
A Novel Probabilistic Data Flow Framework?

Eduard Mehofer1 and Bernhard Scholz2

1 Institute for Software Science
University of Vienna, Austria
mehofer@par.univie.ac.at

2 Institute of Computer Languages
Vienna University of Technology, Austria

scholz@complang.tuwien.ac.at

Abstract. Classical data flow analysis determines whether a data flow
fact may hold or does not hold at some program point. Probabilistic
data flow systems compute a range, i.e. a probability, with which a data
flow fact will hold at some program point. In this paper we develop
a novel, practicable framework for probabilistic data flow problems. In
contrast to other approaches, we utilize execution history for calculating
the probabilities of data flow facts. In this way we achieve significantly
better results. Effectiveness and efficiency of our approach are shown by
compiling and running the SPECint95 benchmark suite.

1 Introduction

Classical data flow analysis determines whether a data flow fact may hold or does
not hold at some program point. For generating highly optimized code, however,
it is often necessary to know the probability with which a data flow fact will
hold during program execution (cf. [10,11]). In probabilistic data flow systems
control flow graphs annotated with edge probabilities are employed to compute
the probabilities of data flow facts. Usually, edge probabilities are determined by
means of profile runs based on representative input data sets. These probabilities
denote heavily and rarely executed branches and are used to weight data flow
facts when propagating them through the control flow graph.

Consider the example shown in Fig. 1 to discuss classical and probabilistic
data flow analysis. For the sake of simplicity we have chosen as data flow problem
the reaching definitions problem [8]. The control flow graph G of our running
example consists of two subsequent branching statements inside a loop and four
definitions d1 to d4. Variable X is defined at edges 2 → 4 and 5 → 7 by d1
and d3. Similarly, variable Y is assigned a value at edges 3 → 4 and 6 → 7 by
d2 and d4. Classical reaching definition analysis yields that definitions d1 to d4
may reach nodes 1 to 8. The solution is a conservative approximation valid for
all possible program runs. However, when we consider specific program runs, we
? This research is partially supported by the Austrian Science Fund as part of Aurora

Project “Languages and Compilers for Scientific Computation” under Contract SFB-
011.

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 37–51, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

38 E. Mehofer and B. Scholz

�
��
s

�
��
1

�
��
2

d1 : X:=... d2 : Y:=...
�
��
3

�
��
4

�
��
6

d3 : X:=... d4 : Y:=...
�
��
5

�
��
7

�
��
8

?

��	 @@R

��	@@R

��	 @@R

��	@@R

?
��cc

�� @@R

Fig. 1. Running example.

can compute a numerical value denoting the probability with which a definition
actually may reach a node during execution. Ramalingam [13] presented a data
flow framework which computes the probability of data flow facts, once every
edge in the control flow graph has been annotated with a probability. In order to
get an idea of the precision of his results, we defined in [9] the best solution Sbest
that one can theoretically obtain and compared both. We showed that the differ-
ences between the theoretically best solution and Ramalingam’s solution can be
considerable and improvements are necessary. However, the computation of the
theoretically best solution is too expensive in general and, hence, not feasible in
practice. The modifications of the equation system described in [9] resulted in
some improvements, but there is still potential for further improvements left.

Two reasons are responsible for the deviations between the theoretically best
solution and Ramalingam’s approach. On the one hand, program paths are re-
duced to edge probabilities. On the other hand, it is an execution history inde-
pendent approach, i.e. it is assumed that particular branches are independent of
execution history, which obviously is not true in reality. Since edge probabilities
are indispensable to get an efficient handle on the problem, we focus on execution
history in order to get better results. Consider a program run for our example in
Fig. 1 that performs 10 iterations. At the beginning the left branches [1,2,4,5,7]
are executed and in the last iteration the right branches [1,3,4,6,7,8] are taken.
Without execution history edges 4 → 5 and 4 → 6 are dealt with independently
of the incoming edges 2 → 4 and 3 → 4. However by correlating outgoing edges
with incoming ones, it can be recognized that paths [2,4,6] and [3,4,5] are never
taken. Hence, d3 cannot reach node 5, since d3 is killed on edge 2 → 4. Similarly,

A Novel Probabilistic Data Flow Framework 39

it can be detected that d4 cannot reach node 6. Finally, since the loop is exited
via path [6,7,8], it can be determined that definition d2 cannot reach node 8.

In this paper we present a novel probabilistic data flow analysis framework
(PDFA) which realizes an execution history based approach, i.e. the execution
history is taken into account during the propagation of the probabilities through
the control flow graph. Our approach is unique in utilizing execution history. We
show that in this way significantly better results can be achieved with nearly the
same computational effort as other approaches.

The paper is organized as follows. In Section 2 we describe the basic notions
required to present our approach. In Section 3 we outline the basic ideas behind
Sbest and Ramalingam’s history-independent approach and compare the results
obtained by both approaches for our running example. Our novel approach is
developed in Section 4. In Section 5 we compare the probabilistic results of
the individual approaches for the SPECint95 benchmark suite and present time
measurements. Related work is surveyed in Section 6 and, finally, we draw our
conclusions in Section 7.

2 Preliminaries

Programs are represented by directed flow graphs G = (N, E, s, e) , with node
set N and edge set E ⊆ N × N . Edges m → n ∈ E represent basic blocks
of instructions and model the nondeterministic branching structure of G. Start
node s and end node e are assumed to be free of incoming and outgoing edges,
respectively. An element π of the set of paths Π of length k is a finite sequence
π = [n1, n2, . . . , nk] with k ≥ 1, ni ∈ N for 1 ≤ i ≤ k and for all i ∈ {1, . . . , k−1},
ni → ni+1 ∈ E.

A program run πr is a path, which starts with node s and ends in
node e. The set of all immediate predecessors of a node n is denoted by
pred(n)= { m | (m, n) ∈ E }. Function occurs : (N ∪ Π) × Π → IN0 denotes
the number of occurrences of a node/subpath in a path.

As usual, a monotone data flow analysis problem is a tuple DFA =
(L,∧, F, c, G, M), where L is a bounded semilattice with meet operation ∧,
F ⊆ L → L is a monotone function space associated with L, c ∈ L are the
“data flow facts” associated with start node s, G = (N, E, s, e) is a control flow
graph, and M : E → F is a map from G’s edges to data flow functions.

For bitvector problems the semilattice L is a powerset 2D of finite set D. An
element χ in 2D represents a function from D to {0, 1}. χ(d) is 1, if d is element
of χ, 0 otherwise.

40 E. Mehofer and B. Scholz

3 Abstract Run and Ramalingam’s Approach

Abstract Run. The theoretical best solution Sbest can be determined by an ab-
stract run [9]. The abstract run computes (1) the frequency C(u) with which
node u occurs in program run πr and (2) the frequency C(u, d) with which data
fact d is true in node u for program run πr. While C(u) can be determined very
easily, the computation of C(u, d) is based on monotone data flow problems [8]:
Whenever a node is reached, an associated function which describes the effect of
that node on the data flow information is executed (for the details on computing
C(u) and C(u, d) rf. to [9]).

Definition 1

Sbest(u, d) =

{
C(u,d)
C(u) if C(u) 6= 0,

0 otherwise.
(1)

The definition above combines both frequencies. If frequency C(u) of node u is
zero, then Sbest(u, d) is zero as well.

Table 1. Running example: Result of Abstract Run.

Sbest(u, d) d1 d2 d3 d4 C(u)
s 0 0 0 0 1
1 0 0 0.9 0 10
2 0 0 0.889 0 9
3 0 0 1 0 1
4 0.9 0.1 0.1 0 10
5 1 0 0 0 9
6 0 1 1 0 1
7 0 0 1 0.1 10
8 0 0 1 1 1

Table 1 summarizes the results of our running example with program run πr.
Columns correspond to definitions (d1 to d4), and rows to nodes of the control
flow graph. If Sbest(u, d) is 0, definition d does not reach node u (impossible
event). If Sbest(u, d) is 1, definition d reaches node u each time (certain event).
Any other numerical value in the range between 0 and 1 represents the proba-
bility for definition d reaching node u. E.g. consider Sbest(4, d1) and Sbest(4, d2).
Node 4 occurs in program run πr 10 times. Hence, the denominator of Equation
1 is 10 in both cases. To determine the number of times d1 and d2 reach node 4,
we trace definitions d1, d2 in execution path πr. Since edge 2 → 4 is executed 9
times, d1 reaches node 4 at least 9 times. Definition d1 is killed on edge 5 → 7 and
in the last iteration node 4 is entered through edge 3 → 4. Therefore, definition
d1 does not hold true in node 4 for the last iteration. Hence, the number of times
d1 reaches node 4 is 9 and Sbest(4, d1) = 9/10. Similarly, since edge 3 → 4 is

A Novel Probabilistic Data Flow Framework 41

executed once and d2 does not reach node 4 via edge 2 → 4, Sbest(4, d2) = 1/10.
Note that classical reaching definitions analysis yields that every definition can
reach each node except the start node. Nevertheless, an abstract run is not a
viable approach. The main drawback stems from the tremendous size of program
path πr and the resulting execution time.

d d d L1 2 3 4d 3: d d d L1 2 3 4d

4: d d d L1 2 3 4d

5: d d d L1 2 3 4d 6: d d d L1 2 3 4d

8: d d d L1 2 3 4d

7: d d d L1 2 3 4d

d d d L1 2 3 4d

1: d d d L1 2 3 4d

2:

s:

Fig. 2. Exploded flow graph of running example.

Ramalingam’s Approach. Ramalingam [13] presents a framework for finite bi-
distributive subset problems which estimates how often or with which probability
a fact holds true during program execution. It is based on exploded control flow
graphs introduced by Reps et al. [14] and Markov chains (with minor changes).
Fig. 2 depicts the exploded control flow graph (ECFG) of our running example.
The exploded control flow graph has N × DΛ nodes, where DΛ denotes data
fact set D extended by symbol Λ. Edges of the extended control flow graph
are derived from the representation relation (see [14]). Based on the ECFG, a
linear equation system in IR+ solves the expected frequencies which are used to
compute the probabilities: y(v, d) denotes the expected frequency for fact d to
hold true at node v, and y(v, Λ) gives the expected number of times that node
v is executed. Thus Prob(v, d) = y(v, d)/y(v, Λ) yields the probability for fact d
to hold true in node v. The linear equation system is given as follows.

42 E. Mehofer and B. Scholz

Ramalingam’s Equation System:
y(s, Λ) = 1

for all d in D:
y(s, d) = c(d)

for all v in N \ {s}: for all δ in DΛ:
y(v, δ) =

∑
(u,δ′)∈pred(v,δ)

p(u, v) ∗ y(u, δ′)

where pred(v, δ) denotes the set of predecessors of node (v, δ) in the ECFG
(v ∈ N , δ ∈ DΛ) and p(u, v) denotes the probability that execution will follow
edge u → v once u has been reached.

Table 2 lists the results of that approach for our running example. In com-
parison to Table 1, we can see deviations due to the reduction of the entire
path to simple edge probabilities and the assumption that an incoming edge is
independent from an outgoing edge. E.g. consider the probability of definition
d4 to reach node 6. Although the abstract run yields probability 0, the result
of Ramalingam’s approach is 0.299, since it cannot be recognized that node 6 is
always entered via path [3,4,6].

Table 2. Running example: Result of the history-independent approach.

Prob(u, δ) d1 d2 d3 d4 Λ

s 0 0 0 0 1
1 0.082 0.299 0.817 0.332 10
2 0.082 0.299 0.817 0.332 9
3 0.082 0.299 0.817 0.332 1
4 0.908 0.369 0.082 0.299 10
5 0.908 0.369 0.082 0.299 9
6 0.908 0.369 0.082 0.299 1
7 0.091 0.332 0.908 0.369 10
8 0.091 0.332 0.908 0.369 1

Table 3 lists the absolute deviations as a percentage. Except for start node s
the data facts deviate in a range between ±0.8% and ±91.9%. In the following
section we present a novel approach which takes execution history into account
and yields in this way significantly better results.

4 Two-Edge Approach

The main idea of our two-edge approach is to relate outgoing edges with incoming
ones. Instead of propagating information through nodes the two-edge approach
carries data flow information along edges in order to take execution history

A Novel Probabilistic Data Flow Framework 43

Table 3. Comparison of the History-Independent Approach vs. Abstract Run (0%
means that there is no deviation; maximum deviations are ±100%).

∆% d1 d2 d3 d4

s 0.0 0.0 0.0 0.0
1 8.2 29.9 -8.3 33.2
2 8.2 29.9 -7.2 33.2
3 8.2 29.9 -18.3 33.2
4 0.8 26.9 -1.8 29.9
5 -9.2 36.9 8.2 29.9
6 90.8 -63.1 -91.8 29.9
7 9.1 33.2 -9.2 26.9
8 9.1 33.2 -9.2 -63.1

into account. This is achieved by relating unknowns of the equation system to
ECFG edges. Let ŷ(v → w, d) denote the expected frequency for fact d to hold
true at node w under the condition that edge v → w has been taken, and let
ŷ(v → w, Λ) denote the expected number of times that edge v → w is executed.

Further, p(u, v, w) denotes the probability that execution will follow edge
v → w once it reaches edge u → v. Consequently, the sum of the probabilities
for all outgoing edges of edge u → v must be either one or zero1. Path profiling
techniques necessary to compute occurs([u,v,w], πr) are discussed in detail in
[19].

p(u, v, w) =

{
occurs([u,v,w],πr)
occurs(u→v,πr) if occurs(u → v, πr) 6= 0,

0 otherwise.
(2)

Next we introduce a function In to determine the set of preceding ingoing edges
of an edge. The function is derived from the exploded CFG. Fig. 3 depicts the
relation between an edge v → w with data fact δ and its preceding node u with
data fact δ′′.

i i i

i i i

i i i

.

.

.

B
BBN

�
��

u:

v:

w:

(u, δ′′)

(v, δ′)

(w, δ)

Fig. 3. Graphical visualization of function In

1 If there are no outgoing edges for edge u → v.

44 E. Mehofer and B. Scholz

Hence, In is given as follows,

In(v → w, δ) = {(u, δ′)|(u, δ′′) → (v, δ′) → (w, δ) ∈ ΠECFG} . (3)

where ΠECFG represents the set of paths in the exploded control flow graph.
Since we need a “root” edge, we introduce an artificial edge ε → s with pseudo

node ε. This artificial edge does not have any predecessor edge and the outgoing
edges of node s are successor edges. Note that pred(s) = {ε}. We associate the
initial values c(d) of the data flow analysis problem with the data facts of edge
ε → s. We further extend the probability p(ε, s, v): For node v, p(ε, s, v) is either
one (the program executes node v immediately after node s) or the probability
is zero (another subsequent node of node s was taken.)

Finally, we can describe the linear equation system for a general data flow
problem by the following formula. Once the equation system of edge unknowns
has been solved, the expected frequencies of data facts are determined by sum-
ming up the unknowns of the incoming edges as shown in Equation 7.

Two-Edge Equation System

ŷ(ε → s, Λ) = 1 (4)

for all d in D:
ŷ(ε → s, d) = c(d) (5)

for all v → w in E: for all δ in DΛ:

ŷ(v → w, δ) =
∑

(u,δ′)∈In(v→w,δ)

p(u, v, w) ∗ ŷ(u → v, δ′) (6)

for all w in N : for all δ in DΛ:

ŷ(w, δ) =
∑

u∈pred(v)

ŷ(v → w, δ) (7)

The two-edge approach generates a set of very simple linear equations. Con-
sequently, any of the standard algorithms for solving linear algebraic equations
can be used. Most of these algorithms have a worst case complexity of O(n3)
where n is the number of unknowns in the equation system. In the equation
system of the two-edge approach there exist (|E|+1)×|DΛ| unknowns. Clearly,
Ramalingam’s approach has less unknowns |N | × |DΛ| due to the fact that the
probabilities are related to nodes rather than edges. But the effort can be re-
duced by solving the equation system in two steps. In the first step we only solve
Λ unknowns, which only depend on Λ unknowns itself. In the second step we
solve data fact unknowns, which depend on Λ and data fact unknowns. Due to
the first step Λ unknowns become constants for the second step.

Standard algorithms for solving linear equation system are usually to inef-
ficient because they fail to utilize the extreme sparsity of the CFG. For our
purpose, we can adapt various elimination methods [16,1,17,8] (a good survey

A Novel Probabilistic Data Flow Framework 45

1 1

..

.

9/10

1

s

Equation1

5

7

6

Fig. 4. Subgraph of Fig. 1 for node 1 annotated with edge probabilities.

can be found in [15]). These algorithms are often linear or almost linear in size
of the graph.

Clearly, the two-edge approach can be extended to a three-edge, four-edge, or
k-edge approach accordingly resulting in better probabilistic results. However,
the time required to solve the system of equations will increase as well. As shown
in our experimental section the two-edge approach yields for the SPECint95
benchmark suite very precise results. Hence, we believe that the two-edge ap-
proach is a good compromise between complexity and required precision.

In the following we present the differences between Ramalingam’s and our
two-edge approach for our running example. We illustrate the differences by
discussing equations of data flow facts. In the first case Ramalingam’s approach
overestimates the probabilities and in the second case underestimates them.

Case 1. Consider Fig. 4 and the equation at node 1 for definition d1. Since the
edge probability of 7 → 1 equals 9/10, the equations of Ramalingam’s approach
are given as follows:

y(1, d1) = 9/10 ∗ y(7, d1) + 1 ∗ y(s, d1)
y(7, d1) = y(5, d1) + y(6, d1)

Since y(s, d1) is initialized to zero, y(1, d1) depends solely on y(7, d1). Further,
definition d1 is killed on edge 5 → 7 which results in y(5, d1) to be zero and,
hence, y(7, d1) depends in turn solely on y(6, d1). Thus the value of y(6, d1)
is propagated to y(1, d1), although the path [6,7,1] is never executed. As a
consequence, the value of of y(1, d1) is too high compared with the result of the
abstract run.

Since in the two-edge approach the unknowns are related to edges rather
than nodes, the expected frequency of a data fact at a node is defined by the
sum of unknowns of all incoming edges:

ŷ(1, d1) = ŷ(s → 1, d1) + ŷ(7 → 1, d1)

46 E. Mehofer and B. Scholz

1 1

1/10

Equation6

2 3

4

Fig. 5. Subgraph of Fig. 1 for node 6 annotated with edge probabilities.

Note that ŷ(s → 1, d1) is 0 because there is no reaching definition in start node
s. Only the second part of the sum needs to be considered.

ŷ(7 → 1, d1) = p(5, 7, 1) ∗ ŷ(5 → 7, d1) +
p(6, 7, 1) ∗ ŷ(6 → 7, d1)

The first part of the sum reduces to 0 since definition d1 is killed on edge 5 → 7.
The second part of the sum is 0 as well due to the fact that probability p(6, 7, 1)
is zero (path [6,7,1] is never taken). We obtain ŷ(1, d1) = 0, which perfectly
matches the result of the abstract run.

Case 2. Consider Fig. 5 and the data flow equation at node 6 for definition d2.
Since the edge probability of 4 → 6 is given by 1/10, we have for Ramalingam’s
approach the following equation:

y(6, d2) = 1/10 ∗ y(4, d2)

Note that on edge 3 → 4 variable Y is defined by d2, whereas edge 2 → 4 is
transparent for variable Y . Hence, definition d2 can reach node 6 also via path
[2,4,6] depending on execution history. Since execution history is not taken into
account, this results in a value less than probability 1 of the abstract run.

Again, for the two-edge approach, we are relating the unknowns to edges
resulting in ŷ(6, d2) = ŷ(4 → 6, d2), since node 4 is the only predecessor. By
weighting the incoming edges of node 4 with their probabilities we get:

ŷ(4 → 6, d2) = p(2, 4, 6) ∗ ŷ(2 → 4, d2) +
p(3, 4, 6) ∗ ŷ(3 → 4, d2).

Note that probability p(2, 4, 6) is zero and the first part of the sum vanishes since
path [2,4,6] is never taken. Probability p(3, 4, 6) is 1 according to Equation 2
since path [3,4,6] is always executed when edge 3 → 4 is reached. Therefore we
obtain

ŷ(4 → 6, d2) = ŷ(3 → 4, d2)

Definition d2 is executed on edge 3 → 4 and, hence, ŷ(3 → 4, d2) is equal to
ŷ(3 → 4, Λ). Since ŷ(3 → 4, Λ) denotes the number of times edge 3 → 4 occurs

A Novel Probabilistic Data Flow Framework 47

in the program run, ŷ(3 → 4, Λ) equals 1. Finally, we substitute backwards and
gain ŷ(6, d2) = 1 which perfectly matches the result of the abstract run.

It is important to stress that our method, which is based on relating outgoing
edges to incoming ones, can trace rather complicated flow graph paths. E.g. we
get that definition d3 reaches node 6 each time (i.e. probability equals 1): Thus
our method finds out that edge 5 → 7 has been executed prior to node 6 in
one of the previous loop iterations and that definition d3 has not been killed by
taking edge 2 → 4 before execution arrives at node 6.

For the running example the solution of our two-edge approach is identical
to the best solution Sbest of the abstract run as shown in Table 1, whereas
Ramalingam’s approach significantly deviates from the abstract run as shown in
Table 3.

5 Experimental Results

In our experiments we address two issues. First, we show that for the two-
edge approach the analysis results are significantly better. We illustrate this
by analyzing the SPECint95 benchmark suite. Second, we demonstrate that
probabilistic data flow analysis frameworks are viable even for larger programs,
since in most cases the original equation system can be reduced considerably
and the remaining equations are usually trivial ones with a constant or only one
variable on the right-hand side.

The compilation platform for our experiments is GNU gcc. We integrated
abstract run, Ramalingam’s one-edge approach, and the two-edge approach. To
evaluate Ramalingam’s approach and the two-edge approach we have chosen
SPECint95 as benchmark suite and the reaching definitions problem as reference
data flow problem. The profile information has been generated by running the
training set of SPECint95. Of course, the same training set has been used for
the abstract run as well.

Probabilistic Data Flow Results. In our first experiment we have compared the
deviations of the two-edge approach from the abstract run with the deviations
of the one-edge approach from the abstract run. For each benchmark program
of SPECint95 we added the absolute deviations for each CFG node and each
data flow fact. The ratio of the sums of the two-edge approach over the one-edge
approach is shown in Fig. 6. The improvement for SPECint95 is in the range of
1.38 for vortex up to 9.55 for li. The experiment shows that the results of the
two-edge approach compared to the one-edge approach are significantly better.

Above we have shown that the results of the two-edge approach are sig-
nificantly better than the results of the one-edge approach, but maybe both
solutions deviate substantially from the theoretically best solution. Hence, we
executed the abstract run to get the theoretically best solution and compared
it with the two-edge approach. For each benchmark program of SPECint95 we
calculated for all CFG nodes and data flow facts the mean of deviations of the
probabilities. The results are shown in Fig. 7. The mean of deviations is between

48 E. Mehofer and B. Scholz

SPECint95 Improvement Ratio
go 1.95

m88ksim 2.26
gcc 2.54

compress 3.28
li 9.55

ijpeg 4.20
perl 2.44

vortex 1.38

Fig. 6. SPECint95: Improvement ratio of two-edge approach compared to Rama-
lingam’s one-edge approach.

SPECint95 Av. Prob ∆ Function hits
go 1.72 42.6%

m88ksim 0.31 87.9%
gcc 0.41 76.8%

compress 0.36 78.9%
li 0.11 94.2%

ijpeg 0.20 92.2%
perl 0.16 89.9%

vortex 0.16 92.4%

Fig. 7. SPECint95: Comparison two-edge approach with abstract run.

0.11% for li and 1.72% for go. The reason for this excellent result is that usually
programs execute only a small fraction of the potential paths. For non-executed
CFG nodes the result of the two-edge approach always coincides with the prob-
ability of the abstract run (namely zero), since the two-edge probability (Equ.
2) yields zero. Hence, we did a second comparison which is more meaningful. We
calculated the percentage of functions for which the two-edge approach coincides
with the abstract run. The function hits reaches for the two-edge approach from
42.6% for benchmark go up to 94.2% for li which is an excellent result as well.

Effort for Solving Linear Algebraic Equation Systems. In general, the worst
case complexity for solving linear algebraic equation systems is O(n3) with n
denoting the number of unknowns. The number of unknowns for the original
one-edge and two-edge equation system as described in Sections 3 and 4 can be
rather big. However, unknowns, which are related to control flow nodes or edges
which are not visited during the profile run, can be removed immediately. In the
SPECint95 suite only 48.2% of the original unknowns of the one-edge approach
have to be computed; for the two-edge approach 40.5% of the original unknowns
need to be solved.

Moreover, the structure of the equations for the SPECint95 suite is rather
simple. For the one-edge approach 54.3% of the equations are trivial ones with

A Novel Probabilistic Data Flow Framework 49

constants on the right-hand side only. Similarly, for the two-edge approach we
have a percentage rate of 58.8% equations with constants on the right-hand
side. For both approaches only about 1.6% of the equations have more than two
variables (up to 150) on the right-hand side. Hence, a linear equation solver for
sparse systems is of key importance.

0 100000 200000 300000 400000
number of variables

0

2

4

6

8

10

tim
e

(s
)

0 100000 200000 300000 400000
number of variables

0

2

4

6

8

10

tim
e

(s
)

Ramalingam Two-Edge

Fig. 8. Time to solve unknowns.

We have chosen an elimination framework introduced by Sreedhar et al.[16],
which was originally developed to solve classical bit-vector problems on con-
trol flow graphs. Especially, for our extremely sparse equation system Sreed-
har’s framework is well suited. In Fig. 8 a data point represents the number
of unknowns for a C-module of SPECint95 and the time in seconds to solve
the unknowns. Here, we have measured the graph reduction and propagation
of Sreedhar’s framework without setting up DJ-graphs2 and without setting up
the equations itself which takes additionally time since profile data must be ac-
cessed. The left graph depicts the measurements of Ramalingam’s approach –
the right graph shows the measurements of the two-edge approach. It is really
remarkable that Sreedhar’s algorithm nearly works linear on extremely sparse
equation systems. The measurements were taken on a Sun Ultra Enterprise 450
(4x UltraSPARC-II 296MHz) with 2560MB RAM.

6 Related Work

Several approaches have been proposed which take advantage of profile informa-
tion to produce highly efficient code.

Ramalingam [13] presents a generic data flow framework which computes
the probability that a data flow fact will hold at some program point for finite
2 To set up DJ-graphs dominator trees are required. Recently, linear algorithms were

introduced[4].

50 E. Mehofer and B. Scholz

bi-distributive subset problems. The framework is based on exploded control
flow graphs introduced by Reps, Horwitz, Sagiv [14] and on Markov-chains.
Contrary to our approach, execution history is not taken into account. To our
best knowledge we are not aware of any other execution history based approach.
Optimizations based on PDFAs are presented in [10,11].

Alternatively, Ammons and Larus [2] describe an approach to improve the
results of data flow analysis by identifying and duplicating hot paths in the
program’s control flow graph resulting in a so-called hot path graph in which
these paths are isolated. Data flow analysis applied to a hot path graph yields
more precise data flow information. The goal of this approach differs from our
work. We improve the precision of a probabilistic data flow solution and do not
modify the control flow graph in order to enable heavily executed code to be
highly optimized.

Finally, profile information is used by several researchers for specific opti-
mization problems in order to get better results (e.g. [6,5,12,7,3,18]).

7 Conclusion

Probabilistic data flow frameworks set forth new directions in the field of opti-
mization. We presented a novel, practicable probabilistic data flow framework
which takes execution history into account by relating outgoing edges to incom-
ing ones. In this way we achieve significantly better results. Practical experiments
which have been performed for the SPECint95 benchmark suite showed that the
two-edge approach is feasible and the precision of the probabilistic results is
sufficient.

References

1. F. E. Allen and J. Cocke. A program data flow analysis procedure. Communications
of the ACM, 19(3):137–147, March 1976.

2. G. Ammons and J.R. Larus. Improving data-flow analysis with path profiles. In
Proc. of the ACM SIGPLAN ’98 Conference on Programming Language Design
and Implementation (PLDI’98), pages 72–84, Montreal, Canada, June 1998.

3. R. Bod́ık, R. Gupta, and M.L. Soffa. Complete removal of redundant expressions.
ACM SIGPLAN Notices, 33(5):1–14, May 1998.

4. A.L. Buchsbaum, H. Kaplan, A. Rogers, and J.R. Westbrook. Linear-time pointer-
machine algorithms for LCAs, MST verification, and dominators. In Proceedings
of the 30th Annual ACM Symposium on Theory of Computing (STOC-98), pages
279–288, New York, May 23–26 1998. ACM Press.

5. B. Calder and D. Grunwald. Reducing branch costs via branch alignment. ACM
SIGPLAN Notices, 29(11):242–251, November 1994.

6. J. A. Fisher. Trace scheduling : A technique for global microcode compaction.
IEEE Trans. Comput., C-30(7):478–490, 1981.

7. R. Gupta, D. Berson, and J.Z. Fang. Path profile guided partial dead code elim-
ination using predication. In International Conference on Parallel Architectures
and Compilation Techniques (PACT’97), pages 102–115, San Francisco, California,
November 1997.

A Novel Probabilistic Data Flow Framework 51

8. M.S. Hecht. Flow Analysis of Computer Programs. Programming Language Series.
North-Holland, 1977.

9. E. Mehofer and B. Scholz. Probabilistic data flow system with two-edge profiling.
Workshop on Dynamic and Adaptive Compilation and Optimization (Dynamo’00).
ACM SIGPLAN Notices, 35(7):65 – 72, July 2000.

10. E. Mehofer and B. Scholz. Probabilistic procedure cloning for high-performance
systems. In 12th Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD’2000), Sao Pedro, Brazil, October 2000.

11. E. Mehofer and B. Scholz. Probabilistic communication optimizations and paral-
lelization for distributed-memory systems. In PDP 2001, Mantova, Italy, February
2001.

12. T. C. Mowry and C.-K. Luk. Predicting data cache misses in non-numeric applica-
tions through correlation profiling. In Proceedings of the 30th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-97), pages 314–320, Los
Alamitos, December 1–3 1997. IEEE Computer Society.

13. G. Ramalingam. Data flow frequency analysis. In Proc. of the ACM SIGPLAN
’96 Conference on Programming Language Design and Implementation (PLDI’96),
pages 267–277, Philadephia, Pennsylvania, May 1996.

14. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Proc. of the ACM Symposium on Principles of Programming
Languages (POPL’95), pages 49–61, San Francisco, CA, January 1995.

15. B. G. Ryder and M. C. Paull. Elimination algorithms for data flow analysis. ACM
Computing Surveys, 18(3):277–315, September 1986.

16. V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. A new framework for elimination-based
data flow analysis using DJ graphs. ACM Transactions on Programming Languages
and Systems, 20(2):388–435, March 1998.

17. R. E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM,
28(3):594–614, July 1981.

18. C. Young and M. D. Smith. Better global scheduling using path profiles. In
Proceedings of the 31st Annual ACM/IEEE International Symposium on Microar-
chitecture (MICRO-98), pages 115–126, Los Alamitos, November 30–December 2
1998. IEEE Computer Society.

19. C. Young and M.D. Smith. Static correlated branch prediction. ACM Transactions
on Programming Languages and Systems, 21(5):1028–1075, September 1999.

	Introduction
	Preliminaries
	Abstract Run and Ramalingam's Approach
	Two-Edge Approach
	Experimental Results
	Related Work
	Conclusion

