
Design-Driven Compilation

Radu Rugina and Martin Rinard

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139
{rugina, rinard}@lcs.mit.edu

Abstract. This paper introduces design-driven compilation, an ap-
proach in which the compiler uses design information to drive its analysis
and verify that the program conforms to its design. Although this ap-
proach requires the programmer to specify additional design information,
it offers a range of benefits, including guaranteed fidelity to the designer’s
expectations of the code, early and automatic detection of design non-
conformance bugs, and support for local analysis, separate compilation,
and libraries. It can also simplify the compiler and improve its efficiency.
The key to the success of our approach is to combine high-level design
specifications with powerful static analysis algorithms that handle the
low-level details of verifying the design information.

1 Introduction

Compilers have traditionally operated on the source code alone, utilizing no other
sources of information about the computation or the way the designer intends
it to behave. But the source code is far from a perfect source of information
for the compiler. We focus here on two drawbacks. First, the code is designed
for efficient execution, not presentation of useful information. The information is
therefore often obscured in the program: even though the code implicitly contains
the information that the compiler needs to effectively compile the program,
the information may be difficult or (for all practical purposes) impossible to
extract. Second, the source code may be missing, either because it is shipped in
unanalyzable form or because it has yet to be implemented.

The thesis of this paper is that augmenting the source code with additional
design information can ameliorate or even eliminate these problems. The result is
a significant increase in the reach of the compiler (its ability to extract informa-
tion about the program and use this information to transform the program) and
the fidelity with which the compilation matches the designer’s intent. We call
this new compilation paradigm design-driven compilation, because the design
information drives the compiler’s search for information.

We believe the key to the success of this approach is an effective division
of labor between the designer and the compiler. The design information should
take the form of intuitive, high-level properties that any designer would need
to know to design the computation. This information must be augmented by

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 150–164, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Design-Driven Compilation 151

powerful analysis algorithms that automate the low-level details of verifying the
design information and applying the design.

1.1 Design Conformance

The design information specifies properties that the program is intended to ful-
fill. This information is implicitly encoded in the program, and the compiler
would otherwise need sophisticated program analysis techniques to extract it.
But the explicit (and redundant) specification of design information provides a
range of advantages. First, it clearly states the programmer’s intent, and non-
conformance to the design can be caught early by the compiler. Second, using
design information at the procedure level provides modularity and enables lo-
cal analysis, separate compilation, and library support. Third, it is easier for the
compiler to check the design information than to extract it, making the compiler
structure simpler and making the compiler more efficient.

Design information for procedures can be expressed using procedure inter-
faces. The interface for a procedure specifies the effects of that procedure with
respect to a given abstraction. In this paper we present two kinds of proce-
dure interfaces. Pointer interfaces specify how procedures change the points-to
information. Region interfaces specify the regions of memory that the entire
computation of each procedure accesses.

It is not practical to expect the programmer provide detailed information
within procedures. But the correctness of the design information depends cru-
cially on the low-level actions of the code within each procedure. Our approach
therefore combines design specifications with program analysis. Design informa-
tion specifies high-level properties of the program. Static analysis automatically
extracts the low-level properties required to verify that the program conforms
to its design. Design conformance is an attractive alternative to static analysis
alone because of its range of benefits:

1. Fidelity:
– Faithful Compilation: The design information enables the compiler to

generate parallel programs that faithfully reflect the designer’s high-level
expectations.

– Enhanced Code Reliability: Verifying that the code conforms to its design
eliminates many potential programming errors. Subtle off-by-one errors
in array index and pointer arithmetic calculations, for example, often
cause the program to violate its region interface design.

– Enhanced Design Utility: Our approach guarantees that the program
conforms to its design. Designers, programmers, and maintainers can
therefore rely on the design to correctly reflect the behavior of the pro-
gram, enhancing the utility of the design as a source of information
during the development and maintainance phases.

2. Modularity:
– Local Analysis: The design information enables the compiler to use a local

instead of a global analysis — each procedure is analyzed independently
of all other procedures.

152 R. Rugina and M. Rinard

– Separate Compilation: The design information enables the compiler to
fully support the separate analysis and compilation of procedures in
different files or modules, and to fully support the use of libraries that
do not export procedures in analyzable form.

– Improved Development Methodology: The design information allows the
compiler to analyze incomplete programs as they are under development.
The programmer can therefore start with the design information, then
incrementally implement each procedure. At each step during the de-
velopment, the analysis uses the design information to check that the
current code base correctly conforms to its design. The overall result is
early detection of any flaws in the design and an orderly development of
a system that conforms to its design.

– Enhanced Interface Information: In effect, our approach extends the type
system of the language to include additional information in the type sig-
nature of each procedure. The additional information formalizes an addi-
tional aspect of the procedure’s interface, making it easier for engineers
to understand and use the procedures.

3. Simplicity:
The availability of design information as procedure interfaces signifi-
cantly simplifies the structure of the compiler. It eliminates the interpro-
cedural analysis, and replaces it with the much simpler task of verifying
the procedure interfaces. Improvements include increased confidence in
the correctness of the compiler, a reduction in the implementation time
and complexity, and increased compiler efficiency.

1.2 Automatic Parallelization of Divide and Conquer Programs

We have applied design-driven compilation to a challenging problem: the auto-
matic parallelization of divide and conquer programs [4]. The inherent paral-
lelism and good cache locality of divide and conquer algorithms make them a
good match for modern parallel machines, with excellent performance on a range
of problems [2,10,6,3].

The tasks in divide and conquer programs often access disjoint regions of the
same array. To parallelize such a program, the compiler must precisely charac-
terize the regions of memory that the complete computation of each procedure
accesses. But it can be quite difficult to extract this information automatically.
Divide and conquer programs use recursion as their primary control structure,
invalidating standard approaches that analyze loops. They also tend to use dy-
namic memory allocation to match the sizes of the data structures to the problem
size. The data structures are then accessed via pointers and pointer arithmetic,
which complicates the analysis of the memory regions accessed by the computa-
tion of each procedure.

In our approach, the designer provides two kinds of design information:
pointer information that summarizes how each procedure affects the points-to
relationships, and region information that summarizes regions of memory that
each procedure accesses. The compiler uses intraprocedural analysis algorithms

Design-Driven Compilation 153

1 void sort(int *d, int *t, int n) {

2 int *d1, *d2, *d3, *d4, *d5;

3 int *t1, *t2, *t3, *t4;

4 if (n < CUTOFF) {

5 insertionsort(d, d+n);

6 } else {

7 d1 = d; t1 = t;

8 d2 = d1 + n/4; t2 = t1 + n/4;

9 d3 = d2 + n/4; t3 = t2 + n/4;

10 d4 = d3 + n/4; t4 = t3 + n/4;

11 d5 = d4+(n-3*(n/4));

12

13 sort(d1, t1, n/4);

14 sort(d2, t2, n/4);

15 sort(d3, t3, n/4);

16 sort(d4, t4, n-3*(n/4));

17

18 merge(d1, d2, d2, d3, t1);

19 merge(d3, d4, d4, d5, t3);

20

21 merge(t1, t3, t3, t1+n, d);

22 }

23 }

24 void merge(int *l1, int *h1,

25 int *l2, int *h2, int *d) {

26 while ((l1 < h1) && (l2 < h2))

27 if (*l1 < *l2) *d++ = *l1++;

28 else *d++ = *l2++;

29 while (l1 < h1) *d++ = *l1++;

30 while (l2 < h2) *d++ = *l2++;

31 }

32 void insertionsort(int *l, int *h) {

33 int *p, *q, k;

34 for (p = l+1; p < h; p++) {

35 k = *p;

36 for (q = p-1; l <= q && k < *q; q--)

37 *(q+1) = *q;

38 *(q+1) = k;

39 }

40 }

41 void main() {

42 int n, *data, *temp;

43 scanf("%d", &n);

44 if (n > 0) {

45 data = (int*) malloc(n*sizeof(int));

46 temp = (int*) malloc(n*sizeof(int));

47 /* code to initialize the array */

48 sort(data, temp, n);

49 /* code that uses the sorted array */

50 }

51 }

Fig. 1. Divide and Conquer Sorting Example

to verify the design information, then uses the verified information to parallelize
the program.

2 Example

Figure 1 presents a recursive, divide and conquer merge sort program. The sort
procedure on line 1 takes an unsorted input array d of size n, and sorts it,
using the array t (also of size n) as temporary storage. In the divide part of the
algorithm, the sort procedure divides the two arrays into four sections and, in
lines 13 through 16, calls itself recursively to sort the sections. Once the sections
have been sorted, the combine phase in lines 18 through 21 produces the final
sorted array. It merges the first two sorted sections of the d array into the first
half of the t array, then merges the last two sorted sections of d into the last
half of t. It then merges the two halves of t back into d. The base case of the
algorithm uses the insertion sort procedure in lines 32 through 40 to sort small
sections.

154 R. Rugina and M. Rinard

merge(int *l1, int *h1,
int *l2, int *h2,
int *d) {

context {
input , output :
l1 -> main:alloc1,
h1 -> main:alloc1,
l2 -> main:alloc1,
h2 -> main:alloc1,
d -> main:alloc2

}
context {

input , output :
l1 -> main:alloc2,
h1 -> main:alloc2,
l2 -> main:alloc2,
h2 -> main:alloc2,
d -> main:alloc1

}
}

insertionsort(int *l, int *h) {
context {

input , output :
l -> main:alloc1,
h -> main:alloc1

}
}

sort(int *d, int *t, int n) {
context {

input , output :
d -> main:alloc1,
t -> main:alloc2

}
}

Fig. 2. Points-To Design Information

merge(int *l1, int *h1,
int *l2, int *h2,
int *d) {

reads [l1,h1-1], [l2,h2-1];
writes [d,d+(h1-l1)+(h2-l2)-1];

}

insertionsort(int *l, int *h) {
reads and writes [l,h-1];

}

sort(int *d, int *t, int n) {
reads and writes [d,d+n-1],

[t,t+n-1];
}

Fig. 3. Access Region Design Information

2.1 Design Information

There are two key pieces of design information in this computation: informa-
tion about where each pointer variable points to during the computation, and
information about the regions of the arrays that each procedure accesses. Our
design language enables designers to express both of these pieces of informa-
tion, enhancing the transparency of the code and enabling the parallelization
transformation described below in Section 2.4.

Figure 2 shows how the designer specifies the pointer information in this ex-
ample. For each procedure, the designer provides a set of contexts. Each context
is a pair of input points-to edges and output points-to edges. The input set of
edges represents the pointer aliasing information at the beginning of the pro-
cedure, and the output set of edges represents that information at the end of
the procedure for that given input. Therefore, each context represents a par-
tial transfer function: it describes the effect of the execution of the procedure
for a given input points-to information. The pointer analysis takes place at the

Design-Driven Compilation 155

granularity of allocation blocks. There is one allocation block for each static or
dyanamic allocation site. The design information identifies each allocation site
using the name of the enclosing procedure and a number that specifies the al-
location site within the procedure. In our example, the input and the output
information are the same for all contexts, which means that all procedures in
our example have identity transfer functions.

Figure 3 shows how the designer specifies the accessed memory regions in
the example. The regions are expressed using memory region expressions of the
form [l, h], which denotes the region of memory between l and h, inclusive.
These regions are expressed symbolically in terms of the parameters of each
procedure. This symbolic approach is required because during the course of a
single computation, the procedure is called many times with many different
parameter values.

As the example reflects, both pointer and access region specifications build
on the designer’s conception of the computation. The specification granularity
matches the granularity of the logical decomposition of the program into proce-
dures, with the specifications formalizing the designer’s intuitive understanding
of the regions of memory that each procedure accesses.

2.2 Pointer Design Conformance

The compiler verifies that the program conforms to its pointer design as follows.
For each procedure and each context, the compiler performs an intraprocedural,
flow-sensitive pointer analysis of the body of the procedure. At call sites, the
compiler matches the current points-to information with the input information
of one of the contexts of the callee procedure. It uses the output information
from matched context to compute the points-to information after the call. If no
matching context is found, the pointer design conformance fails. In our example,
during the intraprocedural analysis of procedure sort, the compiler matches the
current points-to information at lines 18 and 19 with the first context for merge,
and the points-to information at line 21 with the second context of merge. The
sort and insertionsort procedures each have only one context, and the com-
piler successfully matches the context at each call to one of these two procedures.
Note that the pointer design information directly gives the fixed-point solution
for the recursive procedure sort. The compiler only checks that this solution is
a valid solution.

2.3 Access Region Design Verification

The compiler verifies the access region design in two steps. The first step is
an intraprocedural analysis, called bounds analysis, that computes lower and
upper bounds for each pointer and array index variable at each program point.
This bounds information for variables immediately translates into the regions of
memory that the procedure directly accesses via load and store instructions.

The second step is the verification step. To verify that for each procedure
the design access regions correctly reflect the regions of memory that the whole

156 R. Rugina and M. Rinard

computation of the procedure accesses, the compiler checks the following two
conditions:

1. the design access regions for each procedure include the regions directly
accessed by the procedure, and

2. the design access regions for each procedure include the regions accessed by
its invoked procedures.

In our example, for procedure insertionsort the compiler uses static anal-
ysis to compute the bounds of local pointer variables p and q at each program
point, and then uses these bounds at each load and store in the procedure to de-
tect that insertionsort directly reads and writes the memory region [l,h-1].
The compiler easily checks that this region is included in the access region for
insertionsort from the design specification. The verification proceeds similarly
for procedure merge.

For the recursive procedure sort, the design specifies two access regions:
[d,d+n-1] and [t,t+n-1]. For the first recursive call to sort at line 13, the
compiler uses the design access regions to derive the access regions for this
particular call statement: [d,d+n/4-1] and [t,t+n/4-1]. It then verifies that
these access regions are included in the design access regions for sort: [d, d +
n/4− 1] ⊆ [d, d+ n− 1] and [t, t+ n/4− 1] ⊆ [t, t+ n− 1]. The compiler uses a
similar reasoning to verify that all the call statements in sort comply with the
design specification, and concludes that the implementation of sort conforms to
its design.

A negative result in the verification step often indicates a subtle array ad-
dressing bug. For example, changing the < operator to <= in lines 26, 29, or 30
causes the compiler to report that the procedure does not conform to its design,
as does changing l+1 to l on line 34.

2.4 Parallelization

There are two sources of concurrency in the example: the four recursive calls to
the sort procedure can execute in parallel, and the first two calls to the merge
procedure can execute in parallel. Executing these calls in parallel leads to a
recursively generated form of concurrency in which each parallel sort task, in
turn, recursively generates additional parallel tasks.

The compiler recognizes this form of concurrency by comparing pairs of region
expressions from different procedure calls and statements to determine if they
are independent. Two region expressions are independent if they denote disjoint
(non-overlapping) regions of memory or they both denote regions that are read.
In our example, the four recursive calls to the sort procedure access independent
region expressions and can execute in parallel with each other, as do the first
two calls to the merge procedure.

Design-Driven Compilation 157

Automatic
Parallelization

6 6

Bounds Analysis

Interprocedural
Access Region

Design Verification

Intraprocedural

Interprocedural
Pointer Design

Verification

Intraprocedural
Pointer Analysis

Sequential
Source
Code

Parallel
Code

Pointer
Design Information

Access Region
Design Information

--- -

Fig. 4. The Structure of the Compiler

3 Structure of the Compiler

Figure 4 presents the general structure of the compiler. The compiler first uses
a context-sensitive, flow-sensitive, and intraprocedural pointer analysis to verify
the pointer design information [15]. It next uses an intraprocedural algorithm to
verify the design access regions. Finally, it uses the verified design information
to automatically parallelize the computation. We next discuss the static analysis
and design verification algorithms in more detail.

3.1 Pointer Analysis and Design Verification

The intraprocedural pointer analysis extracts points-to information at each pro-
gram point1. It represents points-to information using points-to graphs [5]. The
nodes in this graphs are program variables, and the edges in the graph represent
points-to relations between variables. The compiler also handles dynamically al-
located objects, distinguishing between them based on their allocation site. The
compiler uses special variables, called ghost variables, to represent variables on
the stack that are not in the scope of the currently analyzed procedure, but are
accessible via parameters or global pointers from the current procedure.

In the intraprocedural analysis, our compiler uses a flow-sensitive, pointer
analysis algorithm [15]. It uses a standard dataflow analysis approach, with spe-
cific analysis rules for pointer assignments via copy, load, and store statements.
It uses the design information to compute transfer functions for procedure calls.
Each context in the design specifies a partial transfer function for that proce-
dure [18], and the analysis directly uses the output of the context whose input
matches the current points-to information at the call.

In the specifications, points-to graphs are represented as sets of edges be-
tween program variables. Dynamically allocated objects are specified using both
1 Although in this section we present how we verify points-to information, similar

techniques can be employed for any other dataflow information.

158 R. Rugina and M. Rinard

the name of the enclosing procedure that allocates them and a number indicat-
ing which allocation site within that procedure it is referring to. For instance
main:alloc1 represents an object allocated at the first dynamic allocation site
in procedure main. Ghost variables are specified using their type, for instance
ghost(int[10]) describes an array of integers allocated on stack, accessible,
but not visible to the current procedure.

When the analysis of each context completes, the compiler checks that the
analysis result for that context matches the corresponding output points-to in-
formation from the design. If the design is verified, the pointer analysis results
at each program point can be safely used in the following stages of the compiler.

3.2 Access Region Analysis and Design Verification

The compiler next uses the same approach of combining static analysis and
design verification to derive symbolic regions of memory that the whole compu-
tation of each procedure accesses. The lower and upper bounds of these regions
are symbolic polynomial expressions in the initial values of the parameters of
the enclosing procedure. Both the analysis and the design verification presented
in this section separately keep track of read and written regions of memory.

The symbolic access region in the specification represent regions within allo-
cation blocks. The general format of an access region within an allocation block
relative to a procedure f is: [p : l , h] where l and h are symbolic expressions in
the initial parameters of f and p is a pointer variable. This denotes a region with
lower bound l and upper bound h within all the allocation blocks pointed to by
p, at the beginning of f , for all points-to contexts of f . If the lower bound l is
a simple symbolic expression consisting of a single term equal to p, then we use
the shortcut notation [l , h]. All the specifications in our example from Figure 1
use this shortcut notation.

The compiler extracts and verifies the access region information as follows:

1. Static Analysis: The compiler first performs an intraprocedural analysis,
called bounds analysis, to extract lower and upper bounds for each pointer
and array index variable at each program point. The algorithm is presented
in detail in [16]. The compiler then uses the extracted bounds information
for pointers and array indices to derive access regions for each memory access
(i.e. each load and store) in the program. The compiler finally combines these
access regions for loads and stores and derives the regions of memory that
each procedure directly accesses.

2. Design Verification: The compiler next uses the intraprocedural access
region results to verify that the access region design specification correctly
characterizes the memory regions that the whole execution of each proce-
dure accesses. To verify the safety of the design access regions, the compiler
checks two conditions. First, the design access regions of each procedure
should include the access regions directly accessed by that procedure. Sec-
ond, the design access regions of each procedure should include the design
access regions of all its invoked procedures. If both conditions hold for all
procedures, the design is verifies. Otherwise, access design verification fails.

Design-Driven Compilation 159

During the verification process at call statements, the compiler uses the access
regions of the callee to derive an access region for the call statement. But the
analysis of the callee produces a result in terms of the initial values of the
callee’s parameters. The result for the caller must be expressed in terms of the
caller parameters, not the callee parameters. The symbolic unmapping algorithm
performs this change of analysis domain. A detailed description and a formal
definition of symbolic unmapping is given in [16]. The idea behind symbolic
umapping of an access region is to replace the callee’s parameters in the region
bounds with the actual parameters at the call site, and then use the bounds
information at the call site to express the access region in terms of the initial
values of the caller’s parameters.

Once it verifies the access region design information, the compiler can safely
use it to detect sequences of independent calls and generate parallel code to
execute them concurrently.

4 Experimental Results

We have implemented a compiler that combines the static analysis algorithms
and the design verification algorithms presented in this paper. This compiler
was implemented using the SUIF compiler infrastructure [1]. We implemented
all of the analyses, including the pointer analysis, from scratch starting with the
standard SUIF distribution. Our compiler generates parallel code in Cilk [7], a
parallel dialect of C.

We present experimental results for two recursive sorting programs (Quick-
sort and Mergesort), a divide and conquer blocked matrix multiply (BlockMul), a
divide and conquer LU decomposition (LU), and a scientific computation (Heat).
We would like to emphasize the challenging nature of the programs in this bench-
mark set. Most of them contain multiple mutually recursive procedures, and have
been heavily optimized by hand to extract the maximum performance. As a re-
sult, they heavily use low-level C features such as pointer arithmetic and casts.

4.1 Design Conformance

Using the approach presented on this paper, the compiler successfully verified
that all the benchmarks comply to both their pointer design and to their access
region design. The compiler used the extracted intraprocedural pointer informa-
tion and access region information to carry out the design verification process.

4.2 Design Information Size and Complexity

We compare the complexity of the access region design as opposed to the program
by computing the ratio of the number of bytes in the program divided by the
number of bytes in the design. Table 1 separately presents the results for pointer
design specifications and access region design specifications. which show that our
set of benchmark programs is between 6 and 27 times larger than their designs.

160 R. Rugina and M. Rinard

Table 1. Ratio of Program Size to Design Size

Program to Program to
Program Pointer Design Region Access Design

Ratio Ratio
Quicksort 10 15
Mergesort 6 14
Heat 10 12
BlockMul 15 27
LU 11 12

Table 2. Pointer Analysis Running Times (in seconds)

Pointer Analysis Pointer Analysis
Alone and Design Information

Quicksort 0.02 0.01
Mergesort 0.05 0.04
Heat 0.13 0.09
BlockMul 3.45 1.84
LU 0.30 0.15

Our own qualitative assessment of the design information is that it is very
easy for the designer to provide, in part because it is a natural, intuitive extension
of the procedure interface, and in part because it is so small in comparison with
the programs.

4.3 Compiler Complexity and Efficiency

Table 2 shows the running times of the pointer analysis phase using combined
program analysis and design information compared to program analysis alone.
The availability of design information can produce speedups up to a factor of 2
for our set of benchmarks. For the access region phase the running times were
roughly the same with and without design information. Here the bottleneck was
the intraprocedural analysis, which is executed in both cases.

The availability of design information significantly decreased both the com-
plexity and the implementation time of the analysis. Compared to the implemen-
tation in our previous work for the automatic parallelization of divide and con-
quer algorithms [14,16], the design-based approach presented in this paper elim-
inated sophisticated interprocedural algorithms based on fixed-point algorithms
or on reductions to linear programs. These complex analyses were replaced by
the simple design verification algorithms presented in the current paper. This
reduction in compiler complexity also translated in a reduction of implementa-
tion time from the order of months to the order of days for the replaced sections
of the compiler.

Design-Driven Compilation 161

Table 3. Absolute Speedups

Programs Number of Processors
1 2 4 6 8

Quicksort 1.00 1.99 3.89 5.68 7.36
Mergesort 1.00 2.00 3.90 5.70 7.41
Heat 1.03 2.02 3.89 5.53 6.83
BlockMul 0.97 1.86 3.84 5.70 7.54
LU 0.98 1.95 3.89 5.66 7.39

4.4 Automatic Parallelization

Our analysis was able to automatically parallelize all of the applications. We
ran the benchmarks on an eight processor Sun Ultra Enterprise Server. Table 3
presents the speedups. These speedups are given with respect to the sequential
versions, which execute with no Cilk overhead. For Heat, the Cilk program run-
ning on one processor runs faster than the sequential version, in which case the
absolute speedup is above one for one processor. We ran Quicksort and Merge-
sort on a randomly generated file of 8000000 numbers and BlockMul and LU on
a 1024 by 1024 matrix.

5 Related Work

5.1 Access Specifications

The concept of allowing programmers to specify how constructs access data is
a continually arising subtheme in programming languages. The effect system in
FX/87, for example, allows programmers to specify the effects of each procedure,
i.e., the regions that it accesses [8]. The type checking algorithm is extended to
statically verify that the specified effects correctly reflect the accesses of the
procedure. Access declarations in Jade allow programmers to specify how tasks
access shared objects [13]. The access declarations are used to parallelize the
program, and are dynamically checked by the Jade run-time system. In both
Jade and FX/87, the specifications operate at the granularity of complete objects
— there is no way to specify that a procedure or task accesses part of an array
or object. The access specifications in this paper, on the other hand, operate
at the granularity of subregions of the accessed arrays. They therefore enable
the compiler to recognize (and parallelize) procedure calls that access disjoint
regions of the same array.

5.2 Interprocedural Array Region Analysis

Several researchers have developed systems that automatically characterize the
array regions that procedures access. The first systems were designed to analyze

162 R. Rugina and M. Rinard

scientific programs with loop nests that manipulate dense matrices using affine
access functions [17,12,11]. These systems use the loop bounds and the array
index expressions to derive the array regions that each procedure accesses. They
then propagate accessed array regions from callees to callers to derive the re-
gions accessed by the complete execution of each procedure. Researchers have
recently generalized this approach for recursive procedures that access data via
pointers [14,9]. An issue is maintaining precision in the face of the fixed-point
computations used to analyze recursive procedures. Our recent generalization of
the intraprocedural approach presented in Section 3 to accurately analyze recur-
sive procedures without fixed-points eliminates this particular problem [16].

The bottom line is that it is possible, in principle, to attack the problem
of parallelizing divide and conquer programs without design information in the
form of access regions. We nevertheless see such design information and design
conformance as playing a desirable role in this context, for the following reasons:

– Simplicity: Access regions enable the compiler to apply a simple intraproce-
dural algorithm. Eliminating the interprocedural analysis significantly sim-
plifies the structure of the compiler and its analysis algorithms. Improve-
ments include increased confidence in the correctness of the compiler and a
reduction in the implementation time and complexity.

– Independence: Access regions enable the compiler to analyze and compile
each procedure independently of all other procedures. The analysis is there-
fore more efficient and scalable since it does not have to perform a global
analysis. The design information also enables the compiler to support sepa-
rate compilation, unanalyzable libraries, and missing code in programs under
development.

– Development Improvements: Access regions are an intuitive formaliza-
tion of a key aspect of the design of the program. They are easy for designers
to provide, in part because they simply crystalize information that the de-
signer must already have available to successfully design the algorithm, and
in part because the designer provides only a small amount of information at
procedure boundaries. They also provide a natural extension to standard pro-
cedure interfaces, improving the transparency of the code and giving clients
additional information about the interface of the procedure. Finally, they
can help the debugging process: subtle array addressing bugs often show up
as violations of the declared access regions.

6 Future Work

Information about the ranges of pointer and array index variables can be used
for purposes other than automatic parallelization. For example, many security
problems are caused by incorrect programs that an attacker can coerce into vio-
lating its array bounds. We believe that enabling the designer to explicitly state
the array referencing expectations inherent in the design would help developers
produce software without these problems. Developers could therefore use our

Design-Driven Compilation 163

approach to verify that the program has no security vulnerabilities caused by
array bounds violations.

Languages such as Java use dynamic checks to eliminate array bounds vio-
lations. The advantage is that array bounds violations are caught before they
corrupt the system; the disadvantage is the overhead of performing the array
bounds checks dynamically. And an array bounds violation is still an error, and
typically causes the program to fail. By statically verifying that programs do
not violate their array bounds, our proposed techniques can both eliminate dy-
namic array bounds check overhead and improve the reliability of the delivered
software.

7 Conclusion

This paper presents design-driven compilation, a technique for using design in-
formation to improve the analysis and compilation of the program. Design-driven
compilation uses design information to drive its analysis and verify that the pro-
gram conforms to its design. The main advantages of design-driven compilation
are the fidelity to the designer’s expectations, analysis modularity, and simplic-
ity and efficiency of the compiler. We have applied this approach to the problem
of automatic parallelization of divide and conquer programs. Our results show
that the design information is small compared to the program, works well with
the designer’s intuitive conception of the structure, decreases the complexity of
the compiler while increasing its efficiency, and enables the compiler to generate
parallel code with excellent performance.

In the future, we anticipate that design conformance will become an increas-
ingly important. In addition to enabling the compiler to better analyze both
complete and incomplete programs, it will also help designers and implementors
deliver more reliable programs that are guaranteed to conform to their designs.
We anticipate that this automatically checked connection between the design
and the implementation will significantly increase the role that formal designs
play during the implementation and maintainance phases, reducing the cost of
these phases and increasing the robustness of the delivered software.

Acknowledgements. We would like to thank Daniel Jackson for many inter-
esting conversations regarding design conformance.

References

1. S. Amarasinghe, J. Anderson, M. Lam, and C. Tseng. The SUIF compiler for scal-
able parallel machines. In Proceedings of the Eighth SIAM Conference on Parallel
Processing for Scientific Computing, February 1995.

2. R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. Cilk:
An efficient multithreaded runtime system. In Proceedings of the 5th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, Santa Bar-
bara, CA, July 1995. ACM, New York.

164 R. Rugina and M. Rinard

3. S. Chatterjee, A. Lebeck, P. Patnala, and M. Thottethodi. Recursive array layouts
and fast matrix multiplication. In Proceedings of the 11th Annual ACM Symposium
on Parallel Algorithms and Architectures, Saint Malo, France, June 1999.

4. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introductions to Algorithms. The
MIT Press, Cambridge, Mass., Cambridge, MA, 1990.

5. Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive inter-
procedural points-to analysis in the presence of function pointers. In Proceedings of
the SIGPLAN ’94 Conference on Program Language Design and Implementation,
Orlando, FL, June 1994.

6. J. Frens and D. Wise. Auto-blocking matrix-multiplication or tracking BLAS3 per-
formance from source code. In Proceedings of the 6th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, Las Vegas, NV, June 1997.

7. M. Frigo, C. Leiserson, and K. Randall. The implementation of the Cilk-5 multi-
threaded language. In Proceedings of the SIGPLAN ’98 Conference on Program
Language Design and Implementation, Montreal, Canada, June 1998.

8. D. Gifford, P. Jouvelot, J. Lucassen, and M. Sheldon. FX-87 reference man-
ual. Technical Report MIT/LCS/TR-407, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, September 1987.

9. M. Gupta, S. Mukhopadhyay, and N. Sinha. Automatic parallelization of recursive
procedures. Technical report, IBM T. J. Watson Research Center, 1999.

10. F. Gustavson. Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBM Journal of Research and Development, 41(6):737–755,
November 1997.

11. M.W. Hall, S.P. Amarasinghe, B.R. Murphy, S. Liao, and M.S. Lam. Detecting
coarse-grain parallelism using an interprocedural parallelizing compiler. In Pro-
ceedings of Supercomputing ’95, San Diego, CA, December 1995. IEEE Computer
Society Press, Los Alamitos, Calif.

12. P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular
section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350–
360, July 1991.

13. M. Rinard and M. Lam. The design, implementation, and evaluation of jade. ACM
Transactions on Programming Languages and Systems, 20(3):483–545, May 1998.

14. R. Rugina and M. Rinard. Automatic parallelization of divide and conquer algo-
rithms. In Proceedings of the 7th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Atlanta, GA, May 1999.

15. R. Rugina and M. Rinard. Pointer analysis for multithreaded programs. In Pro-
ceedings of the SIGPLAN ’99 Conference on Program Language Design and Im-
plementation, Atlanta, GA, May 1999.

16. R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indexes,
and accessed memory regions. In Proceedings of the SIGPLAN ’00 Conference on
Program Language Design and Implementation, Vancouver, Canada, June 2000.

17. R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of CALL statements.
In Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, Palo
Alto, CA, June 1986.

18. R. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C pro-
grams. In Proceedings of the SIGPLAN ’95 Conference on Program Language
Design and Implementation, La Jolla, CA, June 1995.

	Introduction
	Design Conformance
	Automatic Parallelization of Divide and Conquer Programs

	Example
	Design Information
	Pointer Design Conformance
	Access Region Design Verification
	Parallelization

	Structure of the Compiler
	Pointer Analysis and Design Verification
	Access Region Analysis and Design Verification

	Experimental Results
	Design Conformance
	Design Information Size and Complexity
	Compiler Complexity and Efficiency
	Automatic Parallelization

	Related Work
	Access Specifications
	Interprocedural Array Region Analysis

	Future Work
	Conclusion

