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Abstract. We study the application of a standard model checker tool, Spin, to
the well-known problem of computing a may-alias relation for a C program. A
precise may-alias relation can significantly improve code optimization, but in
general it may be computationally too expensive. We show that, at least in the
case of intraprocedural alias analysis, a model checking tool has a great poten-
tial for precision and efficiency. For instance, we can easily deal, with good
precision, with features such as pointer arithmetic, arrays, structures and dy-
namic memory allocation. At the very least, the great flexibility allowed in de-
fining the may-alias relation, should make it easier to experiment and to exam-
ine the connections among the accuracy of an alias analysis and the optimiza-
tions available in the various compilation phases.

1 Introduction

Two symbol or pointer expressions in a program are an alias when they reference the
same memory location.

Alias analysis is the activity of detecting which expressions, at a given point in a
program, are not aliases of each other. Static (i.e., compile-time) alias analysis is very
important for generating efficient code [1], since many compiling optimizations rely
on knowing which data could be referenced by a load or store expression [2,3]. Cur-
rently, in compilers for Instruction-Level Parallelism (ILP) processors alias analysis is
even more important since it can improve the performance of the instruction scheduler
[4]. However, exact alias analysis is impractical, and in general undecidable [5], be-
cause of the difficulties in determining which objects are referenced by pointers at a
given point in a program. Hence, every approach to alias analysis makes some con-
servative approximations to the alias relation, determining what is called a may-alias
relation. A pair of expressions (e1,e2) ³ may-alias in a given point of the program if a
static  analysis determines that "there is a chance" that e1 and e2 address the same
memory cell at that point during some execution of the program. The relation must be
conservative, i.e., if (e1,e2) ´ may-alias then it is impossible that e1 and e2 may ref-
erence the same cell at that point: if this were not the case, a code optimization allo-
cating different addresses to e1 and e2 would deliver an incorrect program. Clearly,
the may-alias relation is an approximation that must be a compromise between preci-
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sion (leading to efficient code) and the temporal and spatial efficiency of the compu-
tation.

Approximated static alias analysis has attracted a great body of literature and it is
usually distinguished in flow-sensitive or flow-insensitive, context-sensitive or con-
text-insensitive and interprocedural or intraprocedural [2]. In practice, even approxi-
mated solutions may be computationally expensive for large programs (e.g., see
[6,7]): a precise analysis should be executed only after some other kind of imprecise-
but-efficient analysis has shown the necessity of improving the precision for some
parts of a program. It is also debatable how much precise an analysis should be to be
considered really cost-effective in terms of optimization. The goal of our work is to
build a tool that, rather than being adopted directly in a compiler, may be used to
explore and assess the importance and usefulness of various approximations to the
may-alias relation and also to check the results computed by other  alias analysis
tools.

The novelty of our approach is the adoption of a standard model checking tool,
Spin [8]. A model checker is essentially a highly efficient analyzer of properties of
finite state machines, using highly optimized concepts and algorithms, developed in
years of study and experiments. In our approach, the relevant features of a C program
are abstracted into a suitable finite-state automaton and the alias analysis problem is
transformed into a reachability problem for the automaton. The advantage of this
method is that no analysis algorithm has to be defined and implemented: the model
checker takes care of the actual analysis, without having to program or develop any
algorithm ourselves. Hence, our approach readily allows to study, extend, and ex-
periment with various advanced features that are usually ignored in alias analysis
[9,7,10]. For instance, the prototype we built so far is able to deal, with better preci-
sion than usual, with features such as dynamic memory allocation, aggregates (i.e.,
arrays and structs), multi-level pointers and pointer arithmetic in C.

Our approach to alias analysis may be especially useful in deciding whether a pre-
cise analysis effectively improves the performance of the code generated by a com-
piler for an ILP processor, by assessing whether the treatment of one or more precise
features is really useful and worth incorporating in a compiler.

A long-term goal of our research is also the integration of our toolkit with other
less precise analysis tools, such as the one being developed in our group [11] and
others [12,13]. The model checking tool could then be used to check only those parts
of a program that are found in need of greater optimization and thus require more
precision in the analysis. Alternatively, if experiments with the model checker may
show that a certain kind of precise analysis is feasible and useful for optimization,
specific algorithms and tools may also be developed.

The paper is structured as follows. Section 2 briefly describes a model checker and
introduces its usage in alias analysis on some short, but "difficult" examples. Section
3 summarizes the experimental results obtained so far, discussing issues of efficiency
and extendibility. Section 4 draws a few conclusions and directions of future research.
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2 Model Checking for Alias Analysis

Model Checking is the automated verification that a (often, finite state) machine,
described in a suitable format, verifies a given property. The property must be de-
scribed with a formal notation, which can be either the description of another machine
or a temporal logic formula.

If the verification of the property fails, the Model Checker (MC) tool builds a
counterexample, i.e., an execution trace of the specified system that leads to the vio-
lation of the desired property. By examining such traces, it is usually not difficult to
identify the cause of the failure.

Model checking techniques have received great attention in the last years, due to
the successes of the automatic verification of finite-state systems describing protocols,
hardware devices, reactive systems. A symbolic MC [14] may routinely check sys-
tems with 1010 reachable states, and the case of 108 states is routine also for on-the-fly
model checkers as Spin. In certain cases, much larger numbers have been obtained,
but they usually correspond to less than a few hundreds bits of state space. This means
that any non-trivial software system cannot be checked as it is. The approach for
applying a MC to software programs and specifications is to use some form of ab-
straction to reduce the number of states. An abstraction omits many details, such as
data structures, of the system to be checked. Finding the right abstraction is a very
difficult problem, and there is in general no guarantee that the verification of the ab-
stracted system brings any information about the real system. In case of alias analysis,
however, we are mainly interested in pointer expressions and we can thus abstract
away significant parts of the code to be checked, without loosing the correctness of
the results. Also, various conservative approximations may be applied to the original
code (e.g., replacing branch conditionals with nondeterministic choices), leading to
small, and efficiently analyzable, finite state machines, but still providing a good
precision of the analysis. The abstraction we propose is one of the main contributions
of this paper.

2.1 The Spin Model Checker and the Promela Language

Spin is a widely distributed software package that supports the formal verification of
distributed systems. For the sake of brevity, we do not include here a description of
the tool itself and of its use, which is widely available also via web.

The input language of Spin is called Promela. We cannot describe here a language
rich and complex such as Promela, whose description is widely available. The syntax
of Promela is C-like, and we ignore here Promela’s  communication aspects. Condi-
tional expressions may be defined as:  (expr1 -> expr2 : expr3), which has the
value of expr3 if expr1 evaluates to zero, and the value of expr2 otherwise. A
special skip statement denotes the null operation, i.e., it does nothing (its use derives
from the syntactic constraints of Promela that do not allow "empty" statements). Pro-
cesses may be declared with a proctype declaration. We are only interested in de-
claring one process, active proctype main(), which basically corresponds to the
main() function of a C program. Functions and procedures may be declared with an
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inlining mechanism. The control structures are a selection (if) statement and a repe-
tition (do) statement, but it is also possible to use labels and goto statements. Selec-
tion has the form: if :: statements  ...  :: statements fi. It selects one
among its options (each of them starts with ::) and executes it. An option can be
selected if its first statement (the guard) is enabled (i.e., it evaluates to a number
greater than 0). A selection blocks until there is at least one selectable branch. If more
than one option is selectable, one will be selected at random. The special guard else-
> can be used (once) in selection and repetition statements and is enabled precisely if
all other guards are blocked. Repetition has the form: do :: statements ... ::
statements od. It is similar to a selection, except that the statement is executed
repeatedly, until the control is explicitly transferred to outside the statement by a
goto or a break. A break will terminate the innermost repetition statement in which
it is executed.

2.2 Applying Model Checking to Alias Analysis on Demand

The application of the Spin model checker to alias analysis requires to deal with two
distinct problems:

1) how to encode the program to be analyzed into the Promela language of Spin;
2) how to encode and retrieve the alias information.

Encoding C into Promela.
The problem of encoding C into Promela is essentially the issue of finding the right
abstraction to solve the may-alias problem, since the model checker cannot deal ex-
actly with all the data and variables used in a real C program. In alias analysis, the
important task is to find aliasing information for pointer expressions: a good abstrac-
tion could remove everything not directly related to pointers (such as the actual data
values). Actual address values (integers) may be dealt with by Spin, provided their
value range is finite (32-bit integers are supported). Hence, each nonpointer variable
in a program may be replaced by an integer constant, denoting its address. Also a
pointer variable must have a static address, but it must also store an address: it corre-
sponds to an integer variable (actually, an array of variables is introduced, one cell of
the array for each pointer, to make it easier to reference/dereference dynamic struc-
tures and multi-level pointers).

Also, as it is usually the case in alias analysis, we can ignore the actual conditions
in conditional branching instructions, by replacing them with nondeterministic
choices, at least when they do not involve pointer expressions. Notice that Spin, when
confronted with a nondeterministic choice among two alternatives, always keeps track
that only one is actually taken. This is not often implemented in alias analysis. For
instance, the C statement:

if (cond) {p1=&a; p2=&b;}
else {p1 = &b; p2 = &a;}
is translated into Promela with a nondeterministic choice between the two

branches, but no mixing of the information is done: Spin does not consider p1 and p2
to be aliases.
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We may also make Spin to deal with malloc() instructions, which generate a new
address value and allocate new memory, by simulating this generation. However,
since in general the number of executions of a malloc may be unbounded, we make
the conservative assumption that each occurrence of a malloc in a C program may
generate explicitly only a certain fixed number of actual addresses (e.g., just one),
and, after that, the malloc generates a fictitious address that is a potential alias of
every other address generated by the same occurrence of the malloc statement.
Records (struct) types may be dealt as well, by allocating memory and computing
offsets for the pointer fields of a new struct and by generating new addresses for the
nonpointer fields.

Encoding and Retrieving the Alias Information.
The typical application of a model checker is to build counterexamples when a given
property is violated, or to report that no violation occurs.However, for recovering the
may-alias relation after verification with Spin, we need to have aliasing results rather
than counterexamples. Our idea is to use a "byproduct" of model checking analysis,
namely unreachability analysis. A model checker like Spin is able to report the un-
reachable states of a Promela program. Hence, we can add a simple test stating that a
pair of pointer expressions are aliases of each other, followed by a null (skip) opera-
tion to be executed in case the test is verified: if the analysis shows that the null op-
eration is unreachable in that point, then the two expressions cannot be aliases.

In this way, it is possible to compute the complete may-alias relation in each point
of the program, even though this would mean adding a great number of pairs (test,null
operation) to the Promela program, since the total number of states only increases
linearly with the number of may-alias tests. It is however more natural and convenient
to compute only the part of the may-alias relation that is deemed useful by a compiler.

2.3 The Translation Scheme

A simple translator is being designed to compile C programs into Promela. In this
section, we illustrate the translation scheme by translating a few examples of simple,
but not trivial, C programs. All the programs will be monolithic, i.e., not decomposed
in functions. This is not a limitation, since nonrecursive function calls may be re-
placed by code inlining; however, the inlining could cause a significant slowdown for
the interprocedural analysis  of large programs.

Pointer Arithmetics and Static Arrays.
The first program, called insSort.c, shown in Fig. 1, is a simple insertion sort of an
array of integers, using pointer arithmetics. The program reads 50 integers, store them
in an array numbers and then prints them in increasing order. The line numbers are
displayed for ease of reference.

For instance, we may be interested in computing alias information about posi-
tion and index at the beginning and at the end of the inner loop (lines 13 and 18).
The int main() declaration corresponds in Promela to the declaration active
proctype main(). We now show how to deal with variable declarations. Each
non-pointer variable declaration is replaced by the assignment of a progressive integer
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constant (the address) to the variable name. The addresses conventionally start at one.
For instance, int key; is replaced by: #define key 1.

Each pointer declaration corresponds to the Promela declaration of an integer vari-
able. To allow a homogenous treatment of multi-level pointers and of dynamic mem-
ory allocation, an array of integers is declared, called Pointers: each pointer is an
element of the array. Each pointer name is defined in Promela by an integer constant
(the static address of the pointer), which is used to index the array. Since no dynamic
memory allocation is used in this program, the dimension of this array is simply the
number of pointers in the program, i.e., two. We use three instead, since for various
reasons we prefer to ignore the first element of the array. Each pointer variable is then
replaced by the constant index of the array.

Hence, the declarations: int *index;  int *position; are replaced by the
Promela declarations:

1. int main(){
2.   int key;
3.   int numbers[50];
4.   int *index;
5.   int *position;
6.   for (index=numbers; index<numbers+50; index++) /*read

array */
7.     scanf("%d", index);
8.  index=numbers+1;
9.   while(index<numbers+50){ /*sort the array */
10.    key=*index;
11.    position=index;
12.    while (position>numbers){
13.  /*position and index are aliases here? */
14.    if ( *(position-1) > key) {
15. *position= *(position-1);
16.    }
17. position--;
18. /*position and index are aliases here? */
19.  }
20.  *position=key;
21.  index++
22.   }
23.  printf("Sorted array\n");
24.  for (index=numbers; index<numbers+50; index++) /*print

array */
25.  printf("%d\n",*index);
26. }

Fig. 1. The insSort.c program: a simple insertion sort in a static array

int Pointers[3];

#define index 1;

#define position 2;
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The actual address referenced by the pointer index is denoted with Point-
ers[index], while the address &index is denoted by the name index itself. To
make pointer expressions easier to write and generalize, we prefer to introduce a C-
preprocessor macro, called contAddr ("content at the given address"), which returns
the address stored in a pointer:

#define contAddr(expression) Pointers[expression]

 Hence, contrAddr(position) corresponds in Promela to the address that in C
is denoted by position, while position actually denotes in Promela what in C
is denoted by &position.

An array declaration, such as int numbers[maxEl], is considered as a declara-
tion of a group of non-pointer variables, in this case maxEl variables. Hence, we
allocate maxEl consecutive integer constants for the addresses of the array elements,
without allocating any memory for the array itself. The array declaration is replaced
by #define numbers 2;

Lines 6 and 7 only read values in the array and are thus ignored. The assignment of
line 8 means that the address of the second cell of the array numbers (i.e., the address
numbers + 1) is assigned as the new value of the pointer index. To make the
Promela program more readable and extendable, we introduce a macro of the C pre-
processor for this kind of assignments, called setAddr:

#define setAddr(P,expression) Pointers[P] = expression

Hence, index=numbers +1 becomes setAddr(index,numbers+1). The exter-
nal while loop of the insertion sort (line 9) must be replaced by a Promela loop.
Hence, a while(C) B; statement is replaced  by the Promela statement: do
::P(C)-> P(B); ::else -> break; od where P(C) and P(B) are the Promela
translation of the conditional C and of the (possibly compound) statement B, respec-
tively. In this case, the condition is translated to (con-
trAddr(position)>numbers)

 The assignment statement of line 10 is ignored, since no pointer value is involved,
while the one of line 11 (between pointers) becomes set(position,index);
where set is defined by the following C-preprocessor macro:

#define set(P,ex) setAddr(P,contAddr(ex))

Both set and setAddr assign a value to the cell indexed by the first argument P,
but setAddr considers this value to be directly the second argument, while set
considers this value to be the content of the cell whose address is the value of the
second argument.  Hence, the C fragment:  int a; int *p, *q; p = &a; q=p;

is translated into: setAddr(p,a); set(q,p);
The conditional if statement of lines 14 to 16 can be eliminated. In fact, the con-

dition cannot be computed on pointer values only and should be replaced by a nonde-
terministic Promela if statement. However, since line 15 must be eliminated as well,
the translation of the conditional would be:

if ::true ->  skip; ::true -> skip; fi

which obviously has no effect. Line 17 becomes Pointers[index]++; or, alter-
natively, setAddr(index,contAddr(index)+1), and the other lines may be ig-
nored.



10         V. Martena and P. San Pietro

The alias information is introduced, in the points corresponding to the  lines 13 and
18, by using a simple test, defined via a pair of macro as follows:

#define mayAlias(X,Y) if ::(Pointers[X] == Pointers[Y]) ->
skip;

#define notAlias   ::else-> skip; fi

The complete translation of the C program above is reported in Fig. 2.

When Spin is run to analyze the program, it reports that the mayAlias condition of
line 16 is the only unreachable part of the code. Hence,  position and index do
not belong to the may-alias relation at line 18 of the original program. Instead, since
the other mayAlias condition is reachable, the two pointers do belong to the may-
alias relation at line 13 of the original program. Notice that in the latter case the rela-
tion is not a must-alias relation (since also the notAlias condition is reachable as
well). The relationship between the speed of Spin in providing the answer, the total
memory usage and the size of the static array is reported in Section 3.

Multi-level Pointers.
Multi-level pointers can be easily dealt with. For instance, a pointer declared as
int** p; is declared in Spin again as a static address for p, used as an index of the
pointer array. The operator contAddr can be used to dereference a pointer expres-
sion. Consider the following fragment of code:

char **p2; char * p1; char a;

...

*p2 =&a; p2 = &p1; *p2 = p1; p1 = *p2;

...

This can be easily translated into Promela:
#define a 1

#define p1 2

#define p2 3

...

setAddr(contAddr(p2), a);

setAddr(p2,p1);

set(contAddr(p2),p1);

set(p1, contAddr(p2));

Structures and Dynamic Memory Allocation.
Traditionally, in alias analysis, programs with dynamic memory allocation are either
ignored or dealt with in a very limited way: when a p =(T*) mal-
loc(sizeof(T));  instruction occurs in a program, the expression *p is consid-
ered to be an alias of every other pointer expression of type T. At most, some separate
treatment is introduced by distinguishing among the pointers initialized with malloc
instructions at different lines of the program [7,9]. This is a conservative assumption,
assuring that the may-aliases relation always includes every pair of poi experessions
that are aliases, but it is often too imprecise. For instance, if T is struct {int
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info; T* next;}, the pointer expression p->next is assumed to be an alias of
every pointer expression of type T*.

 

1. #define maxEl 50
2. #define max_element 3 /*the number of pointers

declared in the program*/
3. #define key 1
4. #define numbers 2
5. #define index 1
6. #define position 2
7. int Pointers[max_element];
8. active proctype main () {
9.  setAddr(index,numbers+1);
10. do ::contAddr(index) < (numbers+maxEl) ->
11. set(position,index);
12.  do ::(contAddress(position)>numbers) ->
13. may_alias(position,index)
14. notAlias;
15.  contAddr(position)--;
16. mayAlias(position,index)
17. notAlias;
18.     ::else -> break;
19.  od;
20.  contAddr(index)++;
21.  ::else -> break;
22. od
23. }

Fig. 2.  The Promela translation of insSort.c

 For a more complete example, consider the simple program doubleList.c of Fig.
3, which inserts two integers in a double-linked list built from scratch.
1. struct elem {int inf; struct elem next*; struct elem previ-

ous*;};
2. int main(){
3.   struct elem *root;
4.  root = (struct elem*)malloc(sizeof(struct elem));
5.  scanf("%d", &(root->inf));
6.  root->previous = null;
7.  root->next = (struct elem*)malloc(sizeof(struct elem));
8.  root->next->previous=root;
9.  root->next->next = null;
10.  scanf("%d", &(root->next->inf));
11. /* root->next and root->next->previous may be alias here?*/
12. }

Fig. 3.  The doubleList.c program, which inserts two elements in a double-linked list

In a traditional approach, root->next and root->next->previous are all con-
sidered to be aliases, preventing optimizations. We will show that this is not the case
in our approach.
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To make this presentation simple, here we show how to deal with malloc in-
structions combined with variables of type struct*, ignoring statically-declared
variables of type struct and dynamic allocation of pointers to values of the basic
types. Also, we assume that the address of a nonpointer field of a structure is never
taken, i.e., there is no statement of type x = &(root->inf). The latter restriction
allows us to ignore the non-pointer fields, since in this case no pointer expression may
be an alias of a nonpointer field. Notice that the actual translation we implemented
does not have any of these limitations, which can be relaxed without any loss in effi-
ciency by using a more complex translation. Another limitation is that we do not
allow casting of structure types (as instead done in [15]), since we treat each pointer
field as a separate object based on its offset and size: the results would not be portable
because the memory layout of structures is implementation-dependent.

The declaration of the struct of line 1 corresponds to the following Promela
declaration:

#define sizeof_elem 2 /*number of pointer fields in elem */

#define offset_elem_next 0 /*offset of "next" field */

#define offset_elem_previous 1 /*offset of "previous" field
*/

Number all the malloc statements in the source code, starting from 1. We intro-
duce in Promela a malloc statement called malloc(P,T,N), where P is a pointer
expression of type T*, T is the type name and N is the malloc number.  Hence, a
statement of the form p = (int*) malloc(sizeof(int)); (corresponding to
the 3rd occurrence of a malloc in the source code) is translated in Promela into mal-
loc(p,int,3);

A malloc(P,T,N)statement must generate a new address for a variable of type T
and store it in the cell of the Pointers array whose index is P.  To be able to define
dynamically new addresses, the size of the array Pointers, defined via the constant
max_element, must be greater than the number of pointer variables declared in the
program. A new address can be easily generated by declaring a global counter vari-
able, called current, to be incremented of sizeof_T each time a new address is
allocated (and to be checked against max_element). The new address may again be
used to index the array Pointers. Also, there is a global array count_malloc of
integer counters, which keeps count of the number of actual allocations for each mal-
loc. Only a limited number of addresses, denoted by the constant max_malloc, is in
fact available for each malloc (typically, just one): hence, if no new address is
available (count_malloc[N] >= max_malloc), the malloc must return a ficti-
tious address, whose value is conventionally all_alias +N, where all_alias is a
constant denoting a special, fictitious address that is used to signal that an expression
address is actually an alias of every other expression. Every address greater or equal
to all_alias is considered to be fictitious, i.e., it does not refer to an actual mem-
ory cell in the Promela program (hence,  all_alias must be greater than
max_element). The malloc statement in Promela is defined as follows (with the C
preprocessor, "\" is used to define a multi-line macro, while "##" denotes string con-
catenation)

int current=total_number_of_pointer_variables+1;
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int Pointers[max_element];
byte count_malloc[total_number_of_malloc];
#define malloc(P,T,n) \

if \
    :: P >= all_alias -> skip; \
    :: else -> \
    if \
         :: (current + sizeof_##T <= max_element)&& \

    count_malloc[n-1] < max_malloc -> \
    Pointers[P] = current; \
    current=current+sizeof_##T; \
    count_malloc[n-1]++; \
:: else -> Pointers[P]=all_alias+n; \
fi; \

fi

P stands for the address (index) of the memory cell where the newly generated ad-
dress must be stored. Hence, the test P >= all_alias -> skip; is introduced in
order not to allocate memory to a nonexistent cell. If the test is false, the malloc has
to check whether there is space enough in the unused portion of the array Pointers
to allocate sizeof_T consecutive cells (current + sizeof_T <=

max_element) and whether the maximum numbers of addresses available for that
single malloc has not been exceeded (count_malloc[n-1] < max_malloc). If
the test is passed, the cell of index P is assigned the new address, the current counter
is incremented of sizeof_T, and count_malloc[n-1] is incremented of one. Oth-
erwise, the fictitious address all_alias+n is stored in Pointers[P], to denote that
the n-th malloc has not been able to allocate a new address.

To be able to deal with structures and their fields, we need to introduce Promela
equivalents of root->previous, &(root->next), etc. We first modify the opera-
tor contAddr to be able to deal with fictitious addresses:

#define contAddr(expr) (expr >= all_alias -> expr : Point-
ers[expr])

Hence, if the address of expr is fictitious, the array Pointers is not accessed
and the fictitious value is returned.

The address of a field of a pointer expression expr of type T is given by the
Promela macro getField:

#define getField(expr,field,T) (contAddr(expr)>=all_alias ->
all_alias :\

          Pointers[expr]+offset_##T##_## field) \

Hence, the access of a field returns the all_alias value if its address is fictitious,
the address of the field otherwise. The latter address is obtained by adding, to the
address of the first cell of the structure, the value of the offset of the field inside the
structure. Hence, line 7 of the above C program:

root->next = (struct elem*)malloc(sizeof(struct elem));

is denoted in Promela by:
malloc(getField(root,next,T), T,2);
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When a field is assigned a new value, e.g., root->previous = null; it is not
possible to use the setAddr operator defined above, since now the various pointer
expressions involved may also assume fictitious values. Hence, we redefine the op-
erator as follows:

#define setAddr(address,expr) if \

::address >= all_alias -> skip; \

::else -> Pointers[address]=expr; \

fi

When a pointer expression of address address is assigned the value expr, we
first check whether address denotes a valid cell, otherwise no assignment can be
executed.

Hence, root->previous = null; is translated into:
 setAddr(getField(root, previous), null);

where the null pointer is simply the constant 0: #define null 0
The mayAlias-notAlias pair has now to be extended: in fact, two pointer ex-

pressions may be alias also because either one evaluates to all_alias.
We extend the operators as follows:
#define mayAlias(ex1, ex2) if \

:: (contAddr(ex1) == contAddr(ex2) && \

   contAddr(ex1) != null) -> skip; \

:: (contAddr(ex1) == all_alias || \

   contAddr(ex2) == all_alias) -> skip

#define notAlias :: else -> skip; fi

The mayAlias operator checks whether the two expressions ex1 and ex2 refer-
ence the same cell, provided that the cell is valid and that the expressions do not refer
to the null pointer. Notice that two cells with invalid but different addresses, such as
all_alias+1 and all_alias+2, are not considered to be aliases of each other
(since they were generated by two distinct malloc instructions). Otherwise, the may-
Alias operator checks whether one of the two expressions is an all_alias: in this
case, the two expressions are also considered potential aliases. The notAlias opera-
tor corresponds to the case where neither of the two previous cases occurs: the two
expressions cannot be aliases. The complete translation of the doubleList.c pro-
gram is reported at http://xtese1.elet.polimi.it.
The result of the analysis with Spin is that the only unreachable part is the mayAlias
condition of line 16, meaning that, as expected, root->next and root->next-
>previous cannot be aliases. Since the program is quite small, the execution time
and memory requirements of Spin are negligible.

3 Experimental Results

Table 1 summarizes the experimental results obtained for the example insSort.c of
Section 2. The running times are given on a PC with a Pentium III 733 MHz proces-
sor, with 256 KB cache Ram, 256 MB Ram and the Linux OS  (vkernel 2.4.0, glibc
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2.1). Notice that the running times do not include the compilation time (Spin gener-
ates a C program to be compiled with gcc before execution), which usually is fairly
independent on the size of the Promela program and takes a few seconds. Memory
occupation is often dominated by the stack size, which must be fixed before the exe-
cution. Hence, if a stack size too large is chosen, the memory occupation may seem
quite large even if only a few states were reachable. On the other hand, the explora-
tion of a large number of states may be very memory consuming, even though often
can be completed in a very short time.

As it can be noticed, the number of states explored by Spin with insSort.c is
quadratic in the size of the static array, but the running time is still small even when
the array has hundreds of elements. The quadratic complexity is not surprising, since
it results from the time complexity of the original insertion sort algorithm. The mem-
ory occupation is large, and it is dominated by the size of the stack used by Spin,
while the number of bits in each state (called state vector size in Spin) is negligible,
since the array size only impacts on the number of reachable states.

We also explored the use of Spin using "critical" examples, to check whether this
approach really improves precision of analysis on known benchmarks. We consid-
ered, among others, one example taken from [7]. The example was introduced by
Landi in order to find a "difficult" case where his new algorithm for alias analysis
with dynamic memory allocation performed poorly. Landi’s original source code and
its Promela translation are reported at http://xtese1.elet.polimi.it. This example repre-
sents the worst case for Landi’s algorithm, which finds 3n3 + 7n2+6n+18 aliases,
where the parameter n is the size of the array v. Our analysis, instead, finds the exact
solution, n+11, for each fixed n. Notice that our analysis is also able to distinguish
that b and d cannot be alias after the execution of the two conditionals inside the
while loop. Table 2 shows also the performance of the tool for various values of the
parameter n. The running time is still quadratic, even though the original program
runs in linear time. In fact, both the number of states searched and the state vector size
increase linearly: the memory occupation and the running time must be a quadratic
function of n.

Pointers
Elements

Array
El.

State
Vector
(byte)

States Memory
Usage
(Mbyte)

Approximated
Analysis

Search Depth Running
Time (sec)

4 40 28 5085 2.527 No 5084 0.01
4 80 28 19765 3.192 No 19764 0.06
4 160 28 77925 5.861 No 77924 0.24
4 320 28 309445 16.501 No 309444 1.07
4 640 28 1.23e+06 62.716 No 1.233e+06 4.68
4 1000 28 3.00e+06 151.140 No 3.000e+06 35.6

Table 1. Performance results for InsSort.c
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Array
Elements

State
Vector
(byte)

States Memory
Usage
(Mbyte)

Approximated
Analysis

Search Depth Running Time
(sec)
(compilation
excluded)

40 432 754 2.302 No 387 0.01
80 432 1394 2.404 No 707 0.03
160 832 2674 2.849 No 1347 0.09
320 1632 5234 3.822 No 2627 0.36
1000 4112 16114 11.557 No 8067 2.92
2000 8112 32114 36.957 No 16067 11.43
4000 16112 64114 135.757 No 32067 46.00

Table 2. Performance Results for Landi’s example

Another example of a nontrivial program has been translated into Promela and the
quality of the alias analysis has been assessed and the performance results have been
studied. The example takes in input two series of integers in two separate linked lists,
calculates the maximum element of the two lists and then stores their sum in a third
list. The source code LinkedLists.c, along with its translation, is reported at
http://xtese1.elet.polimi.it, where we will collect further experimental results. The
example is composed of 116 lines of C code and makes a heavy use of dynamic
memory allocation to insert elements in the various lists. The tool is able to distin-
guish as not being aliases at least the heads of the tree lists, even though the analysis
cannot be exact due to the presence of malloc instructions inside unbounded loops.
Since each malloc instruction is allowed to generate only a very limited number of
new non-fictitious addresses, a very small number of pointers can be allocated dy-
namically by the Promela version. Hence, the maximum number of dynamically allo-
cated pointers does not affect the performances.

This and the above results show that the running time and memory occupation do
seem to depend just on the sheer size of the program to be analyzed, but especially on
the number of variables. Notice that the memory occupation could be considerably
reduced in most examples, by reducing the size of the available addresses (now, 32-
bit integers).

4 Conclusions and Related Works

In this paper, we presented a prototype tool, based on the model checker Spin, to
study and experiment with alias analysis. There are many known algorithms and tools
that can be used to determine may-alias relations, with varying degrees of accuracy
(for papers including broad references to alias analysis see for instance [16]). At the
best of our knowledge, we ignore of any previous application of model checker tech-
nology to this goal. However, there are various studies about the application of model
checking to flow analysis, e.g. [17]. In these works, it has been shown how many
problems usually solved by means of data-flow techniques can be solved more simply
by model checking techniques. In particular, our work is consistent with the method-
ology proposed in [18], which uses abstract interpretation [19] to abstract and analyze
programs by combining model checking and data flow techniques. The links among
abstract interpretation and data-flow analysis are also well-known (e.g., [20]). There
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is also some relation with works, such as [21], that transform program analysis (e.g.,
flow-insensitive point-to analysis), into graph reachability problems (on context-free
languages), since in our approach the may-alias relation is computed by using the
related concept of state reachability (on finite-state automata). Our approach has also
connections with works rephrasing static analysis questions in terms of systems of
constraints (such as the application of the Omega-library in [22]). There are different
approaches that try to deal with dynamic memory allocation. For instance, [23] per-
forms very precise or even exact interprocedural alias analysis for certain programs
that manipulate lists, using a symbolic representation. However, the result only has
theoretical relevance, since it fails to scale up to real cases. Another method is shape
analysis [24], that gives very good results in dealing with acyclic dynamic structures,
but does not appear to deal with the cyclic case, such as the double linked lists studied
in this paper.

By using our tool, we were able to experiment with more precise may-alias rela-
tions than are usually considered in intraprocedural analysis, allowing the study of
programs including features such as pointer arithmetics, structures, dynamic alloca-
tion, multi-level pointers and arrays. Preliminary experiments with the tool show that
it could have better performances even than specialized tools for precise analysis, but
further experiments are required to assess this claim. Future work will apply the tool
to standard benchmarks and C program, after having completed a translation tool
from C to Promela. We are going to apply the tool to object oriented languages such
as Java and C++ and to study other applications to static analysis of programs (such as
detecting bad pointer initialization). An advantage of our approach is that all the ex-
periments can be easily performed without writing any algorithm, but only defining a
few operators and leaving all the processing job to the highly optimized Spin model
checker.

The computation of the may-alias relation with a model checker is consistent with
an approach to alias analysis and program optimization called alias on demand [11].
The approach is based on the consideration that in the optimization phase not all ele-
ments in the may-alias relation have the same importance: first, only those parts of the
code that are executed frequently (such as loops) may deserve optimization, and
hence the may-alias relation for the other parts is not useful; second, many parts of the
may-alias relation do not enable any optimization. Therefore, in this approach the
may-alias relation is not computed entirely before the optimizations are performed,
but only after a preliminary optimization analysis has determined that a certain set of
instructions could be optimized if there is no aliasing among certain pointer expres-
sions. For instance, an optimization such as code parallelization for ILP processors
must rely on limited parallel resources: most of the may-alias relation is completely
irrelevant, since we cannot parallelize many instructions anyway. Therefore, it is
possible to save a great deal of computational power that is otherwise needed for alias
analysis.

 For the moment, interprocedural analysis with our tool must be done by inlining
the procedure calls in the main. Hence, precise analyses of the kind described here are
probably infeasible for large programs. However, our approach could be easily tai-
lored to deal with the precision that is required for the problem at hand. For instance,
loops could be transformed in conditional statements and further details of a program
could be omitted, leading to a less precise, but more efficient, analysis when and
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where precision is not essential. Again, this could be obtained with almost no cost,
leaving the user of the tool the possibility of customizing the analysis to the level of
precision that is required. An alternative is to use infinite-state model checking, which
however is still a subject of intense research.

A major goal of our group at Politecnico di Milano is to analyze the benefits that
can be obtained by using alias information in the various compilation phases  (register
allocation, instruction scheduling, parallelization) and to examine the connections
among the accuracy of the required alias analysis and the intended optimizations [1],
also in view of the machine architecture. We believe that our tool could easily be
tailored to support this kind of analysis.
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