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Abstract. In POPL’00, Cousot and Cousot mtroduced and studied a
novel general temporal specification language, called /L calculus, in par-
ticular featuring a natural and rich time-symmetric tra%e-based seman-
tics. The classical state-based model checking of the K-calculus is an
abstract interpretation of its trace-based semantics, which, surprisingly,
turns out to be incomplete, even for finite systems. Cousot and Cousot
identified the temporal connectives causing such incompleteness. In this
paper, we first characterize the least, i.e. least informative, refinements of
the state-based model checking abstraction which are complete relatively
to any incomplete temporal connective. On the basis of this analysis, we
show that the least refinement of the state-based model checklng seman-
tics of (a slight and natural monotone restriction of) the u calculus which
is complete w.r.t. the trace-based semantics does exist, and it is essen-
tially the trace-based semantics itself. This result can be read as stating
that any model checking algorithm for the f-calculus abstracting away
from sets of traces will be necessarily incomplete.

1 Introduction

The classical semantics of standard temporal specification languages for model
checking, like CTL, p-calculus and variations thereof, are state-based and time-
asymmetric [3,6,11,12]. State-based means that, given a transition system mod-
elling some reactive system, the semantics of a temporal formula ¢ is given by
the set of states of the transition system satisfying ¢, possibly w.r.t. some en-
vironment whenever ¢ contains free variables. Time-asymmetry refers to the
asymmetric nature of the classical notion of trace in transition systems, since
traces are commonly indexed on natural numbers and therefore have a finite past
and an infinite future. Recently, Cousot and Cousot [6] introduced a novel gen-
eral temporal specification language, called f-calculus, inspired from Kozen’s [9]
p-calculus and featuring a time-symmetric trace-based semantics. In the f-cal-
culus semantics, traces are indexed over integer numbers, i.e. both past and
future are infinite, and a time reversal operator allows a uniform symmetric
treatment of past and future. Traces record the present time, and hence the
present state as well, by an integer number, and temporal formulae are therefore
interpreted as sets of traces. The generality of the f-calculus stems from mixing
linear and branching time modalities, and this allows to recover most standard
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specification languages like CTL, CTL* and Kozen’s p-calculus as suitable frag-
ments.

The most relevant feature in Cousot and Cousot’s [6] work is in the appli-
cation of the abstract interpretation methodology [4,5] to the f-calculus. In
particular, it is shown how to derive standard state-based model checking by
abstract interpretation from the trace-based semantics of the u calculus This is
performed exploiting a so-called universal checking abstraction map aY,: given
a model to check M (i.e., the set of traces generated by some transition system),
oy, abstracts a trace-interpreted f-calculus temporal formula ¢ to the set of
present states s of M such that any (here we are considering the universal case:
dually, in the existential checking abstraction “any” becomes “some”) execution
of M departing from the state s satisfies ¢. Thus, the abstract domain consists
of sets of states, since aX/[ abstracts sets of traces to sets of states. In particular,
aY;(¢) encodes a classical state-based interpretation like {s € States | M, s |= ¢},
and therefore the state-based local model-checking problem of determining if a
given state s in M satisfies ¢ amounts to checking whether s € aﬂ(qﬁ). This
abstraction map from sets of traces to sets Oﬁ; states compositionally induces a
state-based abstract semantics [-]***¢ for the f-calculus, which, by construction
through the abstract interpretation technique, is sound w.r.t. the trace-based se-
mantics: for any formula ¢, o, ([¢]!rec¢) D [¢]*1e.

Completeness for the abstract state-based semantics in general does not hold,
i.e. the containment above may be strict, even for finite systems (see [6, Coun-
terexample (60)]). This means that trace-based and state-based model checking
for the f-calculus, in general, are not equivalent: there exist some formula ¢
and state s such that M,s |=rqce ¢, while M, si=_, . ¢. The consequence of
such incompleteness is that in order to deal with general temporal specifications
of the f-calculus, model checking algorithms should handle sets of traces instead
of sets of traces, and this is evidently infeasible. Moreover, Cousot and Cousot
single out the sources of such incompleteness, that is, the temporal connectives
of the t-calculus which are incomplete for the universal checking abstraction:
these are the predecessor, shifting the present time one step in the past, the dis-
junction, and the reversal, exchanging past and future w.r.t. the present time.

Giacobazzi et al. [8] observed that completeness for an abstract interpreta-
tion, i.e. abstract domains plus abstract operations, only depends on the un-
derlying abstract domains. Hence, this opens up the key question of making an
abstract interpretation complete by minimally extending the underlying abstract
domain. Following the terminology in [8], we call complete shell of an abstract
domain A the most abstract, i.e. containing the least amount of information,
domain, when this exists, which extends A and is complete for some operation
or (fixpoint) semantics. The relevance of such concept should be clear: the com-
plete shell of an abstract domain A characterizes exactly the least amount of
information which must be added to A in order to get completeness, when this
can be done. It is shown in [8] that complete shells relative to sets of concrete
operations, the so-called absolute complete shells, exist under weak and reason-
able hypotheses, and some constructive methods to characterize them are given.
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On the other hand, for complete shells relative to fixpoint operators, it is argued
that no general result of existence can be given, even under very restrictive hy-
potheses.

This paper analyzes the incompleteness of state-based model checking within
the Cousot and Cousot [6] framework described above from the perspective of
minimally making an abstract intepretation complete. We first characterize the
absolute complete shells of the universal checking abstraction ', — namely, the
abstract domain of sets of states approximating the domain of sets of traces —
relatively to each incomplete temporal connective, namely predecessor, disjunc-
tion and reversal. The results are quite illuminating. Completeness w.r.t. the
predecessor leads to an absolute complete shell which refines sets of states to a
domain of sequences indexed over natural numbers (intended to represent the
past time) of sets of states. The least refinement of o, which is complete for
the reversal operator is simply a domain consisting of pairs of sets of states,
where the meaning is as follows: if “>M denotes the reversal of the model M, a
trace-interpreted formula ¢ is abstracted to the pair (a3, (¢), a%,,(4)). Hence,
as expected, completeness for the reversal requires an additional component tak-
ing into account the universal checking abstraction for the reversed model ™ M.
Finally, disjunction is, somehow, the more demanding connective: the abstract
domain of the corresponding absolute complete shell consists of sets of traces be-
longing to the model to check M, and therefore this amounts to an abstraction
which essentially is the identity. Morever, this abstraction is complete for the
predecessor too, and hence more concrete than its absolute complete shell men-
tioned above. Globally, we also characterize the absolute complete shell of aj;
relatively to all' the temporal connectives involved by the fi-calculus. Hence,
this abstract domain must be complete both for disjunction and reversal. Actu-
ally, we show that this global absolute complete shell consists of sets of traces
belonging to M or to its reversal. Thus, this abstract domain is even more close
to the concrete domain of sets of generic traces.

Finally and more importantly, we faced the problem of characterizing the
complete shell of the universal checking abstraction relatively to the whole trace-
based concrete semantics of the f-calculus. In other terms, we are seeking to
characterize the most abstract domain A® extending the universal checking ab-
stract domain of sets of states and inducing a complete abstract semantics, i.e.,
such that for any formula ¢, aas([¢]"*¢) = [¢]*". In this case, since the /-
calculus involves (least and greatest) fixpoints, as recalled above, it should be
remarked that no general result in [8] ensures the existence of such complete
abstract domain. Nevertheless, it turns out that this complete shell does exist,
and it coincides with the absolute complete shell relative to all the temporal
connectives, namely the identity on sets of traces in M or its reversal. This
complete shell therefore induces an abstract semantics which essentially is the
trace-based semantics itself. Thus, the intuitive interpretation of this important

! There is a technical detail here: abstract interpretation requires concrete operations
to be monotone or antitone. Thus, in the paper we consider a standard monotone
restriction of the new general universal state quantification introduced in [6].
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result is as follows: any semantic refinement of the state-based model checking
which aims at being trace-complete for the t-calculus ineluctably leads to the
trace-based semantics itself. Otherwise stated, any model checking algorithm for
the K-calculus abstracting away from sets of traces will be necessarily incom-
plete.

2 Abstract Interpretation and Completeness

Notation. Let us first introduce some basic notation that will be used throughout
the paper. Conditionals are denoted by (b € Bool ? x § y), evaluating to x when
b is true and to y when b is false. Let X and Y be sets. X \Y denotes set-
difference, X C Y denotes strict inclusion, and X — Y denotes the set of total
functions from X to Y. If X plays the role of some “universe” and Y C X then
-Y ¥ X Y. Given a sequence o € Z — X, for any i € Z, 0; € X stands for

o(i). Given f : X — X, the i-th power of f, where i € N, is inductively defined as
follows: fO = A\z.z; fi+1 = \a. f(fi(z)). Ifp(f) and gfp(f) denote, respectively,
the least and greatest fixpoint, when they exist, of an operator f on a poset.
Sometimes, a poset (P, <) will be denoted more compactly by P<. Given a poset
P, the set of functions X — P becomes a poset for the pointwise ordering <,
where f<g iff Vo € X.f(z) < g(x).

Closure Operators. The structure (uco(C), C, U, M, Az. T, A\x.z) denotes the com-
plete lattice of all (upper) closure operators (shortly closures) on a complete
lattice (C,<,V,A, T, 1), where p C ¢ iff Vo € C. p(z) < n(z). Throughout
the paper, for any p € uco(C), we follow a standard notation by denoting the
image p(C) simply by p itself: This does not give rise to ambiguity, since one
can readily distinguish the use of p as function or set according to the context.
Let us recall that (i) each closure p € uco(C') is uniquely determined by the set
of its fixpoints, which coincides with its image, i.e. p = {z € C | p(z) = z},
(ii) p C n iff n C p, and (iii) a subset X C C is the set of fixpoints of a closure
iff X = M(X) &= {AY | Y C X} (M(X) is called the Moore-closure of X; note
that T = A@ € M(X); sometimes, we will write Mo (X) to emphasize the un-
derlying complete lattice). Hence, note that, given any X C C, M(X) is the (set
of fixpoints of the) greatest (w.r.t. ) closure whose set of fixpoints contains X.

Abstract Domains. It is well known that within the standard Cousot and Cousot
framework, abstract domains can be equivalently specified either by Galois con-
nections/insertions (GCs/GlIs) or by closure operators [5]. In the first case, con-
crete and abstract domains C' and A — for simplicity, these are assumed to be
complete lattices — are related by a pair of adjoint functions o : C — A and
v : A — C, compactly denoted by («,C, A,~), and therefore C and A may
consist of objects having different representations. In the second case, instead,
an abstract domain is specified as a closure operator on the concrete domain
C (and this closure could be also given by means of its set of fixpoints). Thus,
the closure operator approach is particularly convenient when reasoning about
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properties of abstract domains independently from the representation of their
objects. Given a concrete domain C, we will identify uco(C) with the so-called
complete lattice L of abstract interpretations of C (cf. [4, Section 7] and [5,
Section 8]). The ordering on uco(C) corresponds precisely to the standard order
used in abstract interpretation to compare abstract domains with regard to their
precision: A; is more precise (or concrete) than As iff A1 C Ay in uco(C'). Thus,
lub’s L and glb’s M on Lo give, respectively, the most precise abstraction and
the most abstract concretization of a family of abstract domains.

Complete Abstract Interpretations. Let us succinctly recall the basic notions
concerning completeness in abstract interpretation. Let f : C' — C be a mono-
tone or antitone concrete semantic function? occurring in some complex semantic
specification, and let f : A — A be a corresponding abstract function, where
A € L¢. The concept of soundness is standard and well known: (A, ff) is a
sound abstract interpretation — or fF is a correct approximation of f relatively
to A — when acao f<affo ac.a. On the other hand, (A, f*) is complete
when equality holds, i.e. ac a0 f = fto ac, 4. Thus, in abstract interpretation,
completeness means that the abstract semantics equals the abstraction of the
concrete semantics, or, otherwise stated, that abstract computations accumulate
no loss of information.

Completeness is a Domain Property. Any abstract domain A € L induces the
so-called canonical best correct approximation f4 : A — A of f : C — C,
defined by f4 % ac, A © fovya.c. This terminology is justified by the fact that

any ff: A — Ais a correct approximation of f iff f4 C f%. Consequently, any
abstract domain always induces an (automatically) sound abstract interpreta-
tion. Of course, this is not in general true for completeness: not every abstract
domain induces a complete abstract interpretation. However, whenever a com-
plete abstract operation exists then the best correct approximation is complete
as well. This therefore means that completeness is a property which depends
on the underlying abstract domain only. As a consequence, whenever abstract
domains are specified by closure operators, an abstract domain p € L¢ is de-
fined to be complete for f if po fop = po f. More in general, this definition
of completeness can be naturally extended to a set F' of semantic functions by
requiring completeness for each f € F. Throughout the paper, we will adopt the
following useful notation: I'(C, f) = {p € L¢ | p is complete for f}. Hence, for
aset F, I'(C,F) =NserI'(C, f).

Making Abstract Interpretations Complete. The fact that completeness is an
abstract domain property opens the key question of making an abstract inter-
pretation complete by minimally extending (or, dually, restricting: we will not
touch this issue here, see [8]) the underlying abstract domain. Following [8], given
a concrete interpretation (C, f) and an abstract domain A € L¢, the absolute

2 For simplicity, we consider unary functions with the same domain and co-domain,
since the extension to the general case is straightforward.
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complete shell® of A for f, when it exists, is the most abstract domain A® € L¢
which extends, viz. is more precise than, A and is complete for f. In other words,
the absolute complete shell of A characterizes the least amount of information
to be added to A in order to get completeness, when this can be done. Let us
succinetly recall the solution to this completeness problem recently given in [8].

Let us fix the following standard notation: if X C C then max(X) = {z €
X |Vy € X.o <y =z =y} Given a set of monotone semantic functions
F C C — C, the abstract domain transformer Rr : Lo — Lo is defined as
follows:

Rp(1) = M(Useryenmax({z € C | f(z) <y})).

Theorem 2.1 ([8, Theorem 5.10, p. 388]). Let F C C — C and p € Lc.
If F is a set of continuous (i.e., preserving lub’s of directed subsets) functions

then the absolute complete shell of p for F exists, and it is given by gfp(An €
uco(C).pM Rr(n)).

This therefore is a constructive result of existence for absolute complete
shells. It turns out that An.p M Rp(n) : uco(C) — uco(C) is itself continuous
[8, Lemma 5.11], and therefore its greatest fixpoint can be constructively ob-
tained as w-limit of the Kleene’s iteration sequence.

3 Temporal Abstract Interpretation

In this section, we recall the key notions and definitions of Cousot and Cousot’s
[6] abstract interpretation-based approach to model checking.

Basic Notions. S is a given, possibly infinite, set of states. Discrete time is
modeled by the whole set of integers and therefore paths of states are time-
symmetric, in particular are infinite also in the past. Thus, P < Z — S is the set
of paths. An execution with an initial state s can then be encoded by repeating
forever in the past the state s. A trace must keep track of the present time, and
hence T % Z x PP is the set of traces. Finally, a (temporal) model is simply a set
of traces: M= o(T) is the set of temporal models. The semantics of a temporal
logic formula ¢ will be a temporal model, that, intuitively, will be the set of all
and only the traces making ¢ true.

Models to check will be generated by transition systems, encoding some re-
active system. The transition relation 7 C S x S is assumed to be total, i.e.,
Vs €S.3s' €S. (s,s') € 7 and Vs’ € S.3s € S. (s,s’) € 7. This is not restrictive,
since any transition relation can be lifted to a total transition relation simply by
adding transitions (s, s) for any state s which is not reachable or which cannot
reach any state. The model generated by the transition system (S, 7) is therefore
defined as M, = {(i,0) € T | i € Z, Yk € Z. (0}, 00 11) € T}

3 [8] also introduces the concept of relative complete shell, and this explains the use
of the adjective absolute.
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3.1 Syntax and Semantics of the ﬁ-Calculus

The reversible ﬁ-calculus has been introduced by Cousot and Cousot [6] inspired
by Kozen’s [9] propositional u-calculus. Actually, the t-calculus is a generaliza-
tion of the p-calculus, with new reversal and abstraction modalities and with
a trace-based semantics. Throughout the paper, X will denote an infinite set of
logical variables.

Definition 3.1 ([6, Definition 13]). Formulae ¢ of the reversible Ji-calculus
are inductively defined as follows:

pu=os|m [ X[ O[T |1V | 9| uX.g|vX.0|Vor: ¢

where the quantifications are as follows: S € p(S), t € p(S xS), and X € X.
Sq denotes the set of M calculus formulae. O

2
In order to give the trace-interpreted semantics of the f-calculus, we prelim-
inarly recall the necessary temporal model transformers.

Definition 3.2 ([6, Section 3]).

— For any S € p(S), oqgp = {(i,0) € T | 0; € S} € M is the S-state model,
i.e., the set of traces whose current state is in .S.
— For any t € (S x S), myy = {(i,0) € T | (64,0i41) € t} € M is the t-
transition model, i.e., the set of traces whose next step is a ¢-transition.
— @& : M — M is the predecessor transformer:
OX)=E{(i—1,0) €T | (i,0) € X} ={(i,0) €T | (i +1,0) € X}.
— 7 : M — M is the reversal transformer:
N(X)E {(—i, Mo ) €T | (i,0) € X}.
— = : M — M is the complement transformer:
X =M X.
— Given s €S, (-);s : M — M is the state projection operator:
X, = {(i,0) € X | 0y = s}.
— V:M x M — M is the universal state closure transformer:
Y(X,Y)= {(i,0) € X | X;5, CY}. o

It is worth to recall that reversal and negation allow to define a number of
interesting dual transformerb For example, the successor transformer is defined
by &= 2 o@ o, and the existential transformer by 3= \(X,Y). =V(X, Y.

The ﬁ—calculus trace-based semantics goes as follows. Of course, the intuition
is that a closed formula ¢ is interpreted as the set of traces which make ¢ true.
Definition 3.3 ([6, Definition 13]). E= X — M is the set of environments
over X. Given £ € E, X € X and N € M, {[X/N] € E is defined o be the
environment acting as £ in X \ {X} and mapping X to N. The Ji-calculus
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semantics [-] : ’Sﬁ — E — M is inductively and partially (because least or
greatest fixpoints could not exist) defined as follows:

[os]¢ = oysy [61 V ¢20€ = [1]€ U [¢2]€

[mi]6 = ey [~6]¢ = =([¢]¢)

[X]¢ = ¢(X) [1X .66 < ifp(AN € ML[¢]¢[X/N])
[®6l¢ = @ ([¢]6) [vX.¢[¢ = gfp(AN € ML[¢][X/N])
[67]¢ = ~([6]€) Vo1 : ¢2]¢ = V([1]€, [¢2]€)

O

Forward/Backward/State-Closed Formulae. Intuitively, a Ji-caleulus formula 0]
is defined to be forward/backward/state-closed when the future/past/present
only matters, that is, for all £ € E, the past/future/paste&future of any trace in
the semantics [¢]¢ can be arbitrarily perturbated without affecting the seman-
tics. This is formalized as follows.

Definition 3.4 ([6, Section 7.2]). If 0,3 € P and i € Z, then

~ Blic = Mk € Z.(k < i? By i ox) is the prolongation of 8 at time ;

~ Bilo = Mk € Z.(k < i? By ¢ o) is the prolongation of § after time .

The following operators of type Ml — M are defined:

Fd= X {(i,lio) € T | (i,0) € X, 3 € P} is the forward closure;

Bd= \X.{(i,8;]0) € T | (i,0) € X, B € P} is the backward closure;

St AX.Fd(X) U Bd(X) = AX.{(i, Bo:)3) € T | {i,0) € X, 3, € P} is the

state closure. O

It is easy to see that these actually are closure operators, i.e., F'd, Bd, St €
uco(Mc). Thus, ¢ € 20 is called a forward/backward/state formula whenever,

for all £ € E, [[¢]]§ Fd/Bd/St([[qS]K)

The state-closed formulae actually are the classical state-formulae of CTL-
like logics [3]. Moreover, path-formulae of CTL-like logics are, in this terminology,
forward closed. Actually, Cousot and Cousot [6] isolate the following fragment
of the fi-calculus called CTL:

pu=os|m| Do d1Voa| 0| 41Uy | Vo

where ¢ Uy = X .o V (1 A BX) and Vo = VHE () : ¢, with [H (7,)]@ =
M, (see [6, Section 5] for the details). It is then showed [6, Lemma (18)] that
any CTL} formula is forward-closed, while formulae generated by

Yu=og |1V | | Ve

actually are state-closed.
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3.2 Trace-Based Model Checking

It is straightforward to formulate the model checking problem within the trace-
based Cousot and Cousot’s framework [6]. A closed temporal specification ¢ €
Sq is identified by its semantics, namely by the temporal model [¢]@ € M. Thus,
the universal model checking of a system M, against a specification ¢ amounts
to check whether M, C [¢]@. It is also useful to distinguish a dual existential
model checking, where the goal is that of checking whether [¢]@ N M, # @.

3.3 State-Based Model Checking Abstractions

The classical state-based model checking can then be understood as an abstract
interpretation, roughly abstracting traces to states.

Universal Checking Abstraction. Given a model (to check) M € M, the uni-
versal checking abstraction map oy, : M — ©(S) abstracts a trace-interpreted
temporal specification ¢ € M to the set of possible (present) states s of M which
universally satisfy ¢, that is, such that if the present state of M is s then ¢ holds.
The intuition is that a},(¢) encodes a standard state-based interpretation like
{seS| M,s ¢}

The universal checking abstraction is therefore encoded by the following def-
inition [6, Definition 45]:

aj (@) = {s €S| My C ¢}

Following the terminology by Miiller-Olm et al. [12]: (i) the state-based global
model checking problem of determining the set of present states in M that satisfy
¢ simply amounts to determining a,(¢), and (ii) the state-based local model
checking problem of checking if a given state s in M satisfies ¢ amounts to
checking whether s € af,(¢).

In this context, the superset relation between states provides the right notion
of approximation: if S C a¥,(¢) then each state in S satisfies ¢, and therefore
if S C T then T can be thought of as more precise than S. Actually, oY, gives
rise to an adjunction between (p(S), D) and (M, D), where the concretization
map 7Y, : ©(S) — M is defined by: 7¥,(S) = {(i,0) € T | (i,0) € M, o; € S}.
When dealing with a model M, generated by a transition system, by the totality
hypothesis on the transition relation 7, we have that for any s € S, MT Is #+ o.
This implies that %v[ is 1-1, and therefore (aM , (M, D), (p(S), D), 'yM )isa GI
[6, (48)]. Thus, this GI induces the following closure operator on models ordered
by the superset inclusion.

Definition 3.5. p}, = 7Y, 0aY, € uco((M D)) is the universal checking closure

relative to a model M € M. Hence, p}, = A\X.{(i,0) € M | M,, C X}. O

Notice that for any X € M, p},(X) € X N M, and that p},(X) gives the
least set of traces whose a,-abstraction is a},(X). The intuition is that p},(X)
throws away from X all those traces (i,0) either which are not in M — these
traces “do not matter”, since ay,(=M) = @ — or which are in M but whose

present state o; does not universally satisfy X.
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Ezistential Checking Abstraction. Dually, the existential checking abstraction
map ai; : M — o(S) abstracts a given trace-interpreted temporal specification
¢ € M to the set of possible (present) states s of the model M which existentially
satisfy ¢, that is, for which there exists at least a trace of M which satisfies ¢ and
whose present state is s. This leads to the following definition [6, Definition 49]:

ar(9) = {s €S| M ;N # 2}

In this case, the subset relation formalizes the notion of approximation: if
a3;(¢) C S then each s € S is such that if M is in state s then ¢ surely does not
hold, and therefore any 7" O S has to be understood as less precise than S. Thus,
it can be roughly said that the existential checking abstraction is ideally useful
for checking so-called safety properties of reactive systems, i.e., “bad things do
not happen during executions”. It turns out that 04%/[ gives rise to an adjunction
between (p(S), C) and (M, C), where the concretization map 73, : p(S) — M is
given by v3,(S) = {(i,0) € T | (i,0) € M = o; € S}. As above, for a model M,
generated by a transition system, by the totality hypothesis, aM is onto, and
hence (aq¢ , (M, C), (9(S), ©), v, ) is a GL [6, (50)]. Here, we get the followmg
closure.

Definition 3.6. p;; = 73, 0 a3, € uco((M, C)) is the existential checking clo-
sure relative to a model M € M. Hence, p3, = AX.{(i,0) € T | (i,0) € M =
My, N X # @} = A\X{(i,0) € M | Mj,, N X # &} U—DM. 0

Here, we have that, for any X € M, X U~M C p3,(X). The intuition is that
p3; adds to X any trace which is not in M — these can be considered meaningless
as far as the existential checking of M is concerned, since a3, (=M) = @ — plus
any trace in M whose present state existentially satisfies X.

Classical State-Based (Abstract) Semantics. Given a total transition system
(S, 7) and its associated model M., the classical state-based semantics of a tem-
poral formula is calculationally designed as the abstract semantics induced by
the model checking abstractions seen above. This is an instance of the very
general abstract interpretation scheme introduced by Cousot and Cousot in [6,
Section 8] in order to be language-, semantics- and abstraction-independent and
to handle monotone and antitone semantic functions simultaneously. Basically,
this process amounts to abstract any model transformer of Definition 3.2 by
the corresponding best correct approximation induced by the checking abstrac-
tion. For example the predecessor transformer @ : M — M is abstracted to
ayw o® O'YM : 0(S) = p(S), where a?V[T odo nyVV[T =pre[r] £ AS € p(S).{s €
S | Vs’ €S. (s 5 s') = s € S} (cf. [6, Section 11. 2]) is the best correct approxi-
mation of & for the GI (o, (M, 2),(p(S), 2), 3¢, )-

The general scenario is as follows. E* = X — p(S) is the set of state envi-

ronments. The checking abstractions af, and a3, are extended pointwise to

environments: &, a3, : E — E°*, where, e.g., @,(£) = A\X € X.a¥,(£(X)). The
process of abstraction then comp081t10nally leads to the following abstract state-

based semantics for the fi-calculus: LY, 12 S‘ﬁ — E* — ©(S). These are in-
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ductively defined as one expects, following the lines of Definition 3.3. Thus, [¢]Y
corresponds to the classical state interpretation of a temporal formula ¢.
Soundness of the abstract state-based semantics is by construction: for any

¢ € Lo and £ € E, oy ([6]¢) 2 [6]705, (&) and o3¢ ([6]¢) < [6]763¢, (€).

3.4 Completeness Issues

In general, completeness does not hold, even when the set of states is finite,
i.e., the containments above may well be strict (see the finite counterexample
given in [6, Counterexample (60)]). This means, for example, that there exist a
closed formula ¢ € Eﬁa and a state s € S such that s € af ([¢]@) \ [¢]Y2, and
therefore trace-based and state-based model checking for ¢ are not equivalent:
M-, s Etrace ¢ (Viz., M7 s C [¢]@), while M+, si~, ... @ (Viz., s &€ [#]Y2). Intu-
itively, incompleteness states that in order to deal with temporal specifications
of the t-calculus, model checking algorithms should handle sets of traces instead
that sets of traces, and this is evidently infeasible.

Cousot and Cousot [6] identified the model transformers causing such in-
completeness and provided some sufficient conditions ensuring completeness. In
view of Section 2, in the following, we will mostly adopt the convenient closure
operator approach to abstract domains.

The first incomplete transformer for the universal checking abstraction is
the predecessor operator @, as shown in [6, Section 11.2]. In this case, the
following sufficient condition holds: for all X € M, if X = Fd(X) then
P (B3 (X)) = p}e. (&(X)). In other words, the predecessor transformer
is complete for any forward-closed formula to check. Of course, dually, the suc-
cessor model transformer & is incomplete as well.

Disjunction, namely set union, is the second incomplete model transformer, as
observed in [6, Section 11.6]. Here, we have that for any X,Y € M, if X = S¢(X)
or Y = St(Y) then p\fm (p\}wr (X) Up}’m (Y)) = p\;v[T (X UY). This means that
disjunction on at least one state-closed formula turns out to be complete.

The above sufﬁ(:lent conditions allow to identify some meamngful complete
fragments of the u calculus. This is the case, for example, of the p +—Calculus
considered in [6, Section 13], which is complete for the universal checking ab-
straction and subsumes the classical YCTL logic.

Finally, the reversal model transformer " is also incomplete, as shown by the
following example, although this is not explicitly mentioned in [6, Section 11].

Example 3.7. We follow the lines of [6, Counterexample (56)]. Let S= {o, e}
and 7 = {(0,0), (e, ), (e,0)}. We have that M, = {(i, \k.o) }sezU{ (i, \k.®) }iczU
{(i,\k.(k <m? ® ;0)}imez Let X = {(i,0) | Vk > i.0}, = e}, and therefore
NX) = {(i,0) | Vk < i.o}, = e}. Since M, |, Z X and MU. = {(i, \k.®) };cz U
{< Me.(k <m? e ;0))}imezicm € X, we have that P, (X) = @, and hence
P, (D (P, (X)) = 2. Instead, it turns out that pj (“(X)) =M. O

Of course, a dual reasoning can be made for the existential checking ab-
straction: here, the incomplete model transformers are predecessor, successor,
conjunction and reversal.
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4 Absolute Complete Shells for Model Transformers

In this section we characterize the absolute complete shells of the checking clo-
sures for the incomplete model transformers identified in Section 3.4.

In the following, we will consider checking closures parameterized w.r.t. a
generic model M € M satisfying the following hypothesis.

Hypothesis 4.1. For any universal and existential state closure, respectively
py; and p3;, the model M € M is such that (M) = M = &(M) and (" (M)) =
(M) = o((M)).

This therefore means that M and its reversal “> M are closed for forward and
backward time progresses. This is obviously satisfied by any model generated by
a transition system.

Remark 4.2. Any model M, € M generated by a transition system (S, T) sat-
1sfies the Hypothesis 4.1.

Predecessor. Let us first characterize the absolute complete shell of the universal
checking closure for the predecessor model transformer. Since the predecessor
operator is additive, this complete shell actually exists in view of Theorem 2.1,
and its set of fixpoints turns out to be as follows.

Theorem 4.3. The absolute complete shell S\jeM of py; for @ exists and it is
characterized by the following set of fizpoints: My, ({©™(X) | n € N, X € p},}).

Thus, each arbitrary union (that is Moore-closure in (M, D)) of arbitrary
powers of the successor transformer applied to fixpoints of the universal check-
ing closure turns out to be a fixpoint of the closure SSBM € uco({M, D)). In other
terms, in order to minimally refine the checking closure pj}, to a complete clo-
sure for the predecessor transformer, one must close the image of p§, under the
application of the inverse of the predecessor transformer, i.e., the successor.

We also provide an interesting characterization of the absolute complete shell
S\?M as a mapping on models. First, we need to introduce the following notion.

Definition 4.4. Given (i,0) € T, M € M and k € N, the projection My ; U> of
M at the k-th past state of (i,0) is defined as follows:
M&ﬁ@ ={{G,8) € M | Bk = 0is}.
O

The k-th past state projection of a model is therefore a generalization of the
(current) state projection, since M,, = M&i e The following result holds.

Theorem 4.5. The absolute complete shell 5@ of p3; for @ can be character-

ized as follows: S3 = AX.{(i,0) € M | HkEN M<k cCX}.
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Thus, for any X € M, S\jeM (X) throws away from X all those traces either
which are not in M or which are in M but any past or current state of the
trace does not universally satisfy X. S@BM (X) is actually a refinement of p},(X),
since p};(X) C S69 (X) CXNM,and it Characterizes exactly the least amount
of information that must be added to pM (X) in order to be complete for the
predecessor. The intuition is that while pM considers present states only (i.e.,
M,,, C X), as expected, completeness for the predecessor forces to take into
account any past state (i.e., Ik € N. M_ C X). Thus, the basic idea is “to
prolong the abstract domam ©(S) in the past” This leads to design the following
abstract domain.

Definition 4.6. Define p(S)* = Z<o — 9(S), where Z< is the set of nonpos-
itive integers. p(S)” is endowed with standard pointwise orderings C and O,
making it a complete lattice.

Given z € Z<p, s € S and M € M, deﬁne ME, = {(i,0) € M | 04y = s}.
The mappings a?M M — o(S)" and 'va : ( )" — M are defined as follows:

ag (X )= Az € Ze. {seS| M} C X}
Y& (X) = {(i,0) € M | 3k € N.oj_p € X_4}. O

Corollary 4.7. (a?M,M;,p(ng@eM) is a GC, and additionally a GI when
M = M, for some transition system (S, ), inducing the closure S?M € uco(M>).

Hence, the above result provides a concrete representation for one possible
and simple abstract domain for the closure SSBM. The abstract domain p(S)> of
the universal checking abstraction a, is refined to a domain of infinite sequences
of sets of states. Such sequences are indexed over Z<g, and this aims at recalling
that for any X' € p(S)" and i € N, ¥'_; € ¢(S) is a set of states at time —i € Z<.
Basically, oz?M can be viewed as the most natural “prolongation” of 04\11\/[ in the

past.

Example 4.8. The example [6, Counterexample (56)] has been used to show
that, in general, a}, is not complete for @. The setting has been already recalled
in Example 3.7. Let X = {(i, ) | i € Z,Vj <i.0; = e}. It is observed in [6,
Counterexample (56)] that @ = p}¢ (B(p} (X)) S pie (B(X)). Instead, it is
not hard to check that for S . completeness does hold:

See (B(X)) =

—Mw.—{@ Ak.o) | i€ Z} U {(i,\k.(k <m? e ;o)) |i,m€EZ, i<m}=

=55, (®(S5, (X))). O

Disjunction. Let us turn to disjunction, i.e. union U, the second incomplete
model transformer. Here again, the absolute complete shell of p}, for (finite)
disjunction exists by Theorem 2.1, because union on M5 is trivially additive.

Theorem 4.9. The absolute complete shell S@JM of pY; for U exists and it is
characterized as follows:
(1) The set of fixpoints of Sy is {X e M | X € M};
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(2) SY, = AX.X N M;

3) SY s the closure induced by the GI (oY, Ms, p(M)>,75. ), where o =
\2Y4 Vi = =2 Wy Vm

AX.XNOM and 7, = AX.X.

Thus, this shows that the absolute complete shell S&M of the universal check-
ing closure for the union of models is essentially the identity mapping. More
precisely, given the model to check M, one simple (actually, in a natural sense,
it could be termed the simplest) abstract domain equivalent to the closure S@JM
is p(M)> endowed with the abstraction map AX.X N M which merely removes
those traces which are not in M. This can be read as stating that completeness
for disjunction requires all the traces in M.

Example 4.10. [6, Counterexample (58)] shows that, in general, ay; is not com-
plete for U. The setting is still that of Example 3.7. Let X, = {(i,0) | i € Z, 3k >
iNj > k.oj = o} and Xo = {(i,0) | i € Z, Vk > i.0 = e}. [6, Counterexam-
ple (58)] observes incompleteness: p (p% (X1) U pye (X2)) C phe. (X1 U X3).
For the absolute complete shell S\L,JM , instead, we have that:

SVUM, (X1) =X1inM, = {{i, ko) | i € Z} U {(i, \k.(k <m? e ;o)) |im€
Z) Z S m}7

S\L,JMT (X2) = Xo M, = {(i, \k.o) | i € Z},

SVM.,. (X1 U XQ) = Séiv[.,. (Xl) @] S@JMT (Xg),

and this easily implies that Sy (Sy, (X1)USy (Xa)) =Sy (X1 UXz). O

Reversal. Let us consider reversal, the last incomplete model transformer. Again,
the absolute complete shell of p\fw for the reversal exists by Theorem 2.1, because
the reversal operator “* on M5 is obviously additive.

Theorem 4.11. The absolute complete shell Sy, of pys for  exists and it is

characterized as follows:
(1) The set of fizpoints of Sy, is My (pi, UL (X) e M | X € p},});

(2) gy, = AXp}(X) U (0}, (7(X)))s

(3) Sﬁl is the closure operator induced bgc/i fhe GC (), , M5, p(S)3,7¢,,), where
ap = AX.(aYW(X),ay\M(X)} and v5, = <X1,X2>.7X4(X1) UnywM(Xg).

The above result tells us that the complete shell S simply refines p(S) to
©(S)?, where a model X is abstracted to the pair (af,(X),a%,,(X)). Hence,
completeness for the reversal requires an additional component taking into ac-
count the universal checking abstraction for the reversed model " (M). Also,
notice that the GC (ay) ,M>, p(S)%,77,,) can be also viewed as the direct (not
reduced) product (see [5]) of (O‘Xla MQ? @(S)Qa 7X4) and (O‘y\Mv M, Q(S)Q, pr\M)

All the Model Transformers. To conclude our analysis, we characterize the ab-
solute complete shell of p}, for the set of all the model transformers of Defini-
tion 3.2. This exists by Theorem 2.1 because all the operations are continuous,
taking care of the following technicality. As far as the universal state closure
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transformer V is concerned, the following restriction is needed. We just con-
sider the unary restrictions AX.V(N, X) : M — M, where N C M U (M), of
the universal state closure transformer, because from the abstract interpreta-
tion viewpoint the binary transformer V : Ml x Ml — M is problematic. In fact,
the binary operation V is neither monotone nor antitone in its first argument,
and therefore it does not give rise to a concrete binary operation suitable to
abstract interpretation. On the other hand, given any N € M|, the unary restric-
tion AX.V(N, X) is monotone. As seen at the end of Section 3.1, this is enough
to recover the standard universal state quantification. In the sequel, we will use
the following compact notation: M* = U™ (M). We have the following result.

Theorem 4.12.  The absolute complete shell Sy,, of py; for {os}seps) U
{Tiheps?) U{®,N U, ~, T FU{AXV(N, X) } nca- exists and it is characterized
as follows:

(1) The set of fixpoints of Sy,, is{X e M | X C M*};

(2) Sy,, = AX.X N M*;

(3) Sv,, is the closure induced by the GI (ay,,, M>, p(M*)>, Vv, ), where ay,, =
AX. X NM* and vy,, = A\X.X;

(4) SVM = S;,JM M S@[

This shell must be complete both for disjunction and reversal, and therefore
Sv,, results to be more concrete than the corresponding shells S’@JM and Sy seen
above. Actually, it turns out that Sy,, is precisely the glb in uco(M>) of these
two shells. Thus, this globally complete abstract domain is even more close to
the concrete domain of sets of generic traces, since the corresponding abstraction
is just “something less” than the identity.

It is also interesting to observe that when we leave out the reversal operator,
as expected, the complete shell becomes S@JM, as stated by the following result.

Theorem 4.13. S@JM is the absolute complete shell of py, for {o5}scp(s) U
{ﬁt}te@(S% U {EB, N, Y, —|} U {)\X.‘v’(]\ﬂ X)}NQM'

Existential Checking Closure. The scenario for the existential checking closure is
dual to the universal case. The following statement collects the most important
characterizations.

Theorem 4.14.

(1) S& < AX{(i,0) €T | (i,0) € M = (Vk € N. M&fﬁa) NX # @)} is the ab-
solute complete shell of p3, for ®;

(2) S5 I AX.X U=M is the absolute complete shell of p3s for N;

(3) 5%, déf. AX.p3,(X) U (pR, (7 X)) is the absolute complete shell of p3; for ©;
(4) S3,, = AX.X U—M* is the absolute complete shell of p3; for {os}sep(s) U
{ﬂt}tep(S2) U {EB, N, U, —, n} U {)\X.V(N, X)}NQM* .
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5 Completeness of Temporal Calculi

As already observed in Section 4, from the abstract interpretation viewpoint,
the universal state closure connective V of the full f-calculus is somehow prob-
lematic, because, according to Cousot and Cousot’s [6] Definition 3.1, the binary
connective V can be applied without any restriction, while its semantic counter-
part, the universal state closure transformer V : M x M — M, is neither mono-
tone nor antitone in its first argument. On the other hand, given any N € M,
the unary restriction AX.V(N, X) : M — M is monotone, and this is enough
in order to have the standard universal state quantification: Vo = V& (7r,) : ¢.
This naturally leads to the following slight “monotone” restriction, which we call
= -calculus, of the K-calculus.

Definition 5.1. Formulae ¢ of the ﬁ'—calculus are inductively defined as fol-
lows:

pimos|m | X| © 6|07 | o1V | 0| pX.o|vX.6| Ve

where S € p(S), t € p(S x S), and X € X. Sﬁ- denotes the set of fi~-calculus
formulae. U

Of course, the trace-semantics for the ﬁ'—calculus is completely identical to
that of the f-calculus given in Definition 3.3, but for the universal connective:
[Vel¢ = V(M [¢]€).

The main rebult of this section is then stated for the ,u -calculus. The scenario
is as follows. As seen in Section 3.3 for the universal and existential checking
abstractions, any abstraction of the domain M of concrete temporal models,
ordered by the superset or subset relatlon induces an abstract semantics for
the ,LL calculus, and therefore for the ,LL -calculus. More in detail, for the uni-
versal case, given a model to check M € M — which is supposed to be gener-
ated by a transition system (S, 7) — any closure operator, i.e. abstract domain,
p € uco(M>), induces the set of abstract environments E? =X — p, and the
corresponding abstract semantics [-]? : £4. — E# — p. Given an environment
£ e R, p€) = A\X.p(£(X)) € E is the cor”responding abstract environment in-
duced by p. Soundness, i.e., V¢ € £ V¢ € E. p([¢]€) 2 [#]°6(€), holds by
construction (cf. [6, Theorem (40)]), while completeness for p means that equal-
ity always holds. We therefore have the following theorem.

Theorem 5.2. Sy,, is the least (%r.t. subset image containment) closure op-
erator on M5 (1) complete for the K™ -calculus and (2) containing the universal
checking closure p};.

It is important to stress that since the ﬁ'—calculus involves (least and great-
est) fixpoints, no general result in [8] ensures the existence of the above complete
abstract domain. Nevertheless, the above result shows that this complete shell
does exist, and it coincides with the absolute complete shell Sy,, relative to all
the temporal connectives seen in Theorem 4.12, namely the identity on sets of
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traces in M or its reversal. Hence, in this case, fixpoints do not affect the out-
come. This complete shell induces an abstract semantics which essentially is the
trace-based semantics itself. Thus, this key result can be interpreted as follows: if
we want to refine the state-based model checking — i.e., the classical domain of
sets of states — in order to be trace-complete for the (-calculus, we ineluctably
get the trace-based semantics itself.

When the reversal connective is not included, analogously to Theorem 4.13
we get the following characterization.

Definition 5.3. Formulae ¢ of the /i -calculus are defined as follows:

pu=os [T | X[ D1V | 0| puXo|vXe|Ve
where S € p(S), t € p(S x S), and X € X. |

Theorem 5.4. SV is the least (w. .t subset image containment) closure op-
erator on M> (1) complete for the 1~ -calculus and (2) containing the universal
checking closure pM.

The Ezxistential Case. The situation is fully dual: we simply state the result.

Theorem 5.5. S3,, and SSM are, respectively, the least (w.r.t. subset image
containment) closures on Mc (1) complete, respectively, for the i~ -calculus and
for the ™ -calculus, and (2) containing the existential checking closure p?w.

6 Conclusion

In the context of a novel and rich temporal specification language called ﬁ—cal—
culus, Cousot and Cousot [6] showed that classical state-based model checking is
an abstract interpretation of the trace-based semantics for the (-calculus, which
is incomplete. In this paper, we have characterized the least, i.e. least 1nf0rmat1ve
refinement of the state-based model checking semantics of the ,u calculus which
is complete w.r.t. the trace-based semantics, and this turns out to be essentially
the trace-based semantics itself.

Cousot and Cousot [6, Section 14] also showed that standard abstract model
checking [2,3,7,10] using a surjective mapping from concrete states to a set of
abstract states can be understood as a further step of abstraction over the state-
based model checking semantics. Analogously to what has been studied in this
paper, this opens the question of minimally refining abstract model checking in
order to get completeness, which is a very desirable property when performing
model checking for abstract models. Some recent results in this direction for
ACTL* are given by Clarke et al. in [1].
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