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Abstract. We present a formal framework for characterising plug-in re-
lationships between component specifications. A suitability requirement
is defined based on the effect one component has on the other in terms of
deadlock. Unlike monotonic operations such as parallel composition, not
all such suitability requirements are preserved by refinement. Hence, we
define the notion of a bicompositional relation between co-operating pro-
cesses which is preserved by component-wise refinements. The approach
is described in CSP using the failures semantic model. The aim is to
underpin a mixed-paradigm approach combining different specification
methods, including state-based deductive formalisms such as Action
Systems, and event-based model checking formalisms such as CSP/FDR.
The objective is to play to the strengths and overcome limitations of each
technique, by treating different system aspects with individual tools and
notations which are most appropriate.

1 Introduction

A formal method is a mathematically-based theory which is used to describe
and reason about the behaviour of a computer system. Application of a
formal method encompasses specification of the system in a chosen formal
notation, analysis and verification of key properties and stepwise refinement
to a correct implementation. It is generally recognised that even partial use of
these techniques during development can significantly increase the quality of
software and hardware systems, with respect to correctness and maintainability.
For example, the application of a general-purpose specification notation such as
Z [Spi92] has been found to lead to the earlier discovery of design flaws. Formal
modelling and verification of small security protocols such as that by Lowe and
Roscoe [LR97], Lowe [Low96] and Meadows [Mea94] has revealed previously
unsuspected flaws in the operation of these protocols.

Various formal methods with different theoretical bases have been proposed.
No one formalism is fully suitable for all aspects of industrial-sized applications,
as we have illustrated by directly comparing strengths and weaknesses of
state-based, deductive reasoning approaches and event-based, model checking
approaches applied to a distributed mail system [RSG99] and general routing
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protocols [RSR99]. With a deductive reasoning approach, a specification gives
an abstract description of the significant behaviour of the required system. This
behaviour can be verified for the defined implementation by proving the theorems
which constitute the rules of refinement. With model checking, a specification
corresponds to a formula or property which can be exhaustively evaluated on a
specific finite domain representing implementations. Deductive reasoning is more
general, but only partially automatable. Model checking is more limited but fully
automatable. Our previous work [RSG99] shows that in addition to theoretical
limitations of a notation, its form leads towards specification of a certain style
and often with particular implicit assumptions.

Combining the different views can give a fuller picture, but the question
remains as to how this integration can best be achieved. Incorporating all aspects
into one unified approach based around a particular formalism and tool set is
a possibility, but this could result in additional complexity and obscurity for
loosely coupled components. In contrast, our approach for combining different
formalisms is to relate their different system views in a way which allows
meaningful and independent analysis, including stepwise development through
separate refinement. Our long-term aim is to provide a formal underpinning for
this approach, so that certain state-based safety properties can be handled with
state-based techniques and tools, and event-based, liveness properties can be
handled with model checkers. In this paper we identify relationships between
loosely-coupled components which ensure the soundness of component-wise
refinement. The notation used is CSP [Hoa85] which is particularly convenient
for event-based specification and model checking. We indicate how this could be
combined with a state-based notation such as Action Systems [BKS83], using
their common failures divergences semantics.

2 Interoperating Components: An Example

In an environment of distributed systems it is increasingly the case that
any transaction requires the interoperation of a chain of components and
services which combine to produce (hopefully) the desired result. Various
components may be selected as “off the shelf” products to plug-in to our
particular application. Some of these services may be beyond our control, but
we still have expectations of harmonious behaviour. The correct operation of
an application depends not only on the integrity of its own functions, but also
on the components with which it interacts and on the interaction itself. Whilst
formal verification of the entire system is not practical, there may be certain
crucial interactions which warrant the extra care provided by formalism. Some
components, such as security services, may have been verified in their own right
and come with assurance of their behaviour. We are interested characterising
such assurances.

As an example, we consider a specification for a secure database which
answers requests for information from its subscription customers. The database
and many of its operations can be described in a natural way using a state-based
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approach. The system must also take into account the need for appropriate
security controls. A number of useful algorithms (and implementations of these)
already exist for such things, so our top level specification states its basic
requirements and relies on these being satisfied by a suitable plug-in component,
which as a separate concern may range from providing only simple confidentiality
through to providing additional authentication and integrity. The top level
specification simply needs to know that a task will be performed (such as, a
common session key being distributed to both database and client), with no need
to place constraints on the values it requires. We wish to treat the functional
properties of the subscription database and the security protocol as separate
units which can be further developed and verified separately in different ways as
appropriate.

Using Action Systems, which describe both system state and the interaction
of events, we can specify a suitable top-level for the database. Conditions such
as clearance to access data can be succinctly captured and verified in this way.
In contrast, other tasks such as developing and verifying a suitable key exchange
protocol between the parties is not best-suited to such a notation. In fact, suitable
protocols have already been described and verified in other ways, notably using
CSP. We wish to “hand over” from the Action Systems to CSP for these. We
consider below how this hand over can be achieved and why something more
than the usual parallel composition is desirable.

3 Combining Notations in Practice

The trace/failures/divergences semantics models of CSP described in the next
section provide a unifying semantics for Action Systems and CSP. Although a
common semantics provides a theoretical link, it does not immediately solve the
problems of using the notations together. The specifier is concerned with the
effects of combining different parts of a specification and the constraints placed
on each part by others. Translating the specifications to common ground is a
possibility but, in general, prohibitively cumbersome. This has led to on-going
research for specific areas where manageable proof conditions can be generated.
Schneider and Treharne [TS99,TS] have worked with B and CSP defining a CSP
driver to control operations described in B. Butler [But99] defines a general
approach to combining B and CSP which merges CSP into B through translation.
Both approaches provide useful insights into how the two notations can be
brought together, yet neither are sufficient for our purpose. Like Schneider and
Treharne, we wish to maintain the separation of notations. Like Butler, we wish
to allow each to have a more general use. Our aim is to provide a framework in
which “suitable” components can be “plugged” together and refined separately.
In this paper, we explore a notion of “suitable plug-in”.

The parallel composition operator can be used to combine CSP processes
and/or Action Systems. So if P is an Action Systems specification for some
aspect or component of a system, and Q is a CSP specification for another aspect
or component, then P ‖ Q represents their parallel combination with behaviour
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well-defined (although possibly not easily understood), and any safety (that is,
trace) property of either P or Q with respect to their common actions/events is
preserved by P ‖ Q . In contrast to safety properties, liveness properties are not
preserved by the ‖ operator, as illustrated by Example 2 below. If Q is a plug-in
for P then at the very least we require that it should respond in a way suitable
for P and not cause P to deadlock when they are run in parallel.

We formulate our suitability requirements using CSP semantics shared by
both Action Systems and CSP. The issue of specialising to the different notations
is returned to in later sections. We first give a brief introduction to CSP. An
overview of CSP syntax and the failures model is given in the Appendix.

4 CSP and FDR

CSP [Hoa85] models a system as a process which interacts with its environment
by means of atomic events. Communication is synchronous: an event takes place
precisely when both process and environment agree on its occurrence. This rather
than assignments to shared variables is the fundamental means of interaction
between agents. CSP comprises a process-algebraic programming language.
A related series of semantic models capture different aspects of observable
behaviours of processes: traces, failures and divergences. The simplest semantic
model is the traces model which characterises a process as an alphabet α(P) of
events, together with the set of all finite traces, traces(P), it can perform. The
traces model is sufficient for reasoning about safety properties. In the failures
model [BHR84] a process P is modelled as a set of failures. A failure is a pair
(s,X ) for s a finite trace of events of α(P), and X a subset of events of α(P);
(s,X ) ∈ failures(P) means that P may engage in the sequence s and then
refuse all of the events in X . The set X is called a refusal. The failures model
allows reasoning about certain liveness properties. More complex models such
as failures/divergences[BR85] and timed failures/divergences [RR99] have more
structures allowing finer distinctions to support more powerful reasoning. Traces
and failures are also defined for Action Systems [Mor90,WM90,But92] providing
a semantic link to CSP. For the rest of this paper, we restrict our discussion to
the failures model.

We say that a process P is a refinement of process S (S v P) if any possible
behaviour of P is also a possible behaviour of S :

failures(P) ⊆ failures(S )

which tells us that any trace of P is a trace of S , and P can refuse an event x
after engaging in trace s, only if S can refuse x after engaging in s.

Intuitively, suppose S (for “specification”) is a process for which all
behaviours it permits are in some sense acceptable. If P refines S , then any
behaviour of P is as acceptable as any behaviour of S . S can represent an
idealised model of a system’s behaviour, or an abstract property corresponding
to a correctness constraint, such as deadlock or livelock freedom. A wide range of
correctness conditions can be encoded as refinement checks between processes.
Mechanical refinement checking is provided by Formal Systems’ model checker,
FDR [For].
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5 The Relationship between Components

We view our top-level specification as structured as a set of interoperable
components which act in parallel. In particular, we are interested in components,
such as the key exchange protocol which may be called upon to perform some
task as part of a larger system. Although parallel composition can be used to
combine any two processes, we would not regard every process as a suitable
fulfilment of the requirements of the larger system. It is this additional concept
of suitability that we wish to capture.

Example 1. Suppose process P makes a request (event a) to receive two keys
(events k1 and k2). P does not care in which order the keys are obtained.

P = (a → k1 → k2 → P)2(a → k2 → k1 → P)

Process Q is a component which is chosen to distribute keys, and this happens
to be specified as responding first with k1 and then with k2.

Q = a → k1 → k2 → Q

It is expected that establishing the keys as specified by Q will be achieved by
some more detailed algorithm which, with internal details hidden, refines Q .
We regard Q as a plug-in to P , since their joint behaviour expressed by P ‖ Q
conforms to one of the possibilities allowed by P . Clearly not every process which
returns keys should be regarded as a plug-in to P . For example, consider R:

R = a → k1 → k1 → R

This time R does not interact with Q in a desirable way since it does not have
an acceptable pattern of response, and the result is deadlock at the third step.

In general, Q will be suitable to plug in to P if it is prepared to co-operate
with the pattern set out by P . If P allows an (external) choice then Q may
resolve it. If P ’s actions are nondeterministic, Q must be prepared to deal with
each possibility. This can be characterised in terms of deadlock: Q must not
cause P to deadlock when they are run in parallel.

Further problems are encountered when considering refinement. In general,
we expect that whenever a specification is good enough for some purpose, then
so is any refinement. However, Example 2 shows that if we are dealing with plug-
in relationships between component processes which ensure that their parallel
combination describes desirable properties of our system, it does not follow that
component-wise refinements are suitable according to the same criteria. That is,
for a relation ρ on processes, if PρQ , P v P ′ and Q v Q ′, then by monotonicity
we know that P ′ ‖ Q ′ v P ‖ Q – but is not necessarily true that P ′ρQ ′.

Example 2. Suppose P and Q are both defined as follows:

P = (x → P) u STOP
Q = (x → Q) u STOP
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We observe that P and Q satisfy the relationship:

P v P ‖ Q

(this relationship might appear desirable since it ensures that Q cannot cause
any deadlock not also allowed by P). P and Q satisfy this property, but not
refinements:

P ′ = x → P ′ Q ′ = STOP

Clearly P v P ′ and Q v Q ′ and yet P ′ 6v P ′ ‖ Q ′.

Example 2 shows that potential candidates for describing suitable plug-in rela-
tionships between components may not be preserved by refinement. This would
be disastrous from the point of view of building systems with independently
developed components. In this paper we concentrate on patterns of interaction
between two processes P and Q which, as in Example 1 above, behave like a
simple remote procedure call from P to Q . We regard Q as a plug-in to P
if Q responds in a way which does not increase the opportunities for deadlock.
Furthermore, we regard Q to be a suitable plug-in to P if for any component-wise
refinements Q ′ and P ′, Q ′ is a plugin to P ′. In the rest of the paper, we
investigate how to formalise these notions. We first define a general property of
relations which is useful for capturing the notion that refinements of processes
inherit their parents’ relationship.

Definition 1 (Bicompositional Relations). Let φ and ρ each be a relation on
X . We say that φ is bicompositional with ρ iff for xφy , xρx ′, yρy ′, then x ′φy ′

Example 3. Let R be the relation < and S the relation which holds between x
and y iff y = x + 1. Then R is bicompositional with S . This example also shows
that the property is not symmetric since S is not bicompositional with R. In
addition, it is neither reflexive nor transitive.

In general, relations are not bicompositional with themselves, for example, the
relation < is not bicompositional with <. Equivalence relations are bicompo-
sitional with themselves, though not in general bicompositional with arbitrary
other relations.

6 Bicompositional Refinements

We can capture the notion that a given relationship φ between cooperating
specifications is inherited by refinements by requiring φ to be bicompositional
with v. We say that φ is bicompositional whenever

PφQ ∧ P v P ′ ∧ Q v Q ′ ⇒ P ′φQ ′

We can make the relationship given in Example 2 bicompositional by requiring
not only that P v P ‖ Q but also that P is deterministic. However this does
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not offer a general solution to this refinement paradox; it defeats the purpose of
refinement since all refinements of P must then in fact be equal to P . We might
instead insist that P and Q always operate together in a deadlock free fashion.
We cannot ensure this by simply requiring that each of P and Q is deadlock
free, as illustrated by P = uT

x → P and Q = uT
x → Q . P and Q are each

deadlock free since each is willing to do some event of T , but P ‖ Q can deadlock
whenever they do not agree on their chosen events. However, if we also require
P ‖ Q to be deadlock free as well, Example 4 below ensures that any refinements
P ′ and Q ′ inherit their parents’ good behaviour and so cannot deadlock when
they themselves are run in parallel.

Example 4. Processes P and Q are mutually deadlock free iff each of P and Q
is deadlock free, and their parallel composition is deadlock free. Mutual deadlock
freedom is bicompositional.

Proof. A process is deadlock free iff it refines the process DF which is always
willing to do something in its alphabet Σ:

DF = u
Σ

a → DF

Let DF v P , DF v Q , and DF v P ‖ Q . Also let P v P ′ and Q v Q ′. Then it
follows by monotonicity that DF v P ′, DF v Q ′, and P ‖ Q v P ′ ‖ Q ′, and
DF v P ′ ‖ Q ′. ut
Mutual deadlock freedom, though bicompositional, is too strong a property to
require of cooperating applications Q and P for which Q responds to a one-time
invocation from P . For example, Q may be a set-up process which P calls once
and only once. Thus, P ‖ Q will properly deadlock on their joint alphabet after
Q finishes its work, whilst P carries on with other events not requiring any
participation from Q . Or Q behaves as a remote procedure call to P , which
may acceptably never invoke any services provided by Q . Indeed, we may wish
to allow P itself to deadlock. Let us imagine that we want P to trigger Q
by handing over some parameters, which Q processes, subsequently returning
results back to P . P is in control, and may invoke Q arbitrarily, including never;
Q is always required to be ready, and is willing to be invoked forever. What
is required is a bicompositional relation between P and Q which implies that
their parallel combination deadlocks on the intersection of their joint alphabet
J only where P chooses. Then, if we refine P and Q with P ′ and Q ′, the parallel
combination of P ′ and Q ′ deadlocks on the intersection of their joint alphabet
only where P ′ chooses.

We begin with some notation, then define a relationship which we regard as
characterising the notion that one process is as live as another. We illustrate that
this relationship is not in general preserved by refinement, and require that such
a relation qualify as a plug-in only if it is preserved by refinement. We finally
define some stronger bicompositional relations which qualify as plug-ins.
Notation. For process P and set J of events, α(P) represents the alphabet of
P , and traces(P) � J represents the set of traces of P stripped of all events not
in J , and failures(P) � J has both traces and refusals of P stripped of any events
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not in J . We regard Q as a plug-in to P iff Q is allowed to refuse to do all of J
after trace S (thus causing deadlock) only if P can as well:

Definition 2. Q is as live as P , for αP ∩ αQ = J means

(s, J ) ∈ failures(P ‖ Q) � J ⇒ (s, J ) ∈ failures(P) � J

This relation constrains Q to deadlock only when P might, and in particular, if
P is deadlock free, then P ‖ Q is deadlock free. But it is not bicompositional. For
the processes defined below, Q is as live as P (which both behave chaotically),
but for the refinements, Q ′ is not as live as P ′.

Example 5. P = (2R
r → P)u STOP

P ′ = 2R
r → P

Q = (uR
r → Q)u STOP

Q ′ = STOP

We characterise a plug-in relationship:

Definition 3. Q plugs-in P , means

1. Q is as live as P, and
2. for all P ′, Q ′, if P v P ′ and Q v Q ′, then Q ′ is as live as P ′.

We now identify bicompositional relations between P and Q which imply that
Q plugs-in to P . The first definition characterises interactions between processes
P and Q whereby whenever P is ready to output a value x on the channel T to
Q , then Q is ready to receive it.

Definition 4. Q listens on T to P , for T ⊆ αP ∩ αQ means

x ∈ T ∧ s a 〈x 〉 ∈ traces(P) � J ∧ s ∈ traces(Q) � J

⇒ (s, {x}) /∈ failures(Q) � J

Theorem 1. The relation listens on T to is bicompositional.

Proof. Assume

(1)P v P ′ and Q v Q ′

(2) x ∈ T ∧ s a 〈x 〉 ∈ traces(P) � J ∧ s ∈ traces(Q) � J

⇒ (s, {x}) /∈ failures(Q) � J

We must show

x ∈ T ∧ s a 〈x 〉 ∈ traces(P ′) � J ∧ s ∈ traces(Q ′) � J

⇒ (s, {x}) /∈ failures(Q ′) � J

Assume the hypothesis of the implication. By (1) s a 〈x 〉 ∈ traces(P) � J and
s ∈ traces(Q) � J . Thus by (2), (s, {x}) /∈ failures(Q) � J , and again by (1)
(s, {x}) /∈ failures(Q ′) � J . ut
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We next define a bicompositional property which characterises a process Q
outputting along channel R whenever P wants. We do not want to overly
constrain Q , that is, Q should be allowed to deadlock on their joint alphabet
whenever P is willing to do so. If we require that P either must be prepared to
accept any answer communicated by Q , or possibly deadlock – but not both
simultaneously – then the relation is bicompositional. The following definition
characterises processes P and Q whereby whenever P is ready to receive input
from Q , Q is ready to send it. It says that whenever P is ready to receive any
value of R – there is an obligation on P to be ready to receive any other value
as well, and there is an obligation on Q be ready to output something.

Definition 5. Q answers on R to P, for R ⊆ αP ∩ αQ = J means

x ∈ R ∧ y ∈ R ∧ s a 〈x 〉 ∈ traces(P) � J ∧ s ∈ traces(Q) � J

⇒ (s,R) /∈ failures(Q) � J ∧ (s, {y}) /∈ failures(P) � J

Theorem 2. The relation answers on R to is bicompositional.

Proof. Assume

(1)P v P ′ and Q v Q ′

(2) x ∈ R ∧ y ∈ R ∧ s a 〈x 〉 ∈ traces(P) � J ∧ s ∈ traces(Q) � J

⇒ (s,R) /∈ failures(Q) � J ∧ (s, {y}) /∈ failures(P) � J

Let

x ∈ R ∧ y ∈ R ∧ s a 〈x 〉 ∈ traces(P ′) � J ∧ s ∈ traces(Q ′) � J

We must show

(s,R) /∈ failures(Q ′) � J ∧ (s, {y}) /∈ failures(P ′) � J

Assume (s,R) ∈ failures(Q ′) � J . Then by (1), (s,R) ∈ failures(Q) � J , and
furthermore, sa〈x 〉 ∈ traces(P) � J and s ∈ traces(Q) � J . Thus by (2), (s,R) /∈
failures(Q) � J , and this contradiction establishes that (s,R) /∈ failures(Q ′) � J .
Assume (s, {y}) ∈ failures(P ′) � J . Again by (1), (s, {y}) ∈ failures(P) � J , but
this contradicts (2) thereby establishing the theorem. ut

The next theorem establishes that for processes P and Q synchronising on
the intersection of their alphabets, if Q listens to P , and Q answers P , then Q
plugs-in to P .

Theorem 3. If Q listens on T to P and Q answers on R for T ∪ R = α(P) ∩
α(Q) = J , then (s, J ) ∈ failures(P ‖ Q) � J only if (s, J ) ∈ failures(P) � J .
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Proof. Assume (s, J ) ∈ failures(P ‖ Q) � J . By failures model definition for the
parallel operator (see Appendix), for some refusal sets X ,Y , X ∪ Y = J , s ∈
traces(P) � J and s ∈ traces(Q) � J and (s,X ) ∈ failures(P) � J , and (s,Y ) ∈
failures(Q) � J . Assume (s, J ) /∈ failures(P) � J . Then X 6= J , and since P
cannot refuse all of J there must exist an x /∈ X such that sa〈x 〉 ∈ traces(P) � J .
There are two cases : x ∈ T or x ∈ R. Case 1. Assume x ∈ T . Since Q listens
on T to P , (s, {x}) /∈ failures(Q) � J . Since (s,Y ) ∈ failures(Q) � J , then by
failures axiom (M3) which says that any subset of a refusal set is itself a refusal
set, it follows that x /∈ Y . This contradicts that X ∪ Y = J , and case is proved.
Case 2. Assume x ∈ R. Since Q answers on R to P , (s,R) /∈ failures(Q) � J .
Furthermore, (s, {y}) /∈ failures(P) � J for any y ∈ R. By (M3), it follows that
X ∩ R = {}. Hence R ⊆ Y and again by (M3), (s,R) ∈ failures(Q) � J . This
contradiction proves the case and the theorem. ut

Summary. We have identified a notion of one process Q being as live as
another process P , whereby we mean that Q introduces no more possibilities
for deadlock than P . The examples show that there is a conflict between
allowing nondeterminism in specifications for P and Q , and preserving this
liveness relationship under refinement. We have identified a notion of a plug-in
relationship between P and Q , which requires that this liveness relationship is
preserved by component-wise refinements.

The bicompositional listening and answering relations between P and Q de-
fined above ensure that Q acts as a suitable plug-in to P . P nondeterministically
triggers Q , which returns results back to P . If Q listens on T to P , and Q answers
on R to P , for α(P) ∩ α(Q) = T ∪ R then Q plugs-in to P , and if P v P ′

and Q v Q ′ then Q ′ plugs-in t P . Thus we can confidently refine P and Q
separately, knowing that refinements cooperate as desired.

7 Using the Definitions

The following small examples illustrate the use of the properties defined above.
Components are defined using CSP.

Example 6. In the first case, P is a process which places a request with either
event a1 or event a2 (chosen nondeterministically). Q is willing to accept either
and provide an acceptable response, hence Q acts as a suitable plug-in to P .

P = (a1 → r− > P) u (a2 → r → P)

Q = (a1 → r → Q) 2 (a2 → r → Q)

Q listens on {a1, a2} to P – because Q has the same traces as P and refuses
neither a1 nor a2 at any point where P might engage in them.
Q answers on {r} to P – because Q is willing to provide a response whenever
P expects one.
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Example 7. We have a different situation if Q is able to deal with one of the
possible requests only, rendering it an unsuitable plug-in to P .

P = (a1 → r → P) u (a2 → r → P) Q = (a1 → r → Q)

Q does not listen on {a1, a2} to P – because 〈a2〉 is a trace of P but
(〈〉, {a2}) is a failure of Q .

Example 8. The listening and answering relations are not inverses:

P = (a → P) u STOP Q = (a → Q)

Q listens on {a} to P – because Q is willing to provide a response whenever
P might expect one.
P does not answer on {a} to Q – because 〈a〉 is a trace of Q but (〈〉, {a})
is a failure of P .

Example 9. Here P requests a key which is subsequently supplied by Q . Q selects
the value for the key which it outputs to P on channel SupplyKey . P is prepared
to input any value on SupplyKey , hence, Q acts as a suitable plug-in to P .

P = RequestKey → SupplyKey?k : KEY → P
Q = RequestKey → u

k :KEY
(SupplyKey !k → Q)

Q listens on {RequestKey} to P – because Q is always ready to accept a key
request whenever P issues one.
Q answers on {k : KEY | SupplyKey .k} to P – because whenever P wants a
key as input, it accepts any key offered, and Q is ready to offer one.

8 Using CSP Plug-Ins with Action Systems

The listening and answering relations we have identified are not completely
general, but do typify a number of client-server behaviours. Their formulations in
CSP failures models makes them meaningful for both Action Systems and CSP,
providing a means of ensuring that two processes can be separately developed,
whilst maintaining integrity of combined behaviour.

What remains is to to use the formal connection between the two notations to
verify the properties for individually specified components. We are investigating
practical approaches for verifying these properties for certain classes of “loosely-
coupled” components illustrated by our secure database example.

For example, suppose a CSP specification for a key exchange protocol
describes a process which is always willing to accept a request as input, and
subsequently distribute a common key to the server and user, in nondeterministic
order. It should be deliberately abstract to allow for a variety of specific key
distribution protocols. This is to be viewed as a “minimum specification” of the
key exchange to be refined and verified as a separate unit. We want to plug
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this in to the Action System and show that the behaviour allowed by the CSP
plug-in is acceptable to the database specification.

One of the advantages of relating components using bicompositional proper-
ties is that different components can be refined independently and the properties
are guaranteed to hold between all refinements. There are various aspects of the
CSP specification which we might want to further develop through refinement.
One is to unfold specific details of a chosen key exchange protocol by describing
an intended implementation, or an off-the-shelf component. This might introduce
a trusted key server together with a prescribed sequence of events required by
the protocol between user clients and the database server. We can verify that the
implementation is valid by checking that, with additional events hidden, it is a
refinement of Q , thus establishing that the chosen protocol behaves as expected.

A significant advantage of treating the security protocol as a suitable CSP
plug-in is that we can naturally specify event-based behaviour and check relevant
properties automatically using the FDR model checker, perhaps with various
induction techniques (for example [CR99]) and data independence techniques
(for example [Ros98,RL96]) for transcending bounded state. A significant
disadvantage of using Action Systems for such aspects is that properly specifying
allowable sequences of actions is very awkward. Another reason for refining
the CSP specification is that we might want to analyse behaviour of a chosen
protocol with respect to security, for example, robustness against deliberate
or inadvertent attacks by intruders. For example, Lowe and Roscoe [LR97]
discover potential security flaws with the TMN key exchange protocol, revealed
by counter examples provided by FDR showing that attackers could perform
operations specifically disallowed by the CSP specification.

9 Conclusion

The work described in this paper is the first step towards a general framework
for describing and verifying the suitability of separate components working
together to form an integrated system. Components are likely to be developed
separately, using different notations and techniques. It is also likely that
previously-developed components would be incorporated, in which case the
component should provide an abstract specification (or specifications) as a
minimum guarantee of its behaviour. In this way, a formal framework can be
provided for larger systems created from a variety of loosely coupled subsystems,
using off-the-shelf components where possible.

We have used relational constraints to characterise our notion of minimum
requirements for a plug-in component: it must operate under the control of
the main component in that the combination deadlocks only at the behest of
the main. The approach also applies to independent processes which are not
in a master-slave relationship but which are co-operating to achieve a one-off
task. There may be other properties which would be useful to incorporate,
perhaps tailored to the purposes of a specific system, but the notion of plug-in
components which operate in accordance with the demands of a requesting
module seems to be a generally useful one. Identifying bicompositionality
between specifications underlines the fact that not all desirable relationships
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between components would be preserved by refinement. Working with a property
which is not bicompositional makes verification extremely difficult: either the
property is proved at an early stage and continued effort is needed to check
that the property is maintained as the system is refined, or the property
is not checked till a later stage when proof is often more difficult and may
reveal errors stemming from an early stage of development. The “listening” and
“answering” properties provide sufficient conditions ensuring a bicompositional
plug-in relationship. Another feature of these properties is that, unlike the
formulation of the ”as live as” relation, there is no need to directly deal with the
parallel system of the two components. However, proving trace requirements is
still not completely straightforward and efficient proof techniques are a topic of
on-going research.

As sufficient conditions, we are aware that the properties given here rule out
some cases which might otherwise be considered acceptable and that variations
on the conditions might be devised to improve the situation. Other variations
may be suitable in different circumstances. Further, there may be other useful
paradigms characterising processes which could place constraints on input, such
as insisting on receiving fresh keys. This is another area which we are continuing
to develop. It is perhaps worth noting that in formulating bicompositional
properties we encounter a difficulty similar to that of noninterference properties
in security. Many different variants are possible and the effects are not always
apparent until pathological examples are examined.

Another guiding principle has been the need to support different notations.
The case study from which this work arose describes a secure database described
using Action Systems which uses plug-in components for security services such
as key exchange. The properties we have described are suitable for dealing
with combinations of both CSP processes and Action Systems since traces and
failures are defined for both. This allows both state-based and event-oriented
specifications to be used for parts of the system to which they are best-suited and
combined in a loosely-coupled manner. The approach is also applicable to other
notations for which a traces/failures interpretation can be given. Again, the fact
that the parallel system does not have to be calculated is an advantage. However,
the identification of sub-traces within each component is still a significant task
which forms part of the ongoing investigations referred to above.

As referred to in Section 3, work combining CSP with B is being undertaken
by Butler [But99] and Treharne and Schneider [TS99,TS]. The main focus
of these approaches has been to use CSP as a convenient way to specify
constraints on the sequencing of, i.e., controlling the state-based actions. We
take a different perspective, wishing to allow combinations of state-based and
event-based components with either being designated as being “in control” as
appropriate. However, the techniques developed for these approaches in which
loop control requirements are “unwound” to give a set of verification conditions
may be useful in establishing more easily provable conditions for our approach.

In common with Butler, Treharne and Schneider, our aim is to contain
inherent problems of scale in applying formal techniques to large applications.
The goal of a great deal of current research is to combine different formal
approaches in order to treat different aspects of a given system. There is a
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danger that combining techniques for a particular system creates prohibitive
complexity. Our aim is to divide and conquer potential complexity by structuring
specifications early in the development process, so that independent analysis
can be effectively performed. Finally we note that our techniques are formulated
using a traces/failures approach, but the concepts which we have identified are
generally applicable to other formal and semi-formal specification techniques.

Acknowledgement. The authors would like to thank Mike Reed for his
valuable discussions about various finer points of CSP semantics.

Appendix. A Taste of CSP

The CSP language is a means of describing components of systems, processes whose
external actions are the communication or refusal of instantaneous atomic events. All
the participants in an event must agree on its performance. We give a selection of CSP
algebraic operators for constructing processes.

STOP the simplest CSP process; it never engages in any action, never terminates.
a → P is the most basic program constructor. It waits to perform the event a and after

this has occurred it behaves as process P . The same notation is used for outputs
( c!v → P ) and inputs (c?x → P(x ) ) of values on named channels.

P uQ is nondeterministic or internal choice. It may behave as P or Q arbitrarily.

P 2Q is external or deterministic choice. It first offers the initial actions of both P
and Q to its environment. Its subsequent behaviour is like P if the initial action
chosen was possible only for P , and similarly for Q . If P and Q have common initial
actions, its subsequent behaviour is nondeterministic (like u). A deterministic

choice between STOP and another process, STOP 2P is identical to P .
P ‖ Q is parallel (concurrent) composition. P and Q evolve separately, but events in

the intersection of their alphabets occur only when P and Q agree (i.e. synchronise)
to perform them. (We use this restricted form of the parallel operator. The more
general form allows processes to selectively synchronise on events.)

P ||| Q represents the interleaved parallel composition. P and Q evolve separately,
and do not synchronise on their events.

Failures Model. The set of failures F satisfies the following axioms [BHR84].

(〈〉, {}) ∈ F (M1)
(s a t) ∈ F ⇒ (s, {}) ∈ F (M2)
(s,X ) ∈ F ∧ Y ⊆ X ⇒ (s,Y ) ∈ F (M3)
(s,X ) ∈ F ∧ (∀ c ∈ Y ⊆ α(P) • ((s a 〈c〉, {}) /∈ F ⇒ (s,X ∪ Y ) ∈ F (M4)

To illustrate how CSP operations are defined with failures semantics, we give the
failures for the parallel operator. We take the semantic view of having individual
alphabets for each process [Hoa85] here to simplify the use of the parallel operator.

F [[P ‖ Q ]] = {(s,X ∪ Y ) | x ∈ s ⇒ x ∈ α(P) ∪ α(Q) ∧
(s � α(P),X ) ∈ F [[P ]] ∧
(s � α(Q),X ) ∈ F [[Q ]]}
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