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Abstract. In a recent paper we introduced a new framework for the
study of call by need computations. Using elementary tree automata
techniques and ground tree transducers we obtained simple decidability
proofs for a hierarchy of classes of rewrite systems that are much larger
than earlier classes defined using the complicated sequentiality concept.
In this paper we study the modularity of membership in the new hier-
archy. Surprisingly, it turns out that none of the classes in the hierarchy
is preserved under signature extension. By imposing various conditions
we recover the preservation under signature extension. By imposing some
more conditions we are able to strengthen the signature extension results
to modularity for disjoint and constructor-sharing combinations.

1 Introduction

The seminal work of Huet and Lévy [9] on optimal normalizing reduction strate-
gies for orthogonal rewrite systems marks the beginning of the quest for decidable
subclasses of (orthogonal) rewrite systems that admit a computable call by need
strategy for deriving normal forms. Call by need means that the strategy may
only contract needed redexes, i.e., redexes that are contracted in every normal-
izing rewrite sequence. Huet and Lévy showed that for the class of orthogonal
rewrite systems every term not in normal form contains a needed redex and re-
peated contraction of needed redexes results in a normal form if the term under
consideration has a normal form. However, neededness is in general undecidable.
In order to obtain a decidable approximation to neededness Huet and Lévy in-
troduced in the second part of [9] the subclass of strongly sequential systems. In
a strongly sequential system at least one of the needed redexes in every reducible
term can be effectively computed. Moreover, Huet and Lévy showed that strong
sequentiality is a decidable property of orthogonal rewrite systems. Several au-
thors ([26ITOMT3ITHT7TI20I19]) studied extensions of the class of strong sequential
rewrite systems that preserve its good properties.
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In a previous paper (Durand and Middeldorp [6]) we presented a uniform
framework for decidable call by need based on approximations. We introduced
classes CBN , of rewrite systems parameterized by approximation mappings c.
In [6] we identified the properties an approximation mapping « has to satisfy
in order that the resulting class CBN, is decidable and every rewrite system in
that class admits a computable normalizing call by need strategy. We showed
moreover that our classes are much larger than the corresponding classes based
on the difficult sequentiality concept.

Not much is known about the complexity of the problem of deciding member-
ship in one of the classes that guarantees a computable call by need strategy to
normal form. Comon [2] showed that strong sequentiality of a left-linear rewrite
system can be decided in exponential time. Moreover, for left-linear rewrite sys-
tems satisfying the additional syntactic condition that whenever two proper
subterms of left-hand sides are unifiable one of them matches the other, strong
sequentiality can be decided in polynomial time. The class of forward-branching
systems (Strandh [I8]), a proper subclass of the class of orthogonal strongly
sequential systems, coincides with the class of transitive systems (Toyama et
al. [2I]) and can be decided in quadratic time (Durand [5]). For classes higher
in the hierarchy only double exponential upper bounds are known ([7]).

Consequently, it is of obvious importance to have results available that en-
able to split a rewrite system into smaller components such that membership in
CBN,, of the components implies membership of the original system in CBN .
Such modularity results have been extensively studied for basic properties like
confluence and termination, see [§JI4[16] for overviews.

The simplest kind of modularity results are concerned with enriching the
signature. Most properties of rewrite systems are preserved under signature ex-
tension. Two notable exceptions are the normal form property and the unique
normal form property (with respect to reduction), see Kennaway et al. [I1]. Also
some properties dealing with ground terms are not preserved under signature
extension. For instance, consider the property that every ground term has a nor-
mal form, the rewrite system consisting of the single rewrite rule f(z) — f(z),
and add a new constant a. (A slightly more interesting example is obtained by
adding the rewrite rule f(b) — b.) It turns out that for no a membership in
CBN,, is preserved under signature extension. In this paper we present several
sufficient conditions which guarantee the preservation of signature extension.
These results are presented in Section [3

Since preservation under signature extension does not give rise to a very
useful technique for splitting a system into smaller components, in Section [4] we
consider combinations of systems without common function symbols as well as
constructor-sharing combinations.

In the next section we briefly recall the framework of our earlier paper [6] for
analyzing call by need computations in term rewriting and we introduce some
useful definitions.
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2 Preliminaries

We assume the reader is familiar with the basics of term rewriting ([1J4/12]).
We recall the following definitions from [6]. We refer to the latter paper for
motivation and examples. A term rewrite system (TRS for short) consists of
rewrite rules [ — r that satisfy root(l) ¢ V and Var(r) C Var(l). If the second
condition is not imposed we find it useful to speak of extended TRSs (¢TRSs).
Such systems arise naturally when we approximate TRSs, as explained below.

Let R be an eTRS over a signature F. The set of ground normal forms of R
is denoted by NF(R,F). Let Ro be the eTRS R U {e — o} over the extended
signature Fy = F U {e}. We say that redex A in C[A] € T(F) is R-needed
if there is no term ¢t € NF(R,F) such that Cle] —% t. So to determine R-
neededness of a redex A in C[A] we replace it by e and check whether we can
derive a normal form without e. Redex A is R-needed only if this is impossible.
Note that NF(R,F) = NF(R.,, F,). For orthogonal TRSs R-neededness coincides
with neededness. We denote by WN(R, F) the set of all ground terms in 7 (F)
that rewrite in R to a normal form in NF(R,F). If no confusion can arise, we
just write WN(R).

Let R and S be eTRSs over the same signature F. We say that S approxi-
mates R if =5 C —% and NF(R,F) = NF(S,F). An approximation mapping
is a mapping « from TRSs to eTRSs with the property that «(R) approximates
R, for every TRS R. In the following we write R, instead of a(R). The class of
left-linear TRSs R such that every reducible term in 7 (F) has an R,-needed
redex is denoted by CBN,. Here F denotes the signature of R. We assume
throughout the paper that ground terms exist. Although not explicitly stated in
our earlier paper [6] we assume that R is a proper TRS (i.e., not an eTRS). For
arbitrary left-linear ¢eTRSs R we introduce a corresponding class CBN which
contains the eTRSs with the property that every reducible ground term has an
R-needed redex. So a TRS R belongs to CBN, if and only if R, € CBN.

Next we define the approximation mappings s, nv, and g. Let R be a TRS.
The strong approximation Ry is obtained from R by replacing the right-hand
side of every rewrite rule by a variable that does not occur in the corresponding
left-hand side. The nv approximation R, is obtained from R by replacing the
variables in the right-hand sides of the rewrite rules by pairwise distinct variables
that do not occur in the corresponding left-hand sides. An eTRS is called growing
if for every rewrite rule | — r the variables in Var(l) N Var(r) occur at depth
1 in I. The growing approximation R, is defined as any growing eTRS that is
obtained from R by renaming the variables in the right-hand sides that occur
at a depth greater than 1 in the corresponding left-hand sides. In [6] we showed
that for a left-linear TRS R and « € {s,nv,g} membership of R in CBN,, is
decidable.

We conclude this preliminary section with some easy definitions. A rewrite
rule I — r of an eTRS is collapsing if r is a variable. A redex with respect to a
collapsing rewrite rule is also called collapsing and so is an eTRS that contains
a collapsing rewrite rule. A redex is called flat if it does not contain smaller
redexes. Let R be a TRS over the signature F. A function symbol in F is called
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defined if it is the root symbol of a left-hand side of a rewrite rule in R. All other
function symbols in F are called constructors. A term without defined symbols is
called a constructor term. We say that R is a constructor system (CS for short)
if the arguments of the left-hand side of a rewrite rule are constructor terms.

Let R be an eTRS over the signature F and let G C F. We denote by
WN(R,F,G) the set of terms in 7(G) that have a normal form with respect
to (R,F). The subset of WN(R,F,G) cousisting of those terms that admit a
normalizing rewrite sequence in (R, F) containing a root rewrite step is denoted
by WNR(R,F,G). If F = G then we just write WNR(R,F) or even WNR(R)
if the signature is clear from the context. We also find it convenient to write
WN, (R, F,G) for WN(Re, Fe,Ge) and WNRe (R, F,G) for WNR(Re, Fe,Ge). A
reducible term without needed redexes is called free. A minimal free term has
the property that its proper subterms are not free.

3 Signature Extension

In this section we study the question whether membership in CBN,, is preserved
after adding new function symbols.

Definition 1. We say that a class C of eTRSs is preserved under signature
extension if (R,G) € C for all (R,F) €C and F CG.

The results we obtain in this section are summarized below. In the result
marked with (x) signature extension only holds if we further require that the set
of Ryv-normalizable terms over the original signature is not increased.

approximation sufficient conditions Theorem
strong 3 ground normal form il
nv 3 external normal form
nv R is collapsing or R is a CS (x) R
growing 3 external normal form

All our proofs follow the same strategy. We consider a TRS R over a signature
F such that (R, F) € CBN ,. Let G be an extension of F. Assuming that (R, G) ¢
CBN 4, we consider a minimal (R,,G)-free term ¢ in 7(G). By replacing the
maximal subterms of ¢ that start with a function symbol in G\ F—such subterms
will be called aliens or more precisely G\ F-aliens in the sequel—by a suitable
term in 7 (F), we obtain an (R, F)-free term ¢’ in 7 (F). Hence (R, F) ¢ CBN 4,
contradicting the assumption.

Our first example shows that CBN is not preserved under signature exten-
sion.

Example 1. Consider the TRS

141l
v 8 & R
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over the signature F consisting of all symbols appearing in the rewrite rules. As
NF(R,F) = @, trivially (R, F) € CBN. Let G = FU{b} with b a constant. We
have (R,G) ¢ CBN as the term f(a, a,a) has no (Rs, G)-needed redex:

f(. a7a) s f(.vg(a)aa) s f( )8 (3)7 (a)) s b
f(a,e,a) = f(h(a),e,a) =5 f(h(a),e,g(a)) =< b
fa.a,0) = flg(a).a,0) — f(g(a).h(a),e) — b

The above example is interesting since it furthermore shows that CBN prop-
erly includes the class of strongly sequential TRSs defined by Huet and Lévy [9],
contrary to the claim in [6] that these two classes coincide.

One may wonder whether there are any nontrivial counterexamples, where
nontrivial means that the set of ground normal forms is nonempty. Surprisingly,
the answer is yes, provided we consider an approximation map « that is at least
as good as nv.

Ezample 2. Consider the TRS

— g(x) f(a,a
R = f(b,z,a) = g(x) f(b,b,b)
— 8

(x)  e(x)

over the signature F consisting of all symbols appearing in the rewrite rules. First
we show that (R, F) € CBN . It is not difficult to show that the only (Ryy, F)-
normalizable terms are a, b, and e(t) for every ¢ € T(F). Since a and b are
normal forms, we only have to show that every e(t) contains an (Ryy, F)-needed
redex, which is easy since e(t) itself is an (Ryy, F)-needed redex. Let G = FU{c}
with ¢ a constant. We have (R,G) ¢ CBN,, as the term f(e(a),e(a),e(a)) has
10 (Ruv, G)-needed redex:

g - g
g(a) gb) — glb)

) _>IlV f(.’ a7 b) %HV g(c)
, , ) —nv f(b,e a) —n glo)
a),e(a),®) —, f(a,e(a),e) —n f(a,b,e) —,, g(c)

For a = s there is no nontrivial counterexample.

Theorem 1. The subclass of CBN consisting of all orthogonal TRSs (R,F)
such that NF(R,F) # & is preserved under signature extension. O

We refrain from giving the proof at this point since the statement easily
follows from Theorem [Bl below, whose proof is presented in detail. Our second
result states that the subclass of CBN consisting of all eTRSs R with the prop-
erty defined below is preserved under signature extension.

Definition 2. We say that an eTRS R has external normal forms if there exists
a ground normal form which is not an instance of a proper non-variable subterm
of a left-hand sides of a rewrite rule in R.
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Note that the TRS of Example Rllacks external normal forms as both ground
normal forms a and b appear in the left-hand sides of the rewrite rules. Further
note that it is decidable whether a left-linear TRS has external normal forms by
straightforward tree automata techniques. Finally note that the external normal
form property is satisfied whenever there exists a constant not occurring in the
left-hand sides of the rewrite rules.

Before proving our second result we present a useful lemma which is used
repeatedly in the sequel.

Lemma 1. Let R be a left-linear eTRS. Every minimal free term belongs to
WNR(R).

Proof. Let F be the signature of R and let t € 7(F) be a minimal free term.
For every redex position p in ¢ we have t[e], € WN4(R). Let p’ be the minimum
position above p at which a contraction takes place in any rewrite sequence from
t[e], to a normal form in 7 (F) and define P = {p’ | p is a redex position in ¢}.
Let p* be a minimal position in P. We show that p* = e. If p* > € then we
consider the term ¢|,-. Let ¢ be a redex position in t|,«. There exists a redex
position p in ¢ such that p = p*q. We have t|,-[o]; = (t[8],)|p» € WN4(R) by
the definition of p*. Since t|,- has at least one redex, it follows that ¢|,+ is free.
As t|,~ is a proper subterm of ¢ we obtain a contradiction to the minimality of
t. Hence p* = €. So there exists a redex position p in ¢t and a rewrite sequence
A: tle], —>7';7}-. u € NF(R,F) that contains a root rewrite step. Because R is
left-linear and e does not occur in the rewrite rules of R, e cannot contribute to
this sequence. It follows that if we replace in A every occurrence of e by t|, we
obtain an (R, F)-rewrite sequence from ¢ to u with a root rewrite step. O

In particular, minimal free terms are not root-stable.

Theorem 2. The subclass of CBN consisting of all left-linear eTRSs with ex-
ternal normal forms is preserved under signature extension.

Proof. Let (R,F) € CBN and let ¢ € NF(R,F) be an external normal form.
Let F C G. We have to show that (R,G) € CBN. Suppose to the contrary
that (R,G) ¢ CBN. According to Lemma [l there exists a term ¢t € WNR(R, G)
without (R,G)-needed redex. Let t' be the term in T (F) obtained from ¢ by
replacing every G\F-alien by c. Because t is not root-stable and R left-linear, ¢’
must be reducible. Hence ¢’ contains an (R, F)-needed redex A, say at position p.
Because c is an external normal form, A is also a redex in ¢t and hence there exists
a rewrite sequence t[e], —>7Jg,g. u with u € NF(R, G). If we replace in this rewrite
sequence every G\F-alien by ¢, we obtain a rewrite sequence t'[e], —>7‘;’ Fou-
Because ¢ does not unify with a proper non-variable subterm of a left-hand side
of a rewrite rule, it follows that u’ € NF(R,F). Hence A is not an (R, F)-needed
redex in t’, yielding the desired contradiction. a

Note that for CBN the above theorem is a special case of Theorem [II since
the existence of an external normal form implies the existence of a ground normal
form.
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In the remainder of this section we present a signature extension result for
TRSs without external normal form. Such TRSs are quite common (see also
Lemma [ below).

Ezxample 3. Consider the TRS

r_{0+y =y s@)+y = s(z+y)
T 10xy — 0 s(r) Xy —» zxy+y

over the signature F consisting of all symbols appearing in the rewrite rules.
Since every normal form is of the form s”(0) for some n > 0, it follows that R
lacks external normal forms.

We start with some preliminary results.

Definition 3. Let R be a TRS. Two redexes Ay, Ay are called pattern equal,
denoted by Ay =~ A, if they have the same redex pattern, i.e., they are redexes
with respect to the same rewrite rule.

Lemma 2. Let R be an orthogonal TRS, a € {s,nv}, and suppose that A ~= A'.
If C[A] € WN(R,) then C[A'] € WN(R,).

Proof. Let C[A] —* t be a normalizing rewrite sequence in R,. If we replace
every descendant of A by A’ then we obtain a (possibly shorter) normalizing
rewrite sequence C[A’] —* t. The reason is that every descendant A” of A
satisfies A” =~ A due to orthogonality and hence if A” is contracted to some
term u then A rewrites to the same term because the variables in the right-hand
sides of the rewrite rules in R, are fresh. Moreover, as t is a normal form, there
are no descendants of A left. Note that the resulting sequence can be shorter
since rewrite steps below a descendant of A are not mimicked. O

The above lemma does not hold for the growing approximation, as shown by
the following example.

Ezample 4. Consider the TRS R = {f(z) — z,a — b,c — c}. We have
Rz = R. Consider the redexes A = f(a) and A’ = f(c). Clearly A ~ A’. Redex
A admits the normal form b, but A’ has no normal form.

Lemma 3. Let R be an orthogonal TRS over a signature F, o € {s,nv}, and
FCG. IfWN(Ry, F) =WN(Ra,G, F) then WNg(Ra, F) = WNe(Ra, G, F).

Proof. The inclusion WN¢(Ry, F) € WNe(Ra, G, F) is obvious. For the reverse
inclusion we reason as follows. Let t € WNq4(Rn, G, F) and consider a rewrite
sequence A in (R, Ge) that normalizes t. We may write t = C[ty,...,t,] such
that tq1,...,t, are the maximal subterms of ¢ that are rewritten in A at their
root positions. Hence A can be rearranged into A':

t _ﬁza,g. C[Ala BN An] _>;<gmg. C[ul, - ,un}
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for some redexes Ay, ..., A, and normal form Cluq,...,u,] € T(G). Since the
context C' cannot contain e, all occurrences of e are in the substitution parts
of the redexes Aq,..., A,. If we replace in C[Ay,...,A,] every G,\F-alien
by some ground term ¢ € T(F), we obtain a term t' = C[A],..., A]] with
AL € T(F) and A; = A for every i. Repeated application of Lemma [2] yields
t' € WNq (R, G). Because e cannot contribute to the creation of a normal form,
we actually have t' € WN(R,,G) and thus ¢’ € WN(R,,G,F) ast’ € T(F). The
assumption yields ¢ € WN(R,,F). Since WN(R,, F) € WNe(R,,F) clearly
holds, we obtain ¢ € WNg(Ra,F). Now, if we replace in the first part of
A’ every G\F-alien by ¢ then we obtain a (possibly shorter) rewrite sequence
t —=%.7 ClAT,...,A7] € T(F.) with A; = A} and thus also A} ~ A} for
every i. Repeated application of Lemma Blyields C[AY, ..., A’] € WN¢(Rq, F)
and therefore t € WN4 (R, F) as desired. O

We note that for a« = s the preceding lemma is a simple consequence of
Lemma [ below. The restriction to a € {s,nv} is essential. For R, we have the
following counterexample.

Example 5. Consider the orthogonal TRS

f(z,a,y) — g(v) h(a) — a
f(a,b(z),y) — a h(b(z)) — i(x)
R_ f(b(z),b(y),2z) — a i(a) — a
g(a) — b(g(a))  i(b(z)) — b(a)
g(b(z)) — g(a) i(z,a) = f(z,h(b(a)),a)

i(z,b(y)) — f(z,h(b(a)),y)

over the signature F consisting of all symbols appearing in the rewrite rules
and let & = Ry. Let G = F U {c} with c a constant. With some effort one
can check that WN(S, F) = WN(S, G, F). However, WN, (S, F) is different from
WN,(S,G,F) as witnessed by the term t = j(e,b(a)). In (Se,Ge) we have t —
f(e,h(b(a)),c) —* f(e,a,c) — g(c), hence t € WN4(S,G,F), but one easily
verifies that ¢ does not have a normal form in (S, F,).

Lemma 4. The set of ground normal forms of a CS without external normal
forms coincides with the set of ground constructor terms.

Proof. Clearly every ground constructor term is a normal form. Suppose there
exists a ground normal form that contains a defined function symbol. Since every
subterm of a normal form is a normal form, there must be a ground normal form ¢
whose root symbol is a defined function symbol. By definition of external normal
form, ¢t must be an instance of a proper non-variable subterm of a left-hand side
[. This implies that a proper subterm of [ contains a defined function symbol,
contradicting the assumption that the TRS under consideration is a CS. ad

Lemma 5. Let (R,F) and (S,G) be orthogonal TRSs and o € {s,nv} such
that (R, F) C (S,G) and WN(S,,G,F) = WN(Rq, F). If t € WNR(S,,G) and
root(t) € F then there exists a flat redex = in T (F). Moreover, if Ry is collaps-
ing then we may assume that = is Rq-collapsing.
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Proof. From t € WNR(S,,G) we infer that t —% ; A for some redex A €
WN(S,,G). By considering the first such redex it follows that A is a redex with
respect to (Rq, G). If we replace in A the subterms below the redex pattern by an
arbitrary ground term in 7 (F) then we obtain a redex A’ € T(F) with A ~ A’
Lemma ] yields A" € WN(S,,G) and thus A" € WN(S,,G,F) = WN(R,, F).
Hence NF(R,F) = NF(R,,F) # @. Therefore, using orthogonality, we obtain
a flat redex = € T(F) by replacing the variables in the left-hand side of any
rewrite rule in R by terms in NF(R,F). If R, is a collapsing then we take any
R -collapsing rewrite rule. a

We are now ready for the final signature extension result of this section.
The condition WN(R,,F) = WN(R,,G,F) expresses that the set of R,-
normalizable terms in 7(F) is not enlarged by allowing terms in 7(G) to be
substituted for the variables in the rewrite rules. We stress that this condition
is decidable for left-linear R and « € {s,nv, g} by standard tree automata tech-
niques.

Theorem 3. Let R be an orthogonal TRS over a signature F, a € {s,nv}, and
F C G such that WN(Ry,F) = WN(R4,G,F). If (R,F) € CBN, and R is a
CS or Ry is collapsing then (R,G) € CBN .

Proof. If (R, F) has external normal forms then the result follows from Theo-
rem 2 So we assume that (R, F) lacks external normal forms. We also assume
that R # @ for otherwise the result is trivial. Suppose to the contrary that
(R,G) ¢ CBN . According to Lemma [ there exists a term ¢ € WNR(R,,G)
without (Rq,G)-needed redex. Lemma [l (with R = §) yields a flat redex
Z € T(F). If R, is collapsing then we may assume that = is R,-collapsing.
Let ¢’ be the term in T (F) obtained from ¢ by replacing every G\ F-alien by =.
Let P be the set of positions of those aliens. Since ¢’ is reducible, it contains an
(Ra, F)-needed redex, say at position g. We show that t'[e], € WN4(R4,G). We
consider two cases.

1. Suppose that ¢ € P. Since t € WNR(R,,G), t =% ¢ A for some redex
A€ WN(R,,G) CWNG(Ry,G). Since the root symbol of every alien belongs
to G\F, aliens cannot contribute to the creation of A and hence we may
replace them by arbitrary terms in 7 (G.) and still obtain a redex that is
pattern equal to A. We replace the alien at position ¢ by e and every alien
at position p € P\ {q} by t'|,. This gives t'[e], =% 5 A" with A" ~ A.
Lemma[2 yields A" € WN4(Rq,G) and hence t'[8], € WN4 (R4, ).

2. Suppose that ¢ ¢ P. Since = is flat, it follows by orthogonality that ¢ is also
a redex position in ¢. Since t is an (Rq, G)-free term, t[o], € WNo (R4, G).
We distinguish two further cases.

a) First assume that R is a CS. Since ¢ is not root-stable, its root symbol
must be defined. From LemmaM]we learn that a ground normal form of R
(and thus of R,) cannot contain defined symbols. Hence any (Rq, Ge)-
rewrite sequence that normalizes t[e], contains a root step and thus
t[e]; € WNRe(Rq,G). Hence to], =% o A" € WNe(Rq,G) for some
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redex A" € T(G,). Similar to case (1) above, we replace the G\ F-aliens
in t[e], by =. This yields t'[e], =% 5 A" with A” ~ A’. Lemma
yields A” € WN4 (R4, G) and hence t'[o], € WNG (R4, G).

b) Next assume that R, is collapsing. Because = is a collapsing redex, we
have = —g, g t|, for all p € P. Hence t'[e], —% . t[e], and thus
#'[o], € WN4(Ra, G).

As t' € T(F), we have t'[e], € WN4(R,,G,F) and thus t'[e], ¢ WNe(R,,F)
by Lemma ] contradicting the assumption that g is the position of an (R, F)-
needed redex in t'. O

It can be shown that all conditions in the above theorem are necessary.
Below we show the necessity of the WN(R,, F) = WN(R,, G, F) condition for
noncollapsing CSs R,. Due to lack of space we omit the other (complicated)
counterexamples.

Ezxample 6. Consider the orthogonal noncollapsing CS

f(,a,b) = g(z)  gla) — ga)
f(b,z,a) — glz)  g(b) — g(a)
R =« f(a,b,z) — g(x) h(z) — i(z)
f(a,a,a) — a i(a) — a
f(b,b,b) — a i(b) — b

over the signature F consisting of all symbols appearing in the rewrite rules
and let S = Ryy. Let G = F U {c} with c a constant. Note that WN(S, F) #
WN(S, G, F) as witnessed by the term f(a, a, b). With some effort one can check
that (R,F) € CBN. However, (R,G) ¢ CBN as f(h(a),h(a),h(a)) lacks (S, G)-
needed redexes.

We show that Theorem [ is a special case of Theorem [B] by proving that
for @« = s the condition WN(R,,F) = WN(R,,G,F) is a consequence of
NF(R,F) # @.

Lemma 6. Let R be an eTRS over a signature F. If NF(R,F) # @ then
WN(Rs, F) = T(F).

Proof. If NF(R,F) # & then there must be a constant ¢ € NF(R,F). Define
the TRSR' = {l = ¢ |l — r € R} over the signature F. Clearly —g' C —s.
Consider a precedence (i.e., a well-founded proper order on F) > with f > ¢ for
every function symbol f € F different from c¢. The TRS R’ is compatible with
the induced recursive path order >y, ([3]) and thus terminating. Since Rs and
R’ have the same normal forms, it follows that R is weakly normalizing. a

Proof of Theorem [ Let R be an orthogonal TRS over a signature F such that
(R,F) € CBN. Let F C G. We have to show that (R,G) € CBN. Since Ry
is collapsing (if R # &; otherwise R is a CS), the result follows from Theo-
rem [ provided that WN(Rs, F) = WN(Rs, G, F). From Lemma [l we obtain
WN(Rs, F) = T(F) and WN(Rs,G,F) =WN(Rs,G)NT(F)=T(G)NT(F) =
T(F). O
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We conclude this section by remarking that we have to use Theorem [B] only
once. After adding a single new function symbol we obtain an external normal
form and hence we can apply Theorem Rlfor the remaining new function symbols.

4 Modularity

The results obtained in the previous section form the basis for the modularity
results presented in this section. We first consider disjoint combinations.

Definition 4. We say that a class C of TRSs is modular (for disjoint combina-
tions) if (RUR/',FUF') €C for all (R,F),(R',F') € C such that FNF' =

To simplify notation, in the remainder of this section we write S for R U R’
and G for F U F’. The condition in Theorem Blis insufficient for modularity as
shown by the following example.

Ezample 7. Consider the TRS

f(z,a,b) — a
R =« f(b,z,a) — a
f(a,b,z) — a

over the signature F consisting of all symbols appearing in the rewrite rules
and the TRS R’ = {g(z#) — 2} over the signature F’ consisting of a con-
stant ¢ in addition to g. Both TRSs have external normal forms and belong to
CBN 4, as one easily shows. Their union does not belong to CBN ,,, as the term
f(g(a),g(a),g(a)) has no (Spy, G)-needed redex:

f(.vg(a)ag(a)) —nv ( (a)) v ( aaab) —nv 2
f(g(a),®,g(a)) —uyv f(b,e,g(a)) —ny f(b,e,2) —yy a
f(g(a),g(a),®) —ny f(a, g(a)p) —ny f(a,b,e) —y, a

If we forbid collapsing rules like g(z) — z, modularity holds. The following
theorem can be proved along the lines of the proof of Theorem 2} because there
are no collapsing rules and the eTRSs are left-linear, aliens cannot influence the
possibility to perform a rewrite step in the non-alien part of a term.

Theorem 4. The subclass of CBN consisting of all noncollapsing left-linear
eTRSs with external normal forms is modular. O

We find it convenient to separate the counterpart of Theorem [3] into two
parts. The next two lemmata are used in both proofs. The nontrivial proof of
the first one is omitted due to lack of space.

Lemma 7. Let (R,F) and (R',F') be disjoint TRSs. If « € {s,nv} then
WN(S,,G,F) = WN(R.,G,F). a

Lemma 8. Let (R,F) and (R',F') be disjoint orthogonal TRSs and a €
(s,0v}. If WN(Sa, G, F) = WN(Ry, F) then WNo(Sa, G, F) = WNy (Ra, F).
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Proof. The previous lemma yields WN(R,, F) = WN(Rq, G, F). From Lemma B
we obtain WNg(Ry, F) = WN4(Ra, G, F). Another application of the previous
lemma yields the desired WN¢(Rq, F) = WNo(Sq, G, F). O

Theorem 5. Let (R, F) and (R',F') be disjoint orthogonal noncollapsing CSs
such that WN(Ryy, G, F) = WN(Ryy, F) and WN(R.,,G, F') = WN(R,,,F').

If (R, F),(R', F') € CBN yy then (S,G) € CBN y.

Proof. We assume that both R and R’ are nonempty, for otherwise the result
follows from Theorem Bl Suppose to the contrary that (S,G) ¢ CBAN . Accord-
ing to Lemma [I] there exists a term ¢ € WNR(S,y, G) without (Syy,G)-needed
redex. Assume without loss of generality that root(t) € F. Lemma [] yields a
flat redex = € T(F). Let ¢’ be the term in 7 (F) obtained from ¢ by replacing
every G\F-alien by =. Let P be the set of positions of those aliens. Since t' is
reducible, it contains an (R, F)-needed redex, say at position q. We show that
t'[®]; € WN¢(Snv,G). We consider two cases.

1. Suppose that ¢ € P. Since t € WNR(Syy,G), t =5, g A for some redex A €
WN(Suv, G) € WNo(Spy, G). Since S,y is noncollapsing and the root symbol
of every alien belongs to G\ F, aliens cannot contribute to the creation of A
and hence we may replace them by arbitrary terms in 7 (G, ) and still obtain
a redex that is pattern equal to A. We replace the alien at position g by e and
every alien at position p € P\ {¢} by t'[,. This gives t'[e], =% 5 A" with
A’ ~ A. Lemma Pl yields A" € WN4(Syy, G) and hence t'[o], € WN¢ (S, G).

2. Suppose that ¢ ¢ P. Since = is flat, it follows by orthogonality that ¢ is also
a redex position in ¢. Since ¢ is an (Syy, G)-free term, t[o], € WN¢(Syy, G).
Since t is not root-stable, its root symbol must be defined. From Lemma €
we learn that a ground normal form of § (and thus of Sy,y) cannot contain
defined symbols. Hence any (Shy, Ge)-rewrite sequence that normalizes t[e],
contains a root step and thus t[e]; € WNR.(Sny,G). Hence o], =5 o A€
WN,(Sny,G) for some redex A € T(G,). We replace the G\ F-aliens in t[e],
by Z. Since S is noncollapsing, this yields t'[e], —% 5 A’ with A’ =~ A.
Lemma [2 yields A" € WN¢(Syy, G) and hence t'[8], € WN¢(Spy, G).

As t' € T(F), we have t'[e], € WNq(Suy, G, F) and thus t'[e], € WNe(Ryy, F)
by Lemmata [0 and [§], contradicting the assumption that ¢ is the position of an
(Ruv, F)-needed redex in ¢'. O

Theorem 6. Let (R,F) and (R',F') be disjoint orthogonal TRSs and « €
{s,nv} such that WN(R.,G,F) = WN(R.,F) and WN(R,,G,F') =
WN(RL,F"). If (R, F),(R',F') € CBN, and both R, and R, are collapsing
then (S,G) € CBN .

Proof. We assume that both R and R’ are nonempty, for otherwise the result
follows from Theorem [3 Suppose to the contrary that (S,G) ¢ CBN . Accord-
ing to Lemma [l there exists a term ¢ € WNR(S,,G) without (S,,G)-needed
redex. Assume without loss of generality that root(t) € F'. Lemma [l yields a
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flat R/, -collapsing redex = € T(F’). Let ¢’ be the term in 7 (F’) obtained from
t by replacing every G\F'-alien by Z. Let P be the set of positions of those
aliens. Since ¢’ is reducible, it contains an (R, , F’)-needed redex, say at posi-
tion g. We show that t'[e]; € WN4(S4, 7). Because = is a collapsing redex, we
have = —x, g t|p for all p € P. Hence t' —% .t and thus, by orthogonal-
ity, t'[8]; =% g, t[®]s- Hence it suffices to show that t[e], € WNe(Sa,G). We
distinguish two cases.

1. Suppose that ¢ € P. Since t € WNR(S,,G), t =% 5 A for some redex

A € WN(S4,G) CWNL(S4,G). We distinguish two further cases.

a) If t|, is a normal form then it cannot contribute to the creation of A
and hence by replacing it by e we obtain t[e], =% ; A" with A =~ A".
Lemma [2 yields A" € WN4(S,,G) and thus t[e], € WN4(S,,G).

b) Suppose t|, is reducible. Because t is a minimal free term, ¢|, contains
an (S, G)-needed redex, say at position ¢'. So t|[e]y ¢ WNe(Sa,G).
In particular, t|,[e],; does not (S,,G)-rewrite to a collapsing redex, for
otherwise it would rewrite to a normal form in one extra step. Hence
the root symbol of every reduct of t|,[e], belongs to F. Since ¢q’ is not
the position of an (S,, G)-needed redex in t, t[®]4y € WN4(Sy, G). Since
any normalizing (S, G)-rewrite sequence must contain a rewrite step
at a position above ¢, we may write t[e],;r —5 g C[A'] € WNo(Sa, )
such that A’ is the first redex above position ¢. Since root(A’) € F/,
the subterm ¢|,[e], of t[e],, does not contribute to the creation of A’
and hence t[e], =5 o C[A"] with A” ~ A’. Lemma [2 yields C[A"] €
WN¢ (S, G) and thus t[e], € WN4(Sq, G).

2. Suppose that ¢ ¢ P. Since = is flat, it follows by orthogonality that ¢ is also

a redex position in ¢. Since ¢ is an (Sq, G)-free term, t[e], € WN4(S,, G).

As t' € T(F'), we have t'[e]; € WN¢(Sy, G, F') and thus t'[e], € WNG (R, F’)
by Lemmata [T and [§], contradicting the assumption that ¢ is the position of an
(RL,, F')-needed redex in ¢'. O

It is rather surprising that the presence of collapsing rules helps to achieve
modularity; for most properties of TRSs collapsing rules are an obstacle for
modularity (see e.g. Middeldorp [14]).

The next result is the modularity counterpart of Theorem [II. It is an easy
corollary of the preceding theorem.

Theorem 7. The subclass of CBNs consisting of all orthogonal TRSs (R,F)
such that NF(R,F) # @ is modular.

Klop and Middeldorp [13] showed the related result that strong sequentiality
is a modular property of orthogonal TRSs. We already remarked in the preceding
section that CBN properly includes all strongly sequential TRSs. Actually, in
[13] it is remarked that it is sufficient that the left-hand sides of the two strongly
sequential rewrite systems do not share function symbols. One easily verifies
that for our modularity results it is sufficient that R, and R/, do not share
function symbols. Actually, we can go a step further by considering so-called
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constructor-sharing combinations. In such combinations the participating sys-
tems may share constructors but not defined symbols. It can be shown that the
results obtained in this section extend to constructor-sharing combinations, pro-
vided we strengthen the requirements in Theorems[d, Fl and Bl by forbidding the
presence of constructor-lifting rules. A rewrite rule | — r is called constructor-
lifting if root(r) is a shared constructor. The necessity of this condition is shown
in the following examples.

Example 8. Consider the TRS
f(x,c(a), c(b))

— a
R =< f(c(b),z,c(a)) — a
— a

f(c(a), c(b), z)

over the signature F consisting of all symbols appearing in the rewrite rules and
the TRS R’ = {g(z) — c(x)} over the signature F' consisting of a constant d
in addition to g and c. Both TRSs have external normal forms, lack collapsing
rules, and belong to CBN ... Their union does not belong to CBN ,,, as the term
f(g(a),g(a),g(a)) has no (Suy,G)-needed redex. Note that R and R’ share the
constructor ¢ and hence g(x) — c(x) is constructor-lifting.

A simple modification of the above example shows the necessity of forbidding
constructor-lifting rules in Theorem [ even if we require that the constituent CSs
lack external normal forms.

Ezxample 9. Consider the TRSs

f(z,a,b) — c(g(z))  glz) — g(a)
R =< f(b,xz,a) — c(g(x)) h(z) —» =
f(a,b,x) — c(g(x))

and

R = {i(c&«?g > ;}

over the signatures F and F’ consisting of function symbols that appear in
their respective rewrite rules. The two TRSs are obviously collapsing and share
the constructors a and c. One easily verifies that both TRSs belong to CBN v
and that WN(R.y,G,F) = WN(Ruy,F) and WN(R,y, G, F') = T(F) =
WN(R.,,F'). However, the union of the two TRSs does not belong to CBN

as the term i(f(A, A, A)) with any collapsing redex A has no (Syy, G)-needed
redex.
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