
Physical Programming: Beyond Mere Logic
(Invited Talk)

Bran Selic

Rational Software Inc., Canada
bselic@rational.com

Abstract. Plato believed in a “pure” reality, where ideas existed in
their perfection into eternity. What we perceive as reality, he claimed, is
merely a flawed shadow of this ideal world. Many mathematicians find
this view appealing since it is precisely this universe of ideas that is
the subject of their exploration and discovery. The computer, and more
specifically, software, seem perfectly suited to this viewpoint. They al-
low us to create our own reality, one in which we can simply ignore the
underlying physics, forget the tyranny of inertial mass, the drudgery of
dealing with machinery that leaks or parts that do not quite fit. But,
can we? Even in the ideal world with infinite resources, we have discov-
ered that there are limits to computability. However, the situation with
computers and software is much more dire than mere limits on what
can be computed. As computers today play an indispensable part of our
daily lives we find that more and more of the software in them needs to
interact with the physical world. Unfortunately, the current generation
of software technologies and practices are constructed around the old
Platonic ideal. Standard wisdom in designing software encourages us to
ignore the underlying technological platform D after all, it is likely to
change in a few years anyway D and focus exclusively on the program
“logic”. However, when physical distribution enters the picture, we find
that mundane things such as transmission delays or component failures
may have a major impact on that logic. The need to deal with this kind
of raw physical “stuff” out of which the software is constructed has been
relegated to highly specialised areas, such as real-time programming. The
result is that we are singularly unprepared for the coming new generation
of Internet-based software. Even languages that were nominally designed
for this environment, such as Java, are lacking in this regard. For exam-
ple, it has no facility to formally express that a communication between
two remote parts must be performed within a specified time interval. In
this talk, we first justify the need to account for the physical aspects
when doing software design. We then describe a conceptual framework
that allows us to formally specify and reason about such aspects. In par-
ticular, it requires that we significantly expand the concept of type as
currently defined in software theory.

References

1. B. Selic, “A generic framework for modeling resources with UML”, IEEE Computer,
June 2000.

H. Hussmann (Ed.): FASE 2001, LNCS 2029, p. 1, 2001.
c© Springer-Verlag Berlin Heidelberg 2001


