Interprocedural Shape Analysis for Recursive
Programs

Noam Rinetzky*! and Mooly Sagiv?

! Computer Science Department, Technion, Technion City, Haifa 32000, Israel
maon@cs.technion.ac.il
2 Computer Sciences Department, Tel-Aviv University, Tel-Aviv 69978, Israel
msagiv@acm.org

Abstract. A shape-analysis algorithm statically analyzes a program to
determine information about the heap-allocated data structures that the
program manipulates. The results can be used to optimize, understand,
debug, or verify programs. Existing algorithms are quite imprecise in
the presence of recursive procedure calls. This is unfortunate, since re-
cursion provides a natural way to manipulate linked data structures. We
present a novel technique for shape analysis of recursive programs. An
algorithm based on our technique has been implemented. It handles pro-
grams manipulating linked lists written in a subset of C. The algorithm
is significantly more precise than existing algorithms. For example, it can
verify the absence of memory leaks in many recursive programs; this is
beyond the capabilities of existing algorithms.

1 Introduction

A shape-analysis algorithm statically analyzes a program to determine infor-
mation about the heap-allocated data structures that the program manipulates.
The analysis algorithm is conservative, i.e., the discovered information is true for
every input. The information can be used to understand, verify, optimize [6], or
parallelize [II8IT12] programs. For example, it can be utilized to check at compile-
time for the absence of certain types of memory management errors, such as
memory leakage or dereference of null pointers [5].

This paper addresses the problem of shape analysis in the presence of recur-
sive procedures. This problem is important since recursion provides a natural
way to manipulate linked data structures. We present a novel interprocedural
shape analysis algorithm for programs manipulating linked lists. Our algorithm
analyzes recursive procedures more precisely than existing algorithms. For ex-
ample, it is able to verify that all the recursive list-manipulating procedures of a
small library we experimented with always return a list and never create mem-
ory leaks (see Sect. [)). In fact, not only can our algorithm verify that correct
programs do not produce errors, it can also find interesting bugs in incorrect pro-
grams. For instance, it correctly finds that the recursive procedure rev shown

* Partially supported by the Technion and the Israeli Academy of Science.

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 133-[[49, 2001.
© Springer-Verlag Berlin Heidelberg 2001

134 N. Rinetzky and M. Sagiv
typedef L rev(L x) { lo: void main() {
struct node{ L xn, t; L hd, z ;
int d; if (x == NULL) hd = create(8);
struct node *n; return NULL; l3: z = rev(hd);
}o*L; Xn = x->n; }
x->n = NULL;
l1: t = rev(zn);
return app(t, x);
l2: }
(a) (b) (©)
L create(int s) { L app(L p, L @) {
L tmp, tl; L r;
if (s <= 0) return NULL; if (p == NULL) return q;
tl = create(s-1); r =p;
tmp = (L) malloc(sizeof (*L)); while(r->n != NULL) r = r->n;
tmp->n = tl; tmp->d = s; r->n = q;
return tmp; return p;
} }
(d) (e)

Fig.1. (a) A type declaration for singly linked lists. (b) A recursive procedure which
reverses a list in two stages: reverse the tail of the original list and store the result in
t; then append the original first element at the end of the list pointed to by t. (c¢) The
main procedure creates a list and then reverses it. We also analyzed this procedure
with a recursive version of app (see Sect.[5l) (d) A recursive procedure that creates a
list. (e) A non-recursive procedure that appends the list pointed to by q to the end of
the list pointed to by p

in Fig.[[b), which reverses a list (declared in Fig.[[[a)) returns an acyclic linked
list and does not create memory leaks. Furthermore, if an error is introduced by
removing the statement x->n = NULL, the resultant program creates a cyclic list,
which leads to an infinite loop on some inputs. Interestingly, our analysis locates
this error. Such a precise analysis of the procedure rev is quite a difficult task
since (i) rev is recursive, and thus there is no bound on the number of activation
records that can be created when its executes; (ii) the global store is updated
destructively in each invocation; and (iii) the procedure is not tail recursive: It
sets the value of the local variable x before the recursive call and uses it as an
argument to app after the call ends. No other shape-analysis algorithm we know
of is capable of producing results with such a high level of precision for programs
that invoke this, or similar, procedures.

A shape-analysis algorithm, like any other static program-analysis algorithm,
is forced to represent execution states of potentially unbounded size in a bounded
way. This process, often called summarization, naturally entails a loss of infor-
mation. In the case of interprocedural analyses, it is also necessary to summarize
all incarnations of recursive procedures in a bounded way.

Interprocedural Shape Analysis for Recursive Programs 135

Shape-analysis algorithms can analyze linked lists in a fairly precise way,
e.g., see [15]. For an interprocedural analysis, we therefore follow the approach
suggested in [4]11] by summarizing activation records in essentially the same way
linked list elements are summarized. By itself, this technique does not retain the
precision we would like. The problem is with the (abstract) values obtained for
local variables after a call. The abstract execution of a procedure call forces the
analysis to summarize, and the execution of the corresponding return has the
problem of recovering the information lost at the call. Due to the lack of enough
information about the potential values of the local variables, the analysis must
make overly conservative assumptions. For example, in the rev procedure, if the
analysis is not aware of the fact that each list element is pointed to by no more
than one instance of the variable x, it may fail to verify that rev returns an
acyclic list (see Example 4.3).

An important concept in our algorithm is the identification of certain global
properties of the heap elements pointed to by a local (stack-allocated) pointer
variable. These properties describe potential and definite aliases between pointer
access paths. This allows the analysis to handle return statements rather pre-
cisely. For example, in the rev procedure shown in Fig.[[{b), the analysis deter-
mines that the list element pointed to by x is different from all the list elements
reachable from t just before the app procedure is invoked, which can be used to
conclude that app must return an acyclic linked list. Proving that no memory
leaks occur is achieved by determining that if an element of the list being reversed
is not reachable from t at [y, then it is pointed to by at least one instance of x.

A question that comes to mind is how our analysis determines such global
properties in the absence of a specification. Fortunately, we found that a small
set of “local” properties of the stack variables in the analyzed program can
be used to determine many global properties. Furthermore, our analysis does
not assume that a local property holds for the analyzed program. Instead, the
analysis determines the stack variables that have a given property. Of course, it
can benefit from the presence of a specification, e.g., [9], which would allow us
to look for the special global properties of the specified program.

For example, the property sh~(v) holds for a list element v that is pointed to
by two or more invisible instances of the parameter x from previous activation
records. When sh;(v) does not hold for any list element, we have a guarantee
that no list element is pointed to by more than one instance of the variable x.
This simple local property plays a vital rule in verifying that the procedure
rev returns an acyclic list (see Example 4.3). Interestingly, this property also
sheds some light on the importance of tracking the sharing properties of stack
variables. Existing intraprocedural shape-analysis algorithms [2ITO/T4/T5] only
record sharing properties of the heap since the number of variables is fixed in
the intraprocedural setting. However, in the presence of recursive calls, different
incarnations of a local variable may point to the same heap cell.

The ability to have distinctions between invisible instances of variables based
on their local properties is the reason for the difference in precision between our
method and the methods described in [TJ2I7I8T214]. In Sect.d, we also exploit

136 N. Rinetzky and M. Sagiv

properties that capture relationships between the stack and the heap. In many
cases, the ability to have these distinctions also leads to a more efficient analysis.
Technically, these properties and the analysis algorithm itself are explained (and
implemented) using the 3-valued logic framework developed in [L3]15]. While
our algorithm can be presented in an independent way, this framework provides
a sound theoretical foundation for our ideas and immediately leads to the pro-
totype implementation described in Sect. 5l Therefore, Sect. B] presents a basic
introduction to the use of 3-valued logic for program analysis.

2 Calling Conventions

In this section, we define our assumption about the programming language call-
ing conventions. These conventions are somewhat arbitrary; in principle, different
ones could be used with little effect on the capabilities of the program analyzer.
Our analysis is not effected by the value of non-pointer variables. Thus, we do
not represent scalars (conservatively assuming that any value is possible, if nec-
essary), and in the sequel, restrict our attention to pointer variables.

Without loss of generality, we assume that all local variables have unique
names. Every invoked procedure has an activation record in which its local vari-
ables and parameters are stored. An invocation of procedure f at a call-site
label is performed in several steps: (i) store the values of actual parameters and
label in some designated global variables; (ii) at the entry-point of f, create a
new activation record at the top of the stack and copy values of parameters and
label into that record; (iii) execute the statements in f until a return statement
occurs or f’s exit-point is reached (we assume that a return statement stores
the return value in a designated global variable and transfers the control to f’s
exit-point); (iv) at f’s exit-point, pop the stack and transfer control back to
the matching return-site of label; (v) at the return-site, copy the return value if
needed and resume execution in the caller.

The activation record at the top of the stack is referred to as the current
activation record. Local variables and parameters stored in the current activation
record and global variables are called wvisible; local variables and parameters
stored in other activation records are invisible.

2.1 The Running Example

The C program whose main procedure shown in Fig.[[] (¢) invokes rev on a list
with eight elements. This program is used throughout the paper as a running
example. In procedure rev, label I; plays the role of the recursive call site, Iy
that of rev’s entry point, and Iy of rev’s exit point.

3 The Use of 3-Valued Logic for Program Analysis

The algorithm is explained (and implemented) using the 3-valued logic frame-
work developed in [T3I5]. In this section, we summarize that framework, which
shows how 3-valued logic can serve as the basis for program analysis.

Interprocedural Shape Analysis for Recursive Programs 137

Table 1. The core predicates used in this paper. There is a separate predicate g for
every global program variable g, x for every local variable or parameter x, and ¢sigpel
for every label label immediately preceding a procedure call

lPredicate[Intended Meaning ‘

heap(v) |v is a heap element.
stack(v) |v is an activation record.
cSiabel(v) |label is the call-site of the procedure whose activation record is v.

g(v) The heap element v is pointed to by a global variable g.
n(vi,v2) |The n-component of list element v1 points to the list element vs.

top(v) v is the current activation record.
pr(vi,v2) |The activation record v; is the immediate previous activation
record of vy in the stack.

z(vi,v2) |The local (parameter) variable x, which is stored in activation
record v1, points to the list element vs.

3.1 Representing Memory States via 2-Valued Logical Structures

A 2-valued logical structure S is comprised of a set of individuals (nodes) called
a universe, denoted by U®, and an interpretation over that universe for a set of
predicate symbols called the core predicates. The interpretation of a predicate
symbol p in S is denoted by p®. For every predicate p of arity k, p° is a function
p¥: (U%)* — {0,1}.

In this paper, 2-valued logical structures represent memory states. An in-
dividual corresponds to a memory element: either a heap cell (a list element)
or an activation record. The core predicates describe atomic properties of the
program memory state. The properties of each memory element are described
by unary core predicates. The relations that hold between two memory elements
are described by binary core predicates. The core predicates’ intended meaning
is given in Table [[l This representation intentionally ignores the specific values
of pointer variables (i.e., the specific memory addresses that they contain), and
record only certain relationships that hold among the variables and memory
elements:

— Every individual v represents either a heap cell in which case heap®(v) = 1,
or an activation record, in which case stack®(v) = 1.

— The unary predicate csjqpe; indicates the call-site at which a procedure is
invoked. Its similarities with the call-strings of [16] are discussed in Sect. [Gl.

— The unary predicate top is true for the current activation record.

— The binary relation n captures the n-successor relation between list elements.

— The binary relation pr connects an activation record to the activation record
of the caller.

— For a local variable or parameter named x, the binary relation x captures
its value in a specific activation record.

138 N. Rinetzky and M. Sagiv

2-valued logical structures are depicted as directed graphs. A directed edge
between nodes w1 and us that is labeled with binary predicate symbol p indicates
that p®(uy,uz) = 1. Also, for a unary predicate symbol p, we draw p inside a
node u when p¥(u) = 1; conversely, when p®(u) = 0 we do not draw p in u. For
clarity, we treat the unary predicates heap and stack in a special way; we draw
nodes u having heap® (u) =1 as ellipses to indicate heap elements; and we draw
nodes having stackS (u) = 1 as rectangles to indicate stack elements][J]

Fig. 2. The 2-valued structure Sg}, which corresponds to the program state at l2 in the
rev procedure upon exit of the fourth recursive invocation of the rev procedure

Example 3.1 The 2-valued structure qﬂ shown in Fig.[2l corresponds to the
memory state at program point s in the rev procedure upon exit from the fourth
invocation of the rev procedure in the running example. The five rectangular
nodes correspond to the activation records of the five procedure invocations.
Note that our convention is that a stack grows downwards. The current activa-
tion record (of rev) is drawn at the bottom with top written inside. The three
activation records (of rev) drawn above it correspond to pending invocations of
rev.

The three isolated heap nodes on the left side of the figure correspond to the
list elements pointed to by x in pending invocations of rev. The chain of five
heap nodes to the right correspond to the (reversed) part of the original list. The
last element in the list corresponds to the list element appended by app invoked
just before [y in the current invocation of rev.

Notice that the n predicate is the only one that is specific to the linked list
structure declared in Fig.[l(a). The remaining predicates would play a rule in
the analysis of any data structure.

! This can be formalized alternatively using many sorted logics. We avoided that for
the sake of simplicity, and for similarity with [15].

Interprocedural Shape Analysis for Recursive Programs 139

3.2 Consistent 2-Valued Structures

Some 2-valued structures cannot represent memory states, e.g., when a unary
predicate g holds at two different nodes for a global variable g. A 2-valued
structure is consistent if it can represent a memory state. It turns out that the
analysis can be more precise by eliminating inconsistent 2-valued structures.
Therefore, in Sect. we describe a constructive method to check if a 2-valued
structure is inconsistent and thus can be discarded by the analysis.

3.3 Kleene’s 3-Valued Logic

Kleene’s 3-valued logic is an exten-

1 1
sion of ordinary 2-valued logic with the AOT VO L alf -
special value of 1 (unknown) for cases in 0{00 offojo1 Zfjlo|1
which predicates could have either value, 110 1 % 111 1lll1]o
i.e.,, 1 (true) or 0 (false). Kleene’s inter- 1ot 2flfz]zq zfff 2]z
pretation of the propositional operators 21- 2 20212~ 2]j[[2] 2

is given in Fig.B. We say that the values
0 and 1 are definite values and that % is
an indefinite value.

Fig. 3. Kleene’s 3-valued interpreta-
tion of the propositional operators

3.4 Conservative Representation of Sets of Memory States via
3-Valued Structures

Like 2-valued structures, a 3-valued logical structure S is also comprised of a
universe U® and an interpretation of the predicate symbols. However, for every
predicate p of arity k, p¥ is a function p%: (U%)* — {0,1, 1}, where 1 explicitly
captures unknown predicate values.

3-valued logical structures are also drawn as directed graphs. Definite values
are drawn as in 2-valued structures. Binary indefinite predicate values are drawn
as dotted directed edges. Also, we draw p = % inside a node u when p°(u) = %

Let S? be a 2-valued structure, S be a 3-valued structure, and f: Ust 5 us
be a surjective function. We say that f embeds S into S if for every predicate
p of arity k and uq,...,u, € USH, either psh(ul, conyug) = pI(flur), ..., flug))
or p*(f(u1),..., f(ur)) = 5. We say that S conservatively represents all the 2-
valued structures that can be embedded into it by some function f. Thus, S can
compactly represent many structures.

Nodes in a 3-valued structure that may represent more than one individual
from a given 2-valued structure are called summary nodes. We use a designated
unary predicate sm to maintain summary-node information. A summary node
w has sm®(w) = %, indicating that it may represent more than one node from
2-valued structures. These nodes are depicted graphically as dotted ellipses or
rectangles. In contrast, if sm®(w) = 0, then w is known to represent a unique
node. We impose an additional restriction on embedding functions: only nodes
with sm®(w) = & can have more than one node mapped to them by an embed-

2
ding function.

140 N. Rinetzky and M. Sagiv

Example 3.2 The 3-valued structure §7) shown in Fig.[d represents the 2-valued
structure Sp) shown in Fig.2l The dotted ellipse summary node represents all
the eight list elements. The indefiniteness of the self n-edge results from the
fact that there is an n-component pointer between each two successors and no
n-component pointer between non-successors.

The dotted rectangle summary node represents the activation records from
the second and third invocation of rev. The unary predicate cs;; drawn inside
it indicates that it (only) represents activation records of rev that return to [y
(i.e., recursive calls). The dotted xz-edge from this summary node indicates that

an invisible instance of x from the

" second or the third call may or may

CSepit hd % not point to one of the list elements.
prh z,an The rectangle at the top of Fig.[rep-
e resents the activation record at the

CSig top of Fig.[l which is the invocation

prh of main. The second rectangle from
. @an,t the top in Sg represen'ts the se.con'd

7 rectangle from the top in g which is
pr " opr an invocation of rev from main (in-
csi,, top dicated by the occurrence of c¢s;, in-

side this node). The bottom rectangle

in §7 represents the bottom rectangle

i hich is th t activati
Fig. 4. The 3-valued structure S@ which 1n S]z" WhIChL 15 TRe curtent activation

. record (indicated by the occurrence of
represents the 2-valued structure shown in
Fig. 2] top inside this node). All other activa-

tion records are known not to be the
current activation record (i.e., the top predicate does not hold for these nodes)
since top does not occur in either of them.

3.5 Expressing Properties via Formulae

Properties of structures can be extracted by evaluating formulae. We use first-
order logic with transitive closure and equality, but without function symbols
and constant symbolsE For example, the formula

Juy, vz + ~top(vr) A —top(v2) Avr # v2 A z(vr,v) Az(vz,v) (1)

expresses the fact that there are two different invisible instances of the parameter
variable x pointing to the same list element v.

The Embedding Theorem (see [15] Theorem 3.7]) states that any formula
that evaluates to a definite value in a 3-valued structure evaluates to the same
value in all of the 2-valued structures embedded into that structure. The Embed-
ding Theorem is the foundation for the use of 3-valued logic in static-analysis: It

2 There is one non-standard aspect in our logic; v1 = v2 and vy # ve are indefinite in
case v1 and vz are the same summary node. The reason for this is seen shortly.

Interprocedural Shape Analysis for Recursive Programs 141

ensures that it is sensible to take a formula that—when interpreted in 2-valued
logic—defines a property, and reinterpret it on a 3-valued structure S: The Em-
bedding Theorem ensures that one must obtain a value that is conservative with
regard to the value of the formula any 2-valued structure represented by S.

Example 3.3 Consider the 2-valued structure Spj shown in Fig.2l The for-
mula () evaluates to 0 at all of the list nodes. In contrast, consider the 3-valued
structure S shown in Fig.A This formula (I) evaluates to 5 at the dotted el-
lipse summary heap node. This is in line with the Embedding Theorem since %
is less precise than 0. However, it is not very precise since the fact that different

invisible instances of x are never aliased is lost.

4 The Algorithm

In this section, we describe our shape-analysis algorithm for recursive programs
manipulating linked lists. The algorithm iteratively annotates each program
point with a set of 3-valued logical structures in a conservative manner, i.e.,
when it terminates, every 2-valued structure that can arise at a program point is
represented by one of the 3-valued structures computed at this point. However,
it may also conservatively include superfluous 3-valued structures.

Sect. 1] describes the properties of heap elements and local variables which
are tracked by the algorithm. For ease of understanding, in Sect.[£2] we give a
high-level description of the iterative analysis algorithm. The actual algorithm
is presented in Sect. [43]

4.1 Observing Selected Properties

To overcome the kind of imprecision described in Example 3.3, we introduce
instrumentation predicates. These predicates are stored in each structure, just
like the core predicates. The values of these predicates are derived from the
core predicates, that is, every instrumentation predicate has a formula over the
set of core predicates that defines its meaning. The instrumentation predicates
that our interprocedural algorithm utilizes are described in Table [3, together
with their informal meaning and their defining formula (other intraprocedural
instrumentation predicates are defined in [15]).

The instrumentation predicates are divided into four classes, separated by
double horizontal lines in Table 2} (i) Properties of heap elements with respect
to visible variables, i.e., z and 7, 5. These are the ones originally used in [T5].
(ii) Properties of heap elements with respect to invisible variables. These are
Z and 7, which are variants of z and r, , from the first class, but involve
the invisible variables. The sh~(v) predicate is motivated by Example 3.3. It is
similar to the heap-sharing predicate used in [2JI0JI4JT5]. (iii) Generic properties
of an individual activation record. For example, nn2(u) = 1 (nn for not NULL)
in a 2-valued structure S indicates that the invisible instance of x that is stored in
activation record u points to some list element. (iv) Properties across successive

142 N. Rinetzky and M. Sagiv

Table 2. The instrumentation predicates used for the interprocedural analysis. Here
z and y are generic names for local variables and parameters x and y of an analyzed
function. The n* notation used in the defining formula for 7, ,(v) denotes the reflexive
transitive closure of n

’Predicate {Intended Meaning {Deﬁning Formula ‘
z(v) The list element v is pointed to by the visible |Jv; : top(vi) A z(v1,v)
instance of x.
Tn,z (V) The list element v is reachable by following Jui, v 1 top(vi)A
n-components from the visible instance of x. x(v1, v2) An*(v2,v)
z(v) The list element v is pointed to by an invisible |Jv; : =top(vi) A z(v1,v)
instance of x.
r ~(v) The list element v is reachable by following Juy,v2 1 top(vi)A
’ n-component from an invisible instance of x. z(v1,v2) An*(v2,v)
shg(v) The list element v is pointed to by more than [Jvi, v : v1 # v2A
one invisible instance of x. —top(v1) A —top(va)A
x(v1,v) A x(v2,v)
nn/m\(v) The invisible instance of x stored in the vy : —top(v) A (v, v1)
activation record v points to some list element.
aly,y(v) The invisible instances of x and y stored in Ju1 : ~top(v)A
the activation record v are aliased. z(v,v1) Ay(v,v1)
aly pry) (V) The instance of x stored in the activation Fuy, vz : pr(v,vi)A
record v is aliased with the instance of y z(v,v2) A y(vi,v2)
stored in v’s previous activation record.
alz‘,p,.[y]_m(v) The instance of x stored in the activation vy, v, v3 :
record v is aliased with y->n for the instance | z(v,v1) A pr(v,v2)A
of y stored in v’s previous activation record. y(v2,v3) An(vs,v1)
alysn priy](v)|x=>n for the instance of x stored in the Jv1, v2,v3 :
activation record v is aliased with the instance | z(v,v2) A n(vz,v1)A
of y stored in v’s previous activation record. pr(v,vs) Ay(vs,v1)

recursive calls. For example, the predicate al, [, captures aliasing between x
at the callee and y at the caller. The other properties are similar but also involve
the n component.

Example 4.1 The 3-valued structure Sg shown in Fig.[l also represents the
2-valued structure §g shown in Fig.2l In contrast with Sz shown in Fig.H in
which all eight list elements are represented by one heap node, in S} they are
represented by six heap nodes. The leftmost heap node in Sp) represents the
leftmost list element in Sy (which was originally the first list element). The
fact that hd is drawn inside this node indicates that it represents a list element
pointed to by an invi§i\ble instance of hd. This fact can also be extracted from
Sp) by evaluating the hd defining formula at this node, but this is not always the
case, as we will now see: The second leftmost heap node is a summary node that
represents both the second and third list elements from the left in S There is an
indefinite z-edge into this summary node. Still, since T is drawn inside it, every
list element it represents must be pointed to by at least one invisible instance

Interprocedural Shape Analysis for Recursive Programs 143

cSs nn %—hd
. ~
exity hd _

CSiq, alz,p'r[zn]
nn~, nn~
x zn

A

pr ; pr

csy, , top

alac,pr[xn]

Fig. 5. The 3-valued structure Sg represents the 2-valued structure shown in Fig.[2
For clarity, we do not show r, , for nodes having the property x

of x. Therefore, the analysis can determine that this node does not represent
storage locations that have been leaked by the program.

The other summary heap node (the second heap node from the right) repre-
sents the second and third (from the right) list elements of Sp} Its incoming n
edge is indefinite. Still, since 7, ¢ occurs inside this node, we know that all the
list elements it represents are reachable from t.

Note that the predicate sh~ does not hold for any heap node in §g. Therefore,
no list element in any 2-valued structure that Sp) represents is pointed to by
more than one invisible instance of the variable x. Note that the combination
of sh~(u) = 0 (pointed to by at most one invisible instance of x) and Z() = 1
(pointed to by at least one invisible instance of x) allows determining that each
node represented by a summary node u is pointed to by exactly one invisible
instance of x (cf. the second leftmost heap node in Sg)).

The stack elements are depicted in the same way as they are depict by Sz (see
Example 3.2). Since al, ,,[n) Occurs inside the two stack nodes at the bottom,
for every activation record v they represent, the instance of x stored in v is
aliased with the instance of xn stored in the activation record preceding v.

Notice that the ry 5, r =,
strumentation predicates specific to the linked list structure declared in Fig.[I(a).

The remaining predicates would play a role in any analysis that would attempt
to analyze the runtime stack.

aly priy]—sn> Ale—n pr[y] Predicates are the only in-

144 N. Rinetzky and M. Sagiv

4.2 The Best Abstract Transformer

This section provides a high level description of the algorithm in terms of the
general abstract interpretation framework [3]. Conceptually, the most precise
(also called best) conservative effect
set of consistent [st] set of consistent of a prograim Staten_lent on a s_valued
2-valued structures 2-valued structures loglcal structul.re S _IS deﬁned in three
stages shown in Fig.[} (i) find each
concretization abstraction consistent 2-valued structure S® rep-
3-valued structure set of 3-valued resented by S (concretization); (11) ap-
structures ply the C operational semantics to ev-
ery such structure S/h resulting in a 2-
.) valued structure S® and (iii) finally
Flgt(: Thte best ,&bStraCt tsetma;tlci O(f abstract/each of the 2-valued struc-
a statement st with respect to J-valued ¢ g by a 3-valued structure of
structures. [st] is the operational seman- . .
) . L bounded size (abstraction). Thus, the
tics of st applied pointwise to every con- .
sistent 2-valued structure result of the statement is a set of 3-
valued structures of bounded size.

The Abstraction Principle. The abstraction function is defined by a subset
of the unary predicates, that are called abstraction properties in [I5]. The ab-
straction of a 2-valued structure is defined by mapping all the nodes which have
the same values for the abstraction properties into the same abstract node. Thus,
the values of abstraction predicates remain the same in the abstracted 3-valued
structures. The values of every other predicate p in the abstracted 3-valued
structure are determined conservatively to yield an indefinite value whenever
corresponding values of p in the represented concrete 2-valued structure dis-
agree.

Example 4.2 The structure Sz shown in Fig.@lis an abstraction of Spshown
in Fig.[2 when all of the unary core predicates are used as abstraction properties.
For example, the activation records of the second and third recursive call to rev
are both mapped into the summary stack node since they are both invisible
activation records of invocations of rev from the same call-site (i.e., top does not
hold for these activation records, but cs;, does). Also, all of the eight heap nodes
are mapped to the same summary-node for which only the heap core predicate
holds. The pr-edge into the stack node at the top of the figure is definite since
there is only one node mapped to each of the edge’s endpoints. In contrast,
the hd-edge emanating from the uppermost stack node must be indefinite in
order for Sqjto conservatively represent Sgp In Sy the hd predicate holds for the
uppermost stack node and the leftmost heap node, but it does not hold for any
other heap node, and all heap nodes of §g| are summarized into one summary
heap node.

The structure Sgj shown in Fig.Bl is an abstraction of Sg shown in Fig.2]
when the abstraction properties are all of the unary core and instrumentation
predicates. Notice that nodes with different observed properties lead to different

Interprocedural Shape Analysis for Recursive Programs 145

instrumentation predicate values and thus are never represented by the same
abstract node. Because the set of unary predicates is fixed, there can only be a
constant number of nodes in an abstracted structure which guarantees that the
analysis always terminates.

Analyzing Return Statements. How to retain precision when the analysis
performs its abstract execution across a return statement is the key problem that
we face. By exploiting the instrumentation predicates, our technique is capable of
handling return statements quite precisely. This is demonstrated in the following
example. For expository purposes we will explain the abstract execution of return
statement in term of the best abstract transformer, described in Sect. The
actual method our analysis uses is discussed in Sect. E3}

Example 4.3 Let us exemplify the application of the return statement to the
3-valued structure Sg) shown in Fig.Bl following the stages of the best iterative
algorithm described in Sect.

Stage I-Concretization : Let S be one of the consistent 2-valued structures
represented by SE Let k£ > 1 be the number of activation records represented by
the summary stack node in Sg} Since S % is a consistent 2-valued structure, the
x parameter variable in each of these k activation records must point to one of
the isolated list elements represented by the left summary heap node. This can
be inferred by the following series of observations: the fact that the x variable
in each of these activation records points to a list element is indicated by the
presence of nn~ inside the stack summary node. The list elements pointed to by
these variables must be represented by the left summary heap node since only
one z-edge emanates from the summary stack node, and this edge enters the left
summary heap node.

Let m > 1 be the number of list elements represented by the left summary
heap node. Since T occurs inside this node, each of the m list elements it repre-
sents must be pointed to by at least one invisible instance of x. Thus, m < k.
However since sh~ does not occur inside this summary node, none of the m list
elements it represents is pointed to by more than one invisible instance of x.
Thus, we conclude that m = k.

Using the fact that al, py[n) is drawn inside the two stack nodes at the
bottom of Fig.[H, we conclude that the instance of x in each recursive invocation
of rev is aliased with the instance of xn of rev’s previous invocation. Thus,
each acceptable S% looks essentially like the structure shown in Fig.2 but with
k isolated list elements not pointed to by hd, rather than two, and with some
number of elements in the list pointed to by x.

Stage II-Applying the Operational Semantics: Applying the operational se-
mantics of return to S? (see Sect. B)) results in a (consistent) 2-valued structure
5%, Note that the list element pointed to by the visible instance of x in 5% is not
pointed to by any other instance of x, and it is not part of the reversed suffix.
Thus 5% differs from S by having the top activation record of S* removed from
the stack and by having the activation record preceding it be the new current
activation record.

146 N. Rinetzky and M. Sagiv

Stage I1I-Abstraction.: Abstracting S % into a 3-valued structure may result,
depending on k, in one of three possible structures. If k& > 2 then the result-
ing structure is very similar to Sg], since the information regarding the number
of remaining isolated list elements and invisible activation record is lost in the
summarization. For k = 1 and k = 2 we have a consistent 2-valued structures
with four and three activation records, respectively. Abstracting these structures
results in no summary stack nodes, since the call-site of each non-current acti-
vation record is different. For k¥ = 1 only one isolated list elements remains,
thus it is not summarized. For k = 2 the two remaining isolated heap nodes are
not merged since they are pointed to by different (invisible) local variables. For
example, one of them is pointed to by hd and the other one is not.

Notice that if no instrumentation predicates correlating invisible variables
and heap nodes are maintained, a conservative analysis cannot deduce that the
list element pointed to by the visible instance of x in 5% is not pointed to by
another instance of this variable. Thus, the analysis must conservatively assume
that future calls to app may create cycles. However, even when al, ,p(zn) is not
maintained, the analysis can still produce fairly accurate results using only the
sh~ and 7 instrumentation predicates.

4.3 Our Iterative Algorithm

Unlike a hypothetical algorithm based on the best abstract transformer which
explicitly applies the operational semantics to each of the (potentially infinite)
structures represented by a three-valued structure S, our algorithm explicitly
operates on S, yielding a set of 3-valued structures S’. By employing a set of
judgements, similar in spirit to the ones described Example 4.3 our algorithm
produces a set which conservatively represents all the structures that could arise
after applying the return statement to each consistent 2-valued structure S
represents. However, in general, the transformers used are conservative approx-
imations of the best abstract transformer; the set of structures obtained may
represent more 2-valued structures than those represented by applying the best
abstract transformer. Our experience to date, reported in Sect.[H, indicates that
it usually gives good results.

Technically, the algorithm computes the resulting 3-valued structure S’ by
evaluating formulae in 3-valued logic. When interpreted in 2-valued logic these
formulae define the operational semantics. Thus, the Embedding Theorem guar-
antees that the results are conservative w.r.t a hypothetical algorithm based on
the best abstract transformer. The update formulae for the core-predicates de-
scribing the operational semantics for call and return statements are given in
Table Bl

Instead of calculating the instrumentation predicate values at the result-
ing structure by their defining formulae, which may be overly conservative,
predicate-update formulae for instrumentation predicates are used. The formu-
lae are omitted here for lack of space. The reader is referred to [15] for many
examples of predicate-update formulae for instrumentation predicates and other
operations used by the 3-valued logic framework to increase precision.

Interprocedural Shape Analysis for Recursive Programs 147

Table 3. The predicate-update formulae defining the operational semantics of the
call and return statements for the core predicates. The value of each core predicate p
after the statement executes, denoted by p’, is defined in terms of the core predicate
values before the statement executes (denoted without primes). Core predicates that
are not specified above are assumed to be unchanged, i.e., p’(v1,...) = p(v1,...). There
is a separate update formula for every local variable or parameter x, and every label b
immediately preceding a procedure call. The predicate new(v), used in the update
formula of the ¢siqper(v) predicates, holds only for the newly allocated activation record

label: call f() return

stack’(v) = stack(v) V new(v) stack’(v) = stack(v) A —top(v)

S1apet (V) = cSiaber(v) V new(v) esp(v) = esi(v) A —=top(v)

top’ (v) = new(v) top'(v) = Jv1 : top(v1) A pr(vi,v)

pr'(vi,v2) = pr(vi,v2) V (new(vi) A top(vs)) pr' (vi,v2) = pr(vi,va) A =top(v1)
z'(v1,v2) = x(v1,v2) A ~top(v1)

5 A Prototype Implementation

A prototype of the iterative algorithm sketched in Sect. 23] was implemented for
a small subset of C, in particular we do not support mutual recursion. The main
goal has been to determine if the results of the analysis are useful before trying
to scale the algorithm to handle arbitrary C programs. In theory, the algorithm
might be overly conservative and yield many indefinite values. This may lead to
many “false alarms”. For example, the algorithm might have reported that every
program point possibly leaked memory, performed a NULL-pointer dereference,
etc. Fortunately, in Sect.[5.J]we show that this is not the case for the C procedures
analyzed.

The algorithm was implemented using TVLA, a Three-Valued-Logic
Analyzer which is implemented in Java [13]. TVLA is quite powerful but slow,
and only supports intraprocedural analysis specified using low level logical for-
mulae. Therefore, we implemented a frontend that generates TVLA input from a
program in a subset of C. The instrumentation predicates described in Sect. [£1]
allow our frontend to treat call and return statements in the same way that
intraprocedural statements are handled, without sacrificing precision in many
recursive procedures. Our frontend also performs certain minimal optimizations
not described here for lack of space.

5.1 Empirical Results

The analyzed C procedures together with the space used and the running time
on a Pentium II 233 Mhz machine running Windows 2000 with JDK 1.2.2 are
listed in Table [d. The analysis verified that indeed these procedures always re-
turn a linked list and contain no memory leaks and NULL-pointer dereferences.
Verifying the absence of memory leaks is quite challenging for these procedures
since it requires information about invisible variables as described in Sect. E1l.

148 N. Rinetzky and M. Sagiv

Table 4. The total number of 3-valued structures that arise during analysis and
running times for the recursive procedures analyzed. The procedures are available at
“http://www.cs.technion.ac.il/~maon”

Proc.|Description # of Structs|Time (secs)
create |creates a list 219 5.91
delall |frees the entire list 139 13.10
insert |creates and inserts an element into a sorted list 344 38.33
delete |deletes an element from a sorted list 423 41.69
search|searches an element in a sorted list 303 8.44
app |adds one list to the end of another 326 42.81
rev |the running example (non recursive append) 829 105.78
rev.r |the running example (with recursive append) 2285 1028.80
rev_d |reverses a list with destructive updates 429 45.99

6 Conclusions, Limitations and Future Work

In this paper, we present a novel interprocedural shape analysis algorithm for
programs that manipulate linked lists. The algorithm is more precise than exist-
ing shape analysis algorithms described in [2J10/14] for recursive programs that
destructively update the program store. The precision of our algorithm can be
attributed to the properties of invisible instances of local variables that it tracks.
Particularly important seems to be the sharing properties of stack variables. Pre-
vious algorithms [2/10] either did not handle the case where multiple instances of
the same local variable exist simultaneously, or only represented their potential
values [I4]. As we have demonstrated, in the absence enough information about
the values of local variables, an analysis must make very conservative assump-
tions. These assumptions lead to imprecise results and performance deteriorates
as well, since every potential value of a local variable must be considered.

We follow the approach suggested in [4/TT] and summarize activation records
in essentially the same way that linked list elements are summarized. By repre-
senting the call site in each activation record the analysis algorithm is capable
of encoding the calling context, too. This approach bears some similarity to the
call-string approach of [16], since it avoids propagating information to return
sites that do not match the call site of the current activation record. In our case
there is no need to put an arbitrary bound on the “length” of the call-string, the
bounded representation is achieved indirectly by the summarization of activation
records.

So far, our technique (and our implementation) analyzes small programs in
a “friendly” subset of C. We plan to extend it to a larger subset of C, and to
experiment with scaling it up to programs of realistic size. One possible way
involves first running a cheap and imprecise pointer-analysis algorithm, such as
the flow-insensitive points-to analysis described in [17], before proceeding to our
quite precise but expensive analysis. We focused this research on linked lists,
but, plan to also investigate tree-manipulation programs.

Interprocedural Shape Analysis for Recursive Programs 149

Finally, our analysis is limited by its fixed set of predefined “library” prop-

erties. This makes our tool easy to use since it is fully automatic and does not
require any user intervention, e.g., a specification of the program. However, this
is a limitation because the analyzer produce poor results for program in which
other properties are the important distinctions to track.

Acknowledgments. We are grateful for the helpful comments and the contri-
butions of N. Dor, O. Grumberg, T. Lev-Ami, R. Wilhelm, T. Reps and E. Yahav.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

U. Assmann and M. Weinhardt. Interprocedural heap analysis for parallelizing
imperative programs. In W. K. Giloi, S. Jdhnichen, and B. D. Shriver, editors,
Programming Models For Massively Parallel Computers, September 1993.

D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 296-310, 1990.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Symp. on Princ. of Prog. Lang., pages 269-282, New York, NY, 1979. ACM Press.
A. Deutsch. On determining lifetime and aliasing of dynamically allocated data in
higher-order functional specifications. In Symp. on Princ. of Prog. Lang., 1990.
N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. In SAS’00,
Static Analysis Symposium. Springer, 2000.

R. Ghiya and L. Hendren. Putting pointer analysis to work. In Symp. on Princ.
of Prog. Lang., New York, NY, 1998. ACM Press.

R. Ghiya and L.J. Hendren. Is it a tree, a dag, or a cyclic graph? In Symp. on
Princ. of Prog. Lang., New York, NY, January 1996. ACM Press.

L. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis,
Cornell Univ., Ithaca, NY, Jan 1990.

L. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive pointer data
structures: Improving the analysis and the transformation of imperative programs.
In SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 249-260, June 1992.
N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-
tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 4. Prentice-Hall, Englewood Cliffs, NJ, 1981.

N.D. Jones and S.S. Muchnick. A flexible approach to interprocedural data flow
analysis and programs with recursive data structures. In Symp. on Princ. of Prog.
Lang., pages 6674, New York, NY, 1982. ACM Press.

J.R. Larus and P.N. Hilfinger. Detecting conflicts between structure accesses. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 21-34, 1988.

T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene based static analysis.
In SAS’00, Static Analysis Symposium. Springer, 2000.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. Trans. on Prog. Lang. and Syst., 20(1):1-50, Jan 1998.
M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In Symp. on Princ. of Prog. Lang., 1999.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and
Applications, chapter 7, pages 189-234. Prentice-Hall, Englewood Cliffs, NJ, 1981.
B. Steensgaard. Points-to analysis in almost-linear time. In Symp. on Princ. of
Prog. Lang., pages 32-41, 1996.

	Introduction
	Calling Conventions
	The Running Example

	The Use of 3-Valued Logic for Program Analysis
	Representing Memory States via 2-Valued Logical Structures
	Consistent 2-Valued Structures
	Kleene's 3-Valued Logic
	Conservative Representation of Sets of Memory States via 3-Valued Structures
	Expressing Properties via Formulae

	The Algorithm
	Observing Selected Properties
	The Best Abstract Transformer
	Our Iterative Algorithm

	A Prototype Implementation
	Empirical Results

	Conclusions, Limitations and Future Work

