
Proof-Directed De-compilation of
Low-Level Code?

Shin-ya Katsumata1?? and Atsushi Ohori2? ? ?

1 Laboratory for Foundations of Computer Science, University of Edinburgh,
Edinburgh EH9 3JZ, UK; sxk@dcs.ed.ac.uk

2 School of Information Science,
Japan Advanced Institute of Science and Technology,

Tatsunokuchi, Ishikawa 923-1292, JAPAN; ohori@jaist.ac.jp

Abstract. We present a proof theoretical method for de-compiling low-
level code to the typed lambda calculus. We first define a proof system
for a low-level code language based on the idea of Curry-Howard iso-
morphism. This allows us to regard an executable code as a proof in
intuitionistic propositional logic. As being a proof of intuitionistic logic,
it can be translated to an equivalent proof of natural deduction proof
system. This property yields an algorithm to translate a given code into
a lambda term. Moreover, the resulting lambda term is not a trivial en-
coding of a sequence of primitive instructions, but reflects the behavior
of the given program. This process therefore serves as proof-directed de-
compilation of a low-level code language to a high-level language. We
carry out this development for a subset of Java Virtual Machine in-
structions including most of its features such as jumps, object creation
and method invocation. The proof-directed de-compilation algorithm has
been implemented, which demonstrates the feasibility of our approach.

1 Introduction

The ability to analyze compiled code before its execution is becoming increas-
ingly important due to recently emerging network computing, where pieces of
executable code are dynamically exchanged over the Internet and used under
the user’s own privileges. In such circumstances, it is a legitimate desire to ver-
ify that a foreign code satisfies some desired properties before it is executed.
This problem has recently attracted the attention of programming language re-
searchers. One notable approach toward verification of properties of compiled
code is to construct a formal proof of certain desired properties of a code using a
theorem prover, and to package the code with its proof to form a proof-carrying
code [8]. The user of the code can then check the attached proof against the code
? A part of this work was done while both authors were at RIMS, Kyoto University.

?? Shin-ya Katsumata’s research was supported in part by a scholarship provided by
the Laboratory for Foundations of Computer Science, University of Edinburgh.

? ? ? Atsushi Ohori’s work was partially supported by the Japanese Ministry of Education
Grant-in-Aid for Scientific Research No. 12680345.

D. Sands (Ed.): ESOP 2001, LNCS 2028, pp. 352–366, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Proof-Directed De-compilation of Low-Level Code 353

to ensure that the code satisfies the properties. Another approach is to develop a
static type system for compiled code [1,6,7,13]. By checking the type consistency
of a code, the user can ensure that the code does not cause any run-time type
errors.

Both of these are effective in verifying certain predetermined safety proper-
ties. In many cases, however, the user would like to know the actual behavior
of a foreign code for ensuring that the code correctly realizes its expected func-
tionality. Moreover, analysis of the exact behavior of a code would open up a
new possibility of network computing, where foreign code can be dynamically
analyzed and adapted or optimized to suit the user’s environment.

An executable code is a large sequence of instructions, which can be rather
hard for humans to understand. However this does not mean, at least in principle,
that a code is incomprehensible. A properly compiled code of a correct program
is a consistent syntactic object that can be interpreted by a machine to perform
the function denoted by the original program. This fact suggests that it should
be possible to develop a systematic method to extract the logical structure of a
code and present it in a high-level language.

The key to developing a code analysis system is the Curry-Howard isomor-
phism for machine code presented in [11]. In this paradigm, a code language
corresponds to a variant of the sequent calculus of intuitionistic propositional
logic, called the sequential sequent calculus. Being a proof system of the logic, it
can be translated to and from other languages corresponding to proof systems
of intuitionistic logic. Compilation is one instance, which translates natural de-
duction to the sequential sequent calculus. It is shown that the converse is also
possible, leading to the proof-directed de-compilation of machine code. In the
next section, we outline our approach based on the Curry-Howard isomorphism.

The purpose of the present paper is to show that this general idea can be
used to develop a de-compiler for a low-level code language. Our de-compilation
method is most naturally applicable to lambda calculus. We also believe that
the general principle of the method can be applicable to a wide range of low-
level code languages. To demonstrate the practical feasibility of our method we
carry out the development for the Java bytecode language [4], which is the target
language of the Java programming language [3]. This language provides several
practically useful features such as objects and methods at the bytecode level, for
which there is no obvious Curry-Howard isomorphism. The language with these
features is a good touchstone for the scalability of our approach to practical
extra-logical structures.

We first give, in Section 3, a term language called JAL0 for a subset of
Java Virtual Machine (JVM) assembly language including basic instructions
and develop a de-compilation from JAL0 to a PCF-like language. We show that
this de-compilation algorithm preserves both the typing and the semantics of a
given bytecode program. We then give an extention, called JAL, of JAL0 with
objects and methods in Section 4. Based on these results, we have implemented
a proof-directed de-compiler for the Java bytecode language supporting most of
its features. Figure 1 shows an actual output of our decompiler. The input JVM
bytecode is the result of compiling the following Java program.

354 S. Katsumata and A. Ohori

An input to the de-compiler. Output of the de-compiler.

.method public
static fact(I)I

iconst_1
istore_1
goto L12

L5:
iload_1
iload_0
imul

istore_1
iinc 0 -1

L12:
iload_0
iconst_1
if_icmpgt L5
iload_1
ireturn

.end method

fact(e0) =
L12(e0, 1)

L12(e0, e1) =
if(1 < e0) then

L12(e0 - 1, e1 * e0)
else

return e1

Fig. 1. An example of the proof-directed de-compilation

public static int fact (int n) { int m;
for(m = 1; n > 1; --n)

m = m * n;
return m; }

As seen in this example, our de-compiler correctly recovers the factorial pro-
gram as a tail recursive function without using any knowledge other than the
given bytecode. Section 5 describes our prototype de-compiler. Section 6 com-
pares our approach with related work, and Section 7 concludes the paper.

Limitations of space make it difficult to cover the de-compilation method
fully; the authors intend to present a more detailed description in another paper.

Conventions and Notations: We count the elements of a list from the left starting with
0. We write |l| for the length of the list l, and write l, e for the list obtained from l by
adding the element e at the end of l. We write {d1 : e1, · · · , dn : en} for the function
which maps dj to ej (1 ≤ j ≤ n), and write f{d : e} for the function f ′ such that
dom(f ′) = dom(f) ∪ {d}, f ′(d) = e and f ′(x) = f(x) for any x 6= d.

2 Logical Approach to Code Analysis

In this section, we describe Curry-Howard isomorphism for machine code pre-
sented in [11] and outline the proof-directed de-compilation.

We let ∆ range over lists of formula representing an assumption set of a
logical sequent. The basic observation underlying the logical interpretation of
machine code is to consider each instruction I as a logical inference step of the

form ∆′ � B : τ
∆ � I; B : τ

similar to a left rule in Gentzen’s sequent calculus. Regarding

the assumption set as a description of machine memory (stack), an inference
rule of this form represents a primitive machine instruction that transforms a
memory state ∆ to that of ∆′. The conclusion τ of the judgement ∆ � B : τ is
the type of the value returned by the code B.

A bytecode language corresponds to a proof system consisting of this form
of rules, called a sequential sequent calculus, which has the same deducibility as
intuitionistic propositional logic. One important implication of this result is that

Proof-Directed De-compilation of Low-Level Code 355

∆, τ � return : τ

∆, ∆i � B : τ 0 ≤ i < |∆|
∆ � acc i; B : τ

∆, int � B : τ

∆ � iconst n; B : τ

∆, τ ′×τ ′′ � B : τ

∆, τ ′, τ ′′ � pair; B : τ

∆, τ ′ � B : τ

∆, τ ′×τ ′′ � fst; B : τ

∆, τ ′′ � B : τ

∆, τ ′×τ ′′ � snd; B : τ

∆, (∆0 ⇒ τ ′) � B : τ

∆ � code B0; B : τ
(if ∆0 � B0 : τ ′)

∆, τ ′ � B : τ

∆, (∆0 ⇒ τ ′), ∆0 � call n; B : τ
(|∆0| = n)

Fig. 2. A sequential sequent calculus for a simple bytecode language

a bytecode language can be translated to and from other proof systems of intu-
itionistic propositional logic. Compilation of lambda terms can be regarded as
a proof transformation from natural deduction (i.e. typed lambda calculus) into
this proof system. Moreover, it is shown that the converse is also possible. The
lambda term obtained through the inverse transformation exhibits the logical
structure of the code. This process can therefore be regarded as de-compilation.
Below, we outline this process using a simple bytecode language.

The set of types (ranged over by τ), instructions (ranged over by I) and code
blocks (ranged over by B) of the bytecode language are given below.

τ ::= int | τ × τ | τ, · · · , τ ⇒ τ

B ::= return | I;B

I ::= iconst n | acc i | pair | fst | snd | code B | call n

The type τ1, · · · , τn ⇒ τ is the type of functions which map lists of values of type
τ1, · · · , τn to values of type τ . Instructions iconst n, acc i, and code B push onto
the stack the integer value n, the ith element of the stack, and the pointer to the
code block B, respectively. pair constructs a pair on the stack, and fst and snd
take the first and second element of a pair on the stack. call n pops n elements
and a code pointer off the stack, and calls the code with the n arguments.

We consider a list ∆ of types as a type of a machine stack with the convention
that the right-most formula in a list corresponds to the top of the stack, and
interpret a block of this bytecode language as a proof of the sequential sequent
calculus. The term assignment system for the sequential sequent calculus is given
in Figure 2.

The intended semantics of each instruction should be understood by reading
the corresponding proof rule “backward”. For example, pair changes the stack
state from ∆, τ, τ ′ to ∆, τ×τ ′ indicating the operation that replaces the top-most
2 elements with their product.

We consider the following typed lambda calculus as the target of de-
compilation.

τ ::= int | τ × τ | τ → τ

M ::= n | x | (M, M) | fst(M) | snd(M) | λx.M | M M

356 S. Katsumata and A. Ohori

[[∆, τ � return : τ]] = s|∆|
[[∆ � acc i; B : τ]] = [si/s|∆|][[∆, ∆i � B : τ]]

[[∆ � iconst n; B : τ]] = [n/s|∆|][[∆, int � B : τ]]

[[∆, τ ′, τ ′′
� pair; B : τ]] = [(s|∆|, s|∆|+1)/s|∆|][[∆, τ ′×τ ′′

� B : τ]]

[[∆, τ ′×τ ′′
� fst; B : τ]] = [fst(s|∆|)/s|∆|][[∆, τ ′

� B : τ]]

[[∆, τ ′×τ ′′
� snd; B : τ]] = [snd(s|∆|)/s|∆|][[∆, τ ′′

� B : τ]]

[[∆ � code B0; B : τ]] =

[λs0 · · · s|∆′|−1.[[∆
′
� B′ : τ ′]]/s|∆|][[∆, (∆′ ⇒ τ ′) � B : τ]]

[[∆, (∆′ ⇒ τ ′), ∆′
� call n; B : τ]] =

[(s|∆| s|∆|+1 · · · s|∆|+n)/s|∆|][[∆, τ ′
� B : τ]] (n = |∆′|)

Fig. 3. De-compilation algorithm for a simple bytecode language

Its type system is the standard one. We write [M/x]N for the term obtained
from N by substituting M for x (with necessary bound-variable renaming.)

We write [[∆ � B : τ]] for the lambda term obtained by transforming the
derivation ∆ � B : τ . The general idea behind the transformation is to assign a
variable si to each element ∆i in the assumption list ∆, and to proceed by in-
duction on the derivation of the code. The algorithm translates an initial sequent
to the variable corresponding to the top of the stack. For a compound proof, the
algorithm first obtains the term corresponding to its sub-proof. It then applies
the transformation corresponding to the first instruction to obtain the desired
lambda term. The set of equations in Figure 3 defines the transformation.

3 JAL0 : The JVM Assembly Language without Objects

Compared to the simple bytecode language considered above, Java bytecode has
the following additional features.

1. Restricted stack access and local variable support. JVM does not include an
instruction to access an arbitrary stack element. This restriction is compen-
sated by JVM’s support for directly accessible mutable local variables.

2. Labels and jumps. As in most existing computer architectures, JVM uses
labels and jumps to realize control flow.

3. Classes, objects and methods. JVM has types and instructions to support
object-oriented features.

Since the third feature requires significantly new machinery, we divide our de-
velopment into two stages. In this section, we define a JVM assembly language
without objects, denoted by JAL0, supporting the first two features, and present
its proof system and the proof-directed de-compilation algorithm for JAL0. Then
we state the semantic correctness of the de-compilation algorithm. Later, in Sec-
tion 4, we describe the necessary extensions to objects and methods.

Proof-Directed De-compilation of Low-Level Code 357

3.1 Syntax of JAL0

With the introduction of labels and jumps, an executable program unit is no
longer a sequence of instructions, but a collection of labelled blocks, mutually
referenced through labels. We let l range over a given countably infinite set of
labels, and i range over a given countably infinite set of local variables. We assume
a fixed linear order on the set of local variables, and that any sequence of local
variables mentioned in the following development is ordered by this relation.

The syntax of program units (ranged over by K), blocks (ranged over by B)
and instructions (ranged over by I) of JAL0 are given below.

K ::= {l : B, · · · , l : B}
B ::= ireturn | goto l | I;B

I ::= iconst n | pop | dup | swap | iload i | istore i | iadd | ifzero l

ireturn is for returning an integer value. goto l transfers control to the block
labelled l. iconst n is the same as before. pop, dup, swap are the stack operations
for popping the stack, for duplicating the top element, and for swapping the
top two elements, respectively. iload i pushes the contents of the local variable
i onto the stack. istore i pops the top value off the stack and stores it in the
local variable i. iadd pops two integers off the stack and pushes back the sum
of the two. ifzero l pops the top element off the stack, and transfers control to
the code block labelled l if it is 0. A JAL0 program is a program unit K with a
distinguished entry label l, written K.l.

The following example is a JAL0 program, which takes an integer input
through local variable i0 and returns 1 if it is 0, otherwise returns 0.

K0.l ≡
{

l : iload i0; ifzero l′; iconst 0; goto l′′

l′ : iconst 1; goto l′′

l′′ : ireturn

}
.l

3.2 The Type System for JAL0

Each JAL0 instruction operates on the stack and the local variables, and is

represented as an inference rule of the form
Γ ; ∆ � B : τ

Γ ′; ∆′ � I;B : τ
where Γ is a local

variable context which maps local variables to value types, ∆ is a stack context
which is a finite sequence of value types, and τ is the value type of the block
B. In JAL0 considered in this section, the only possible value type is “int” of
integers. In Section 4, we extend JAL0 to include object types.

Since blocks in general refer to other blocks through labels, the typing of a
block is determined relative to an assumption on the types of blocks assigned to
the labels. We define a block type to be a logical sequent of the form Γ ;∆ � τ
denoting possible blocks B such that Γ ;∆ � B : τ . We let Λ range over label
contexts, which maps labels to block types.

Judgement forms and typing rules of JAL0 are given in Figure 4. The defini-
tion of typing Λ � K of a program unit K is essentially the same as the typing

358 S. Katsumata and A. Ohori

Judgements:

Λ | Γ ; ∆ � B : τ block B has block type Γ ; ∆ � τ under Λ
Λ � K program unit K is well-typed with Λ
Λ | Γ ; ∆ � K.l : τ the entry point l of a program K.l has block type Γ ; ∆ � τ under Λ

Typing rules for blocks:

Λ | Γ ; ∆, int � ireturn : int
Λ(l) = Γ ; ∆ � τ

Λ | Γ ; ∆ � goto l : τ

Λ | Γ ; ∆ � B : τ ′

Λ | Γ ; ∆, τ � pop; B : τ ′

Λ | Γ ; ∆, τ, τ � B : τ ′

Λ | Γ ; ∆, τ � dup; B : τ ′
Λ | Γ ; ∆, τ ′, τ � B : τ ′′

Λ | Γ ; ∆, τ, τ ′ � swap; B : τ ′′
Λ | Γ ; ∆, int � B : τ

Λ | Γ ; ∆ � iconst n; B : τ

Λ | Γ ; ∆, int � B : τ Γ (i) = int
Λ | Γ ; ∆ � iload i; B : τ

Γ{i : int}; ∆ � B : τ

Λ | Γ ; ∆, int � istore i; B : τ

Λ | Γ ; ∆, int � B : τ

Λ | Γ ; ∆, int, int � iadd; B : τ

Λ | Γ ; ∆ � B : τ Λ(l) = Γ ; ∆ � τ

Λ | Γ ; ∆, int � ifzero l; B : τ

Typing of program units:

∀l ∈ dom(Λ).Λ | Γ ; ∆ � K(l) : τ Λ(l) = Γ ; ∆ � τ

Λ � K

Typing of programs:

Λ � K Λ(l) = Γ ; ∆ � τ

Λ | Γ ; ∆ � K.l : τ

Fig. 4. Type system of JAL0

rule for recursive definitions in a functional language. The rules for pop, dup and
swap correspond to logical rules for weakening, contraction and exchange, respec-
tively. The rules for iload i and istore i can also be understood as structural rules
across two assumptions Γ and ∆. Conditional branch and jump instructions are,
as already mentioned, considered as rules referring to other blocks in a program
unit. These rules require that the type of the referenced block has the same local
variable context, stack context and return type as those of the reference point.

As an example, let Λ0 be a label context

Λ0 = {l : {i0 : int}; ∅ � int, l′ : {i0 : int}; ∅ � int, l′′ : {i0 : int}; int � int}.

Then the program unit K0 given in the previous subsection has the typing Λ0 �

K0 and therefore Λ0 | {i0 : int}; ∅ � K0.l : int.

3.3 Operational Semantics of JAL0 and the Type Soundness

The language JAL0 is intended to model a subset of JVM bytecode. As such,
we define its operational semantics by specifying the effect of each instruction
on a machine state. A machine state is described by a triple (E; S; B) of a
local variable environment E which maps local variables to run-time values, a
stack S which is a sequence of run-time values, and a current block B where
the left-most instruction is the next one to be executed. For JAL0, the possible
run-time values (ranged over by v) are integers.

We write (E; S; (I;B)) −→K (E′; S′; B′) if the state (E; S; (I;B)) is
changed to (E′; S′; B′) by the execution of I. Figure 5 gives the set of transition

Proof-Directed De-compilation of Low-Level Code 359

Fig. 5. Operational semantics of JAL0

rules. The reflexive transitive closure of −→K is denoted by ∗−→K . A program
K.l computes a value v from an initial local variable environment E and a stack
S, written (E; S; K.l) ∗−→ v, if (E; S; K(l)) ∗−→K (∅; v; ∅).

We show that the type system of JAL0 is sound with respect to this opera-
tional semantics. We write |= v : τ if v has type τ , and define the typing relations
for local variable environments and stacks as follows.

E |= Γ ⇐⇒ dom(E) = dom(Γ) and ∀i ∈ dom(E). |= E(i) : Γ (i)

S |= ∆ ⇐⇒ |S| = |∆| and ∀0 ≤ i < |S|. |= Si : ∆i

Since JAL0 only contains integers, the typing relation for values is the trivial
relation between integers and int, but can easily be extended to other primitive
types. We can then show the following.

Theorem 1. If E |= Γ, S |= ∆ and Λ |Γ ;∆�K.l : τ then either (E; S; K.l) ∗−→
v such that |= v : τ or the computation of a program K.l under E, S does not
terminate.

3.4 Proof-Directed De-compilation of JAL0

To develop a proof-directed de-compilation algorithm for JAL0, we need to ac-
count for jump instructions and local variables. Our strategy is to translate a
labelled block to a function from its contexts to its return type, and to translate
a jump to a label as a tail call of the function corresponding to the label. Since
basic blocks in a program may have jumps mutually calling the other blocks, we
assume that the target language supports mutual recursion.

As we mentioned earlier, manipulation of local variables can be modelled
by structural rules across a local variable context and a stack context. Their
mutability is reduced to introducing a new binding each time a value is stored
to a variable, and therefore no additional mechanism is required.

Our target language is the following PCF-like language, which we call λrec:

τ ::= int | τ → τ

M ::= n | x | λx.M | M M

| ifzero M then M else M | iadd (M, N) | rec {x = M, · · · , x = M} in x

360 S. Katsumata and A. Ohori

[[Γ ; ∆, int � ireturn : int]] = s|∆|
[[Γ ; ∆, τ � pop; B : τ]] = [[Γ ; ∆ � B : τ]]

[[Γ ; ∆, τ � dup; B : τ]] = [s|∆|/s|∆|+1][[Γ ; ∆, τ, τ � B : τ]]

[[Γ ; ∆, τ, τ ′
� swap; B : τ]] = [s|∆|+1/s|∆|, s|∆|/s|∆|+1][[Γ ; ∆, τ ′, τ � B : τ]]

[[Γ ; ∆ � iconst n; B : τ]] = [n/s|∆|][[Γ ; ∆, int � B : τ]]

[[Γ ; ∆ � iload i; B : τ]] = [i/s|∆|][[Γ ; ∆, int � B : τ]]

[[Γ ; ∆, int � istore i; B : τ]] = [s|∆|/i][[Γ{i : int}; ∆ � B : τ]]

[[Γ ; ∆, int � ifzero l; B : τ]] = ifzero(s|∆|, apply(l, Γ, ∆), [[Γ ; ∆ � B : τ]])

[[Γ ; ∆, int, int � iadd; B : τ]] = [iadd (s|∆|, s|∆|+1)/s|∆|][[Γ ; ∆, int � B : τ]]

[[Γ ; ∆ � goto l : τ]] = apply(l, Γ, ∆)

Fig. 6. De-compilation algorithm for JAL0 blocks

rec {x1 = M1, · · · , xn = Mn} in xj denotes the term Mj with mutually recursive
definitions, where x1, . . . , xn may appear in M1, . . . , Mn. The type system of
λrec is standard. We write Γ � M : τ if M has type τ under context Γ .

To present our de-compilation algorithm, we introduce some definitions and
notations. We assume that the set of variables of λrec is the disjoint union of
the set of labels, the set of local variables, and a given countably infinite set of
stack variables indexed with natural numbers. We write si for the stack variable
of index i. We define the application of all variables in the context Γ ;∆ to
the label l, written apply(l, Γ, ∆), as the term l i0 · · · in s0 · · · s|∆|−1 for which
dom(Γ) = {i0, · · · , in}. The de-compilation algorithm for blocks is given by the
equations in Figure 6.

We turn to de-compilation of JAL0 programs. First we define a closure of a ba-
sic block, written Cls(Γ ;∆�B : τ), as the λrec term λi0 · · · ins0 · · · s|∆|−1.[[Γ ;∆�

B : τ]]. Let Λ = {l1 : Γ1;∆1 �τ1, . . . , ln : Γn;∆n �τn} and K be a JAL0 program
unit such that Λ � K. The transformation of a program Λ |Γj ;∆j � K.lj : τj is
given as follows:

[[Λ |Γj ;∆j � K.lj : τj]] = rec {l1 = Cls(Γ1;∆1 � K(l1) : τ1), · · · ,
ln = Cls(Γn;∆n � K(ln) : τn)} in lj .

The above de-compilation algorithm is a proof transformation and as such
it preserves types. We establish this statement via the following translation of
block types in JAL0 to types in λrec.

Γ ; ∆ � τ = Γ (i0) → · · · → Γ (in) → ∆0 → · · · → ∆|∆|−1 → τ

Theorem 2. If Λ |Γ ;∆ � K.l : τ then the judgement ∅ � [[Λ |Γ ;∆ � K.l : τ]] :
Γ ;∆ � τ is derivable in λrec.

Proof-Directed De-compilation of Low-Level Code 361

We apply the above transformation to the example K0.l:

[[Λ0 | {i0 : int}; ∅ � K0.l : int]] = rec

{
l = λi0.ifzero (i0, l′ i0, l′′ i0 0)
l′ = λi0.l

′′ i0 1
l′′ = λi0s0.s0

}
in l.

3.5 Correctness of the De-compilation

From Theorem 2, one can see that our de-compilation algorithm is a proof trans-
formation preserving typing. We provide further evidence of the correctness of
our de-compilation algorithm by establishing that the algorithm also preserves
semantics of JAL0 programs.

An operational semantics of λrec is defined in the same way as the standard
semantics of call-by-value PCF language. The semantics is determined by the
evaluation relation M ⇓ W which says that the term M evaluates to the value W .
A value W is either a natural number n or a term of the form λx.M (i.e. closure).
Here we only show the evaluation rule for the mutual recursion operator:

[· · · rec {x1 = M1, · · · , xn = Mn} in xi/xi · · ·]Mj ⇓ W

rec {x1 = M1, · · · , xn = Mn} in xj ⇓ W .

The other evaluation rules are standard.
We establish the preservation of semantics via the following interpretation of

virtual machine states as term substitutions in λrec. Let Λ be a label context,
K be a program unit, E be a local variable environment and S be a stack. The
interpretation Λ � K;E;S of a machine state Λ�K;E;S is the term substitution
defined by the following partial function from variables to λrec terms.

Λ � K; E; S(x) =

{
[[Λ | Γ ; ∆ � K.x : τ]] x ∈ dom(K) ∧ Λ(x) = Γ ; ∆ � τ
E(x) x ∈ dom(E)
Sj x ≡ sj ∧ 0 ≤ j < |S|

Then the preservation of semantics is stated as the following theorem.

Theorem 3. If Λ � K, Λ |Γ ;∆ � B : τ , E |= Γ , S |= ∆ and (E; S; B) ∗−→K

(∅; V ; ∅), then Λ � K;E;S([[Λ |Γ ;∆ � B : τ]]) ⇓ V.

4 Bytecode with Objects and Methods

This section develops the framework for proof-directed de-compilation with ob-
ject oriented features. We concentrate on the basic mechanism for creating ob-
jects and invoking their methods, and leave the other object-oriented features
to future research. This development requires us to extend both JAL0 and the
target language λrec. We extend both of them by adding primitives having the
same functionality for object manipulation. In this approach the de-compiler just
sends these primitives from the source to the target language. Another approach
is to extend the target language with rich types so that the de-compiler can give
an encoding of objects. However, we do not adopt this approach, because giving

362 S. Katsumata and A. Ohori

such an encoding is usually associated with compilation process, which is the
inverse of de-compilation.

There still remains one complication in this basic model, which is related to
object initialization. As observed by Freund and Mitchell [1], a straightforward
formulation of a type system for Java bytecode language is unsound due to the
possibility of accessing uninitialized objects. Their solution is to distinguish types
of initialized objects from those of uninitialized ones by indexing the type of an
uninitialized object with the invocation of the corresponding object creation
method. Although their type system is based on the one by Stata and Abadi,
this mechanism has sufficient generality that it can be adopted to our framework.

4.1 JAL: JAL0 with Objects and Classes

We give an extention, called JAL, of JAL0 with object-oriented features. We
assume there is a countably infinite set of class identifiers(ranged over by c)
and a countably infinite set of object indexes(ranged over by u). An object index
indicates the invocation point of the object creation method. The syntax of types
is extended with class identifiers as follows.

κ ::= c | cu τ ::= int | κ

The type cu is for a reference to an uninitialized object created at the point u.
We let f and m range over the set of field names and the set of method names,

respectively. We define a class structure as a pair of the form ({f1 : τ1, · · · , fn :
τn}, {m1 : Γ1; ∅� τ1, · · ·mn : Γn; ∅� τn}). A class structure specifies the types of
fields and methods in a class. We regard class structures as overloaded functions
for field names and method names. We define a class context , ranged over by C,
as a map from class identifiers to class structures.

The set of instructions are extended with the following new instructions.

areturn aload i astore i new c init c invoke c, m getfield c, f putfield c, f

areturn, aload and astore have analogous behavior on object references as the
corresponding ones on integers. new c creates an uninitialized object instance of
class c and pushes its reference onto the stack. init c pops an uninitialized object
reference off the stack and initializes it by replacing each c with cu. Practically,
this instruction corresponds to invoking initialization method of uninitialized
object. We omit its arguments for simplicity. invoke c, m invokes a method m on
an object of class c by popping m arguments and an object off the stack and
transferring control to the method code m of the object. The return value of the
method is pushed onto the stack. getfield c, f and setfield c, f reads and writes field
f of instance objects of class c respectively. invoke, getfield and setfield instructions
fail if they operate on uninitialized object instances.

Judgement forms and typing rules of JAL are given in Figure 7. Typing rules
for instructions not included in the figure are the same as those in JAL0. In the
rule for init, [c/cu]Γ or [c/cu]∆ is obtained from Γ or ∆ by substituting c for each
occurrence of cu respectively. The mechanism for type safe object initialization
realized by the rules for new and init is the adaptation of that of [1].

Proof-Directed De-compilation of Low-Level Code 363

Judgements:

C; Λ | Γ ; ∆ � B : τ block B has block type Γ ; ∆ � τ under C and Λ
C; Λ � K program unit K is well-typed under C and Λ
C; Λ | Γ ; ∆ � K.l : τ the entry point l of the program K.l has block type Γ ; ∆ � τ

under C and Λ

Typing rules for blocks involving objects:

C; Λ | Γ ; ∆, c � areturn : c

C; Λ | Γ ; ∆, κ � B : τ Γ (i) = κ

C; Λ | Γ ; ∆ � aload i; B : τ

C; Λ | Γ{i : κ}; ∆ � B : τ

C; Λ | Γ ; ∆, κ � astore i; B : τ

C; Λ | Γ ; ∆, cu � B : τ c ∈ dom(C) u fresh
C; Λ | Γ ; ∆ � new c; B : τ

C; Λ | [c/cu]Γ ; [c/cu]∆ � B : τ

C; Λ | Γ ; ∆, cu � init c; B : τ

C; Λ | Γ ; ∆, C(c)(f) � B : τ

C; Λ | Γ ; ∆, c � getfield c, f ; B : τ

C; Λ | Γ ; ∆ � B : τ

C; Λ | Γ ; ∆, c, C(c)(f) � putfield c, f ; B : τ

C; Λ | Γ ; ∆, τ � B : τ ′ C(c)(m) = {i0 : c, i1 : τ1, · · · , in : τn}; ∅ � τ

C; Λ | Γ ; ∆, c, τ1, · · · , τn � invoke c, m; B : τ ′

Typing of program units:

∀l ∈ dom(Λ).C; Λ | Γ ; ∆ � K(l) : τ Λ(l) = Γ ; ∆ � τ

C; Λ � K

Typing of programs:

C; Λ � K Λ(l) = Γ ; ∆ � τ

C; Λ | Γ ; ∆ � K.l : τ

Fig. 7. Type system of JAL

4.2 De-compilation Algorithm

The target language of the de-compilation is an extention of λrec with primitives
for object manipulation corresponding to those in JAL. We call it λobj. The set
of types and terms of λobj is the following:

τ ::= c | int | τ → τ

M ::= · · · | let x = new c in M | x.init c; M | let x = x.m(M, · · · , M) in M

| let x = x.f in M | x.f := M ; M

The last five terms are those for object creation, object initialization, method
invocation, object field extraction and object field update. The typing rules for
these additional terms to λrec are shown in Figure 8. The type system for λobj is
defined relative to a fixed class context C. We should note that this type system
does not take into account of uninitialized object types. Because of the higher-
order feature, the Freund and Mitchell’s technique does not easily extend to the
lambda calculus. In this type system, uninitialized object types of the form cu

are identified with c. As a result, we can only show the type preservation up to
this identification.

The de-compilation algorithm is obtained by extending the one for JAL0

presented in the previous section with the equations for object manipulation
instructions. Figure 9 shows the additional equations required for this extension.
The transformation of JAL programs is given in the same way as the one for
JAL0 using the mutual recursion operator.

364 S. Katsumata and A. Ohori

Fig. 8. Additional typing rules for objects

[[Γ ; ∆, τ � areturn : τ]]C = s|∆|
[[Γ ; ∆ � aload i; B : τ]]C = [i/s|∆|][[Γ ; ∆, Γ (i) � B : τ]]C

[[Γ ; ∆, κ � astore i; B : τ]]C = [s|∆|/i][[Γ{i : κ}; ∆ � B : τ]]C
[[Γ ; ∆ � new c; B : τ]]C = let s|∆| = new c in [[Γ ; ∆, cu � B : τ]]C

[[Γ ; ∆, cu � init c; B : τ]]C = s|∆|.init c; [[[c/cu]Γ ; [c/cu]∆ � B : τ]]C
[[Γ ; ∆, c, τ1, · · · , τn � invoke c, m; B : τ ′]]C = let s|∆| = s|∆|.m(s|∆|+1, . . . , s|∆|+n)

in [[Γ ; ∆, τ � B : τ ′]]C
where C(c)(m) = {i0 : c, i1 : τ1, · · · , in : τn}; ∅ � τ

[[Γ ; ∆, c � getfield c, f ; B : τ]]C = let s|∆| = s|∆|.f in [[Γ ; ∆, C(c)(f) � B : τ]]C
[[Γ ; ∆, c, C(c)(f) � setfield c f ; B : τ]]C = s|∆|.f := s|∆|+1; [[Γ ; ∆ � B : τ]]C

Fig. 9. De-compilation algorithm for object primitives in JAL

As in the case for the de-compilation algorithm for JAL0, this algorithm is a
type-preserving proof transformation from a sequential sequent calculus to (an
extension of) natural deduction. The following theorem formally establishes this
property.

Theorem 4. If C;Λ |Γ ;∆ � K.l : τ then the judgement C | ∅ � [[Λ |Γ ;∆ � K.l :
τ]]C : Γ ;∆ � τ is derivable in λobj up to the identification of cu with c.

5 A Prototype Implementation of a De-compiler

We have implemented a prototype de-compiler, JD, based on the transformation
algorithm presented in this paper. Input to JD is an JVM assembly language
source file in the format of Jasmin described in [5], which can be mechanically
constructed from a JVM class file. JD first parses a given source file to obtain an
internal representation of a set of sequences of JVM instructions, each of which
corresponds to one method. JD then converts each sequence of instructions into
a program unit consisting of blocks. In doing this, JD considers a cascaded block
as a collection of blocks connected by implicit jumps, and inserts jumps to make
the block structure explicit. This insertion does not change the semantics of the

Proof-Directed De-compilation of Low-Level Code 365

program. Finally, JD de-compiles each program unit by applying the algorithm
presented in this paper to generate a term in the lambda calculus with objects.

JD supports more instructions and types than those we have considered in
the formal framework, including those for arithmetics, arrays, double-word types.
In addition, JD performs more jobs than we presented in the previous sections.
One is removing intermediate labels and temporary variables. Since most Java
bytecode programs consist of many small blocks, without this processing, the
resulting lambda term would contain many redundant labels and variables. JD
achieves this removal by applying a code manipulation which corresponds to
some β reductions in the target language. In Figure 1, the block corresponding
to label L5 is eliminated by this process.

6 Related Work

The work most relevant to ours is perhaps Stata and Abadi [13] on a type
system for Java bytecode subroutines. This work is further refined in [9,1]. In
these approaches, a type system is used to check the consistency of an array of
instructions. The result of typechecking is success or failure indicating whether
the array of instruction is type consistent or not. In contrast, our approach is
to interpret a given code as a constructive proof representing its computation.
This allows us to de-compile a code to a lambda term.

Our work is also related to the typed assembly language (TAL) of Morrisett
et. al. [6,7]. Their type system is designed to check the type consistency of a
sequence of instruction, and is not intended to serve as a logic. Nonetheless, some
of our proof rules are similar to the corresponding ones in their type system. In
our proof theory, for example, a jump instruction is interpreted as a rule to refer
to an existing proof, which has some similarity to the TAL’s treatment of jumps.

Our de-compilation performs proof transformation from a variant of the se-
quent calculus to natural deduction. Raffalli [12] considers compilation as proof
transformation. The TAL approach emphasizes the benefit of compilation as
type-preserving transformation, which can be regarded as proof transformation.
In the general perspective, our approach shares the same spirit with these ap-
proaches. However, the problem of the converse of compilation has not been
investigated. From a logical perspective, the relationship between Gentzen’s in-
tuitionistic sequent calculus and natural deduction has been extensively studied.
(See [2] for a survey.) Our proof system for bytecode languages is similar to the
Gentzen’s sequent calculus, and therefore some of the cases in de-compilation
algorithm have the similar structure to the corresponding cases in proof trans-
formation from the Gentzen’s sequent calculus to the natural deduction.

There are a number of works for “reverse engineering” machine code. (See for
example [14].) There are also several working de-compilers for Java bytecode lan-
guage. However, little has been known about the foundation of de-compilation.
The major technical contribution of our work is to provide a logical foundation
for systematic development of a de-compilation algorithm, for reasoning about
the de-compilation process, and for establishing its correctness.

366 S. Katsumata and A. Ohori

7 Conclusions

We have developed a framework for proof-directed de-compilation of low-level
code based on the Curry-Howard isomorphism for machine code, and have pre-
sented a proof-directed de-compilation algorithm for a subset of Java bytecode
language including integer primitives, stack operations, local variable manipu-
lation, conditional and unconditional jumps. A prototype de-compiler for Java
bytecode has been implemented, which demonstrates the feasibility of the proof-
directed de-compilation approach presented in this paper. We believe that by
combining the existing strategies and heuristic techniques, the method presented
in this paper will contribute to developing a practical and robust de-compiler.

Acknowledgements. We thank some of anonymous referees for thorough and
careful reading of the paper and for providing many helpful comments, which
have been very useful for improving the presentation of the paper.

References

1. S. Freund and J. Mitchell. A type system for object initialization in the Java byte
code language. In Proc. OOPSLA’98, pages 310–328, 1998.

2. J. Gallier. Constructive logics part I: A tutorial on proof systems and typed λ-
calculi. Theoretical Computer Science 110, pages 249–339, 1993.

3. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

4. T. Lindholm and F. Yellin. The Java virtual machine specification. Addison Wesley,
2nd edition, 1999.

5. J. Meyer and T. Downing. Java Virtual Machine. O’Reilly, 1997.
6. G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed assembly

language. In Proc. Types in Compilation, LNCS 1473, pages 28-52, 1998.
7. G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly

language. In Proc. POPL’98, pages 85-97, 1998.
8. G. Necula. Proof-carrying code. In Proc. POPL’98, pages 106–119, 1998.
9. R. O’Callahan. A simple, comprehensive type system for Java bytecode subrou-

tines. In Proc. POPL’99, pages 70–78, 1999.
10. A. Ohori. A Curry-Howard isomorphism for compilation and program execution.

In Proc. TLCA’99, LNCS 1581, pages 280–294, 1999.
11. A. Ohori. The logical abstract machine: a Curry-Howard isomorphism for machine

code. In Proc. FLOPS’99, LNCS 1722, pages 300-318,1999.
12. C. Raffalli. Machine deduction. In Proc. Types for Proofs and Program, LNCS

806, pages 333–351, 1994.
13. R. Stata and M. Abadi. A type system for Java bytecode subroutines. In Proc.

POPL’98, pages 149–160, 1998.
14. Proceedings of Working Conference on Reverse Engineering. IEEE Computer So-

ciety Press, 1993–.

	Introduction
	Logical Approach to Code Analysis
	JAL0{} : The JVM Assembly Language without Objects
	Syntax of JAL0{}
	The Type System for JAL0
	Operational Semantics of JAL0{} and the Type Soundness
	Proof-Directed De-compilation of JAL0
	Correctness of the De-compilation

	Bytecode with Objects and Methods
	JAL: JAL0{} with Objects and Classes
	De-compilation Algorithm

	A Prototype Implementation of a De-compiler
	Related Work
	Conclusions

