
Probabilistic Polynomial-Time Process Calculus
and Security Protocol Analysis

John C. Mitchell

Stanford University
Stanford, CA 94305

http://www.stanford.edu/˜jcm

Abstract. We propose a formal framework for analyzing security proto-
cols. This framework, which differs from previous logical methods based
on the Dolev-Yao model, is based on a process calculus that captures
probabilistic polynomial time. Protocols are written in a restricted form
of π-calculus and security is expressed as a form or observational equiv-
alence, a standard relation from programming language theory that in-
volves quantifying over possible additional processes that might interact
with the protocol. Using an asymptotic notion of probabilistic equiva-
lence, we may relate observational equivalence to polynomial-time sta-
tistical tests. Several example protocols have been analyzed. We believe
that this framework offers the potential to codify and automate realistic
forms of protocol analysis. In addition, our work raises some foundational
problems for reasoning about probabilistic programs and systems.

1 Summary

This invited lecture for ESOP ′01 will describe an approach to security protocol
analysis based on a probabilistic polynomial-time process calculus and asymp-
totic observational equivalence. The work has been carried out in collaboration
with P. Lincoln, M. Mitchell, A. Scedrov, A. Ramanathan, and V. Teague. Some
of the basic ideas are described in [LMMS98], with a description of a simpli-
fied form of the process calculus appearing in [MMS98] and further example
protocols considered in [LMMS99]. The closest technical precursor is the Abadi
and Gordon spi-calculus [AG99,AG98] which uses observational equivalence and
channel abstraction but does not involve probability or computational complex-
ity bounds; subsequent related work is cited in [AF01], for example. Prior work
on CSP and security protocols, e.g., [Ros95,Sch96], also uses process calculus
and security specifications in the form of equivalence or related approximation
orderings on processes. Slides from this talk will be available on the author’s
web site at http://www.stanford.edu/˜jcm.

2 Protocols

Protocols based on cryptographic primitives are commonly used to protect access
to computer systems and to protect transactions over the Internet. Two well-
known examples are the Kerberos authentication scheme [KNT94,KN93], used

D. Sands (Ed.): ESOP 2001, LNCS 2028, pp. 23–29, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

24 J.C. Mitchell

to manage encrypted passwords, and the Secure Sockets Layer [FKK96], used
by Internet browsers and servers to carry out secure internet transactions. In
recent years, a variety of methods have developed for analyzing and reasoning
about such protocols. These approaches include specialized logics such as BAN
logic [BAN89], special-purpose tools designed for cryptographic protocol analysis
[KMM94], and theorem proving [Pau97a,Pau97b] and model-checking methods
using general purpose tools [Low96,Mea96,MMS97,Ros95,Sch96].

Although there are many differences among existing formal approaches, most
use the same basic model of adversary capabilities. This model, apparently de-
rived from [DY83] and views expressed in [NS78], treats cryptographic opera-
tions as “black-box” primitives. For example, encryption is generally considered
a primitive operation, with plaintext and ciphertext treated as atomic data that
cannot be decomposed into sequences of bits. In most uses of this model, as ex-
plained in [MMS97,Pau97a,Sch96], there are specific rules for how an adversary
can learn new information. For example, if the decryption key is sent over the
network “in the clear”, it can be learned by the adversary. However, it is not
possible for the adversary to learn the plaintext of an encrypted message unless
the entire decryption key has already been learned. Generally, the adversary is
treated as a nondeterministic process that may attempt any possible attack, and
a protocol is considered secure if no possible interleaving of actions results in a
security breach. The two basic assumptions of this model, perfect cryptography
and nondeterministic adversary, provide an idealized setting in which protocol
analysis becomes relatively tractable.

While there have been significant accomplishments using this model, the
assumptions inherent in the standard model also make it possible to “verify”
protocols that are in fact susceptible to attack. For example, the model does
not allow the adversary to learn a decryption key by guessing, since then some
nondeterministic execution would allow a correct guess, and all protocols relying
on encryption would be broken. However, in some real cases, adversaries can
learn some bits of a key by statistical analysis, and can then exhaustively search
the remaining (smaller) portion of the key space. Such an attack is simply not
considered by the model described above, since it requires both knowledge of the
particular encryption function involved and also the use of probabilistic methods.

Our goal is to develop an analysis framework that can be used to explore
interactions between protocols and cryptographic primitives. We are also in-
terested in devising specifications of cryptographic primitives such as oblivi-
ous transfer and selective decommittment. Our framework uses a language for
defining communicating probabilistic polynomial-time processes [MMS98]. We
restrict processes to probabilistic polynomial time since the adversary is rep-
resented by an arbitrary context, written in the process calculus. Limiting the
running time of an adversary allows us to lift other restrictions on the behavior of
an adversary. Specifically, an adversary may send randomly chosen messages, or
perform arbitrary probabilistic polynomial-time computation on messages over-
heard on the network. In addition, we treat messages as sequences of bits and
allow specific encryption functions such as RSA or DES to be written in full as

Probabilistic Polynomial-Time Process Calculus 25

part of a protocol. An important feature of this framework is that we can analyze
probabilistic as well as deterministic encryption functions and protocols. With-
out a probabilistic framework, it would not be possible to analyze an encryption
function such as ElGamal [ElG85], for example, for which a single plaintext may
have more than one ciphertext.

Security properties of a protocol P may be formulated by writing an idealized
protocol Q so that, intuitively, for any adversary M , the interactions between M
and P have the same observable behavior as the interactions between M and Q.
This intuitive description may be formalized by using observational equivalence
(also called observational congruence), a standard notion from the study of pro-
gramming languages. Namely, two processes (such as two protocols) P and Q
are observationally equivalent, written P ' Q, if any program C[P] containing P
has the same observable behavior as the program C[Q] with Q replacing P . The
reason observational equivalence is applicable to security analysis is that it in-
volves quantifying over all possible adversaries, represented by the environments,
that might interact with the protocol participants. In our asymptotic formula-
tion, observational equivalence between probabilistic polynomial-time processes
coincides with the traditional notion of indistinguishability by polynomial-time
statistical tests [Lub96,Yao82], a standard way of characterizing cryptographi-
cally strong pseudo-random number generators.

The remainder of this short document presents the key definitions, as refer-
ence for the author’s invited talk.

3 Process Calculus

The protocol language consists of a set of terms, or sequential expressions that
do not perform any communication, and processes, which can communicate with
one another. The process portion of the language is a restriction of standard π-
calculus [MPW92]. All computation done by a process is expressed using terms.
Since our goal is to model probabilistic polynomial-time adversaries by quanti-
fying over processes definable in our language, it is essential that all functions
definable by terms lie in probabilistic polynomial time. Although we use pseudo-
code to write terms in this paper, we have developed an applied, simply-typed
lambda calculus which exactly captures the probabilistic polynomial-time terms
[MMS98].

The syntax of processes is given by the following grammar:

P ::= 0 (termination)
νcq(|n|) .(P) (private channel)
cq(|n|)(x).P (input)
cq(|n|)〈T 〉 (output)
[T = T].P (match)
P | P (parallel composition)
!q(|n|).P (q(|n|)-fold replication)

Polynomials appear explicitly in the syntax of processes in two places, in
channel names and in replication. In a channel name cq(|n|), the polynomial

26 J.C. Mitchell

q(|n|) associated with the channel c indicates that for some value n of the security
parameter, channel c can carry values of q(|n|) bits or fewer. This restriction on
the size of natural numbers that are communicated from one process to another
is needed to maintain the polynomial-time restriction on process computations.
Replication !q(|n|).P results in q(|n|) copies of process P , where n is again the
security parameter. For simplicity, after fixing n when we evaluate a process
P , we replace all subexpressions of P of the form !q(|n|).R with q(|n|) copies of
R in parallel. We also assume that all channel names and variable names are
α-renamed apart.

The operational semantics of this process calculus is fairly intricate, due
to probabilistic considerations and the desire to keep communication on a pri-
vate channel from biasing the probabilities associated with externally observable
communication on public channels. In brief, executing a process step begins with
outer evaluation of any terms. In a process [T1 = T2].P , for example, we eval-
uate terms T1 and T2 before possibly performing any communication inside P .
Similarly, execution of cq(|n|)〈T 〉 begins with the evaluation of the term T , and
execution of P |Q with the outer-evaluation of both P and Q.

Once a process is outer-evaluated, a set of eligible communication pairs is
selected. The set of schedulable processes S(P) is defined inductively by

S(0) = ∅
S(νcp(|n|) .(Q)) = S(Q)
S(cp(|n|)(x).Q) = {cp(|n|)(x).Q}
S(cp(|n|)〈T 〉) = {cp(|n|)〈T 〉}
S(Q1 | Q2) = S(Q1) ∪ S(Q2)

Since P is outer-evaluated prior to computing S(P), we do not need to consider
the case P ≡ [T1 = T2].Q. Note that every process in S(P) is either waiting for
input or ready to output. The set of communication triples C(P) is

{〈P1, P2, QP1,P2 []〉|Pi ∈ S(P), P1 ≡ cp(|n|)〈a〉, P2 ≡ cp(|n|)(x).R, P ≡
QP1,P2 [P1, P2]}
and the set of eligible processes E(P) is defined by

E(P) =

{
C(P)|private channels if there is a possible private communication
C(P)|public channels otherwise .

The reason for this definition, explained intuitively in [LMMS99], is to keep
communication on a private channel from biasing the probabilities associated
with externally observable communication on public channels. Once a set of
eligible processes have been determined, a computation step of P proceeds by
selecting one communication triple from E(P) at random and performing the
resulting communication step.

Probabilistic Polynomial-Time Process Calculus 27

4 Equivalence

An observation is a test on a specific public channel for a specific natural number.
More precisely, let Obs be the set of all pairs 〈i, cp(|n|)〉 where i is a natural num-
ber and cp(|n|) is a public channel. If, during an evaluation of process expression
P , the scheduler selects the communication triple

〈cp(|n|)〈i〉, cp(|n|)(x).P ′, Qcp(|n|)〈i〉,cp(|n|)(x).P ′〉

we will say that the observable 〈i, cp(|n|)〉 ∈ Obs occurs and write P ; 〈i, cp(|n|)〉.
A process P may contain the security parameter n, as described above. We

will write Pm to signify that the parameter n is assigned the natural number m.
A process family P is the set 〈Pi| i ∈ N〉. Since contexts may contain the process
parameter n, we can define the context family C[] analogously.

If P and Q are two process families, then P and Q are observationally equiv-
alent, written write that P ∼= Q, if

∀q(x).∀C[].∀o ∈ Obs.∃no.∀n > no :∣∣Prob(C[P] ; o) − Prob(C[Q] ; o)
∣∣ ≤ 1

q(n)

where C[] indicates a context family and q(x) an everywhere-positive polyno-
mial.

It is straightforward to check that ∼= is an equivalence relation. Moreover, we
believe that this formal definition reasonably models the ability to distinguish
two processes by feasible intervention and observation. If P = {Pn}n≥0 is a
scheme for generating pseudorandom sequences of bits, and Q = {Qn}n≥0 con-
sists of processes that generate truly random bits (e.g., by calls to our built-in
random-bit primitive), then our definition of observational equivalence corre-
sponds to a standard notion from the study of pseudorandomness and cryptog-
raphy (see, e.g., [Lub96,Yao82]). Specifically, P ' Q iff P and Q pass the same
polynomial-time statistical tests.

5 Applications and Future Directions

An example authentication protocol, proposed by Bellare and Rogaway [BR94],
is discussed in [LMMS99]. However, the proof of security of this protocol that
is presented in [LMMS99] is ad hoc, and relies on specific syntactic similarities
between the protocol and its specification. In the future, we hope to develop more
powerful systematic proof methods for observational congruence. Since there has
been little prior work on complexity-bounded probabilistic process formalisms
and asymptotic equivalence, one of our near-term goals is to better understand
the forms of probabilistic reasoning that would be needed to carry out more
rigorous protocol analysis.

28 J.C. Mitchell

References

[AF01] M. Abadi and C. Fournet. Mobile values, new names, and secure communi-
cation. In 28th ACM Symposium on Principles of Programming Languages,
pages 104–115, 2001.

[AG98] M. Abadi and A. Gordon. A bisimulation method for cryptographic pro-
tocol. In Proc. ESOP’98, Springer Lecture Notes in Computer Science,
1998.

[AG99] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the
spi calculus. Information and Computation, 143:1–70, 1999. Expanded
version available as SRC Research Report 149 (January 1998).

[BAN89] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Pro-
ceedings of the Royal Society, Series A, 426(1871):233–271, 1989. Also
appeared as SRC Research Report 39 and, in a shortened form, in ACM
Transactions on Computer Systems 8, 1 (February 1990), 18-36.

[BR94] M. Bellare and P. Rogaway. Entity authentication and key distribution.
In Advances in Cryptology - CRYPTO ’93, Lecture Notes in Computer
Science, Vol. 773, 1994.

[DY83] D. Dolev and A. Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 2(29), 1983.

[ElG85] T. ElGamal. A public-key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, IT-
31:469–472, 1985.

[FKK96] A. Freier, P. Karlton, and P. Kocher. The SSL protocol version 3.0.
draft-ietf-tls-ssl-version3-00.txt, November 18 1996.

[KMM94] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic
protocol analysis. J. Cryptology, 7(2):79–130, 1994.

[KN93] J.T. Kohl and B.C. Neuman. The Kerberos network authentication service
(version 5). Internet Request For Comment RFC-1510, September 1993.

[KNT94] J.T. Kohl, B.C. Neuman, and T.Y. Ts’o. The evolution of the Kerberos
authentication service, pages 78–94. IEEE Computer Society Press, 1994.

[LMMS98] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic
poly-time framework for protocol analysis. In ACM Conf. Computer and
Communication Security, 1998.

[LMMS99] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. Probabilis-
tic polynomial-time equivalence and security protocols. In FM’99 World
Congress On Formal Methods in the Development of Computing Systems,
1999.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using CSP and FDR. In 2nd International Workshop on Tools and Al-
gorithms for the Construction and Analysis of Systems. Springer-Verlag,
1996.

[Lub96] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton
Computer Science Notes, Princeton University Press, 1996.

[Mea96] C. Meadows. Analyzing the Needham-Schroeder public-key protocol: a
comparison of two approaches. In Proc. European Symposium On Research
In Computer Security. Springer Verlag, 1996.

[MMS97] J.C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of crypto-
graphic protocols using Murϕ. In Proc. IEEE Symp. Security and Privacy,
pages 141–151, 1997.

Probabilistic Polynomial-Time Process Calculus 29

[MMS98] J. Mitchell, M. Mitchell, and A. Scedrov. A linguistic characterization of
bounded oracle computation and probabilistic polynomial time. In IEEE
Symp. Foundations of Computer Science, 1998.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part
i. Information and Computation, 100(1):1–40, 1992.

[NS78] R.M. Needham and M.D. Schroeder. Using encryption for authentication
in large networks of computers. Communications of the ACM, 21(12):993–
999, 1978.

[Pau97a] L.C. Paulson. Mechanized proofs for a recursive authentication protocol.
In 10th IEEE Computer Security Foundations Workshop, pages 84–95,
1997.

[Pau97b] L.C. Paulson. Proving properties of security protocols by induction. In
10th IEEE Computer Security Foundations Workshop, pages 70–83, 1997.

[Ros95] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP
and FDR. In 8th IEEE Computer Security Foundations Workshop, pages
98–107. IEEE Computer Soc Press, 1995.

[Sch96] S. Schneider. Security properties and CSP. In IEEE Symp. Security and
Privacy, 1996.

[Yao82] A. Yao. Theory and applications of trapdoor functions. In IEEE Founda-
tions of Computer Science, pages 80–91, 1982.

	Summary
	Protocols
	Process Calculus
	Equivalence
	Applications and Future Directions

