as follows:

– δ(p, σ) = true if p ∈ σ, false otherwise.
– δ(¬p, σ) = false if p ∈ σ, true otherwise.
– δ(φ1 ∨ φ2, σ) = ◦φ1 ∨ ◦φ2
– δ(φ1 ∧ φ2, σ) = ◦φ1 ∧ ◦φ2
– δ(ϑX.ϕ(X), σ) = ◦ϕ(ϑX.ϕ(X))
– δ(∃kϕ, σ) = ∃kϕ for k ∈ {1,−1}
– δ(∀kϕ, σ) = ∀kϕ for k ∈ {1,−1}

We fix the coloring Ω so as to satisfy the following conditions:

– If the variable Y occurs freely in ϑX.φ1(X) then Ω(ϑX.φ1(X)) >
Ω(ϑY.φ2(Y)).

– Ω(ϑX.ϕ(X)) is even if and only if ϑ = ν
– Formulas not beginning with ϑ have a color no smaller than any fix-point

formula.

Lemma 5.2. [Va98] For every sentence φ and every Kripke structure K, v0 ∈
φK if and only if Aφ accepts the encoding G(K, v0).

Corollary 5.1. (of Lemma 5.2) A sentence φ of the µ-calculus has a finite
model if and only if the automaton Aφ accepts some finite graph.

We say a sentence of the µ-calculus is simple, if it has no sub-formulas φν =
νX.φ1(X) and µY.φ2(Y) such that Y occurs freely in φν . Now it is easy to
see that in Lemma 5.2, simple sentences are translated into enhanced automata
whose acceptance condition is equivalent to the Büchi condition (the coloring
consists of first a number of small even priorities, then larger odd priorities).

102 M. Bojańczyk

Theorem 5.1. The problem whether a simple sentence of the µ-calculus with
backward modalities has a finite model is in DEXPTIME.

Proof. Given a simple sentence φ we construct an equivalent automaton A′
φ and

solve this instance of the enhanced FIN-ALT(B) problem. Both the alphabet
and set of states of the automaton A′

φ are polynomial with respect to the length
of the formula φ. ut

6 Closing Remarks

The main result of this paper is a proof of the decidability of the finite graph
problem for two-way alternating automata with the Büchi condition. This can be
used to prove the decidability of the finite model problem for a certain sub-logic
of the propositional µ-calculus with backward modalities.

The proof is based on Theorem 4.1, which uses the concept of signature. In
this theorem, implications 1 ⇒ 2 and 3 ⇒ 1 can be easily generalized for au-
tomata with an arbitrary parity condition. However, it remains an open problem
whether such a generalization is possible for the implication 2 ⇒ 3.

It seems that a decidability proof for the whole problem is desirable for ends
other than the finite model problem of the µ-calculus with backward modalities.
Two-way alternating automata are used in the paper [GW99] to decide the
satisfiability of formulas of the so-called Guarded Fragment with fixed points.

The Guarded Fragment [ABN98] is a subset of first order logic, originally
introduced as an elaboration on the translation of modal logic into first order
logic. Currently the Guarded Fragment is subject to much research. It can be
supposed that the FIN-ALT problem can be applied to solving the open problem
of whether the finite model property for formulas of the Guarded Fragment with
fixed points is decidable.

References

[ABN98] H. Andreka, J. van Benthem and I. Nemeti, Modal Languages and Bounded
Fragments of Predicate Logic, Journal of Philosophical Logic , 27 (1998),
pp. 217-274.

[EJ91] E. A. Emerson and C. Jutla: Tree Automata, Mu-Calculus and Determi-
nacy, in Proc. 32th IEEE Symposium on Foundations of Computer Science
pages 368-377.

[ES89] R. S. Street and E. A. Emerson: An Automata theoretic procedure for the
propositional mu-calculus. Information and Computation , 81:249-264.

[GW99] E. Grädel and I. Walukiewicz: Guarded Fixed Point Logic, Proc. 14th
IEEE Symp. on Logic in Computer Science , pages 45-54.

[Ko83] D. Kozen: Results on the Propositional µ-calculus, in Theoretical Computer
Science, Vol. 27 pages 333-354.

[LPZ85] O. Lichtenstein, A. Pnueli and L. Zuck: The Glory of the Past, in Logics
of Programs, Vol. 193 LNCS pages 196-218.

[Mo91] A. W. Mostowski: Games with Forbidden Positions, Technical Report 78,
University of Gdañsk, 1991.

The Finite Graph Problem for Two-Way Alternating Automata 103

[MS87] D. E. Muller and P. E. Schupp: Alternating automata on infinite trees,
Theoretical Computer Science , 54:267-276, 1987.

[Ni88] D. Niwiñski: Fixed Points vs. Infinite Generation, in Proc. 3rd IEEE LICS
pages 402-409.

[St82] R. S. Streett:Propositional dynamic logic of looping and converse, in In-
formation and Control , Vol. 54, pages 121-141.

[Th97] Wolfgang Thomas: Languages, Automata, and Logic, in Handbook of For-
mal Language Theory, III , Springer, pages 389-455.

[Va97] M. Vardi: Why is modal logic so robustly decidable?, in Descriptive Com-
plexity and Finite Models , AMS, pages 149-184.

[Va98] M. Vardi: Reasoning About the Past with Two-way Automata, in Vol. 1443
LNCS pages 628-641.

	Introduction
	Games with the Parity Condition
	Two-Way Alternating Automata on Graphs
	Automaton Paths

	The Finite Graph Problem
	Proof of 1 $Rightarrow $ 2
	Proof of 3 $Rightarrow $ 1
	Proof of 2 $Rightarrow $ 3
	The {it FIN-ALT(B)} Problem Is Decidable

	The Propositional $mu $-Calculus
	Enhanced Automata
	Automata on Models

	Closing Remarks

