
Some Improvements on Event-Sequence

Temporal Region Methods

Wei Zhang

The Boeing Company
P.O. Box 3707, MS 7L-66

Seattle, WA 98124-2207, USA

Abstract. Finding hidden temporal structures from event sequences is
a difficult task, particularly when events occur irregularly over time and
temporal dependencies may exist in a long time horizon. The tasks in-
volved are not only to find event patterns represented in the form of
temporal orders, but more importantly to find patterns that are de-
scribed with precise time conditions and rules that can be applied to
predict when a future event will occur. Recent study has shown that a
new approach based on learning temporal regions is a good solution for
this problem. This paper investigates this approach in a greater depth
and makes several improvements. It introduces multiple rule selection
methods to better uncover hidden relations. It also introduces heuristic
rule pruning methods to speed up search to solve large-scale problems.
Experimental results are presented which show the effectiveness of the
new methods.

1 Introduction

Event sequence problems are ubiquitous in the real world. With increasing, mas-
sive amount of data being made available, solutions for such problems have be-
come highly desired. This has led to many exciting recent developments
([Mannila et al.1995], [Agrawal and Srikant1995], [Srikant and Agrawal1996],
[Oates et al.1997], [Howe and Somlo1997], and [Zhang1999]). Methods
developed have been applied to a variety of problems such as telecommunication,
sales transaction, and manufacturing.

Focusing on the generic event sequence problem where events are typically
irregularly distributed over time, this paper investigates Zhang’s (1999) temporal
region approach in a great depth and makes several improvements to the existing
methods. It introduces multiple rule selection methods to better uncover hidden
relations. It also introduces heuristic rule pruning methods to speed up search
to solve large-scale problems.

This paper is organized as follows. The next section reviews basic methods
developed in the temporal region-based approach. The third section presents
the methods developed for multiple rule selection and rule selection pruning. An
algorithm incorporating these enhancements is also presented. After then, the
paper presents an empirical study on the enhanced functionalities, followed by
a conclusion pointing interesting future research.

R. López de Mántaras, E. Plaza (Eds.): ECML 2000, LNAI 1810, pp. 446–458, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Some Improvements on Event-Sequence Temporal Region Methods 447

A B A

C

B

C

D

B C A

B

C

C

D

10 33 35 40 60 105 122 200

Fig. 1. An event sequence example

2 Background

2.1 The Problem

An event sequence is an ordered list of objects each represented with a time
associated with a list of events that occur at the time. This means at any given
time one or multiple events in different types may occur. Each event is of one (and
only one) type. The problem is to find all significant correlations or dependency
between different types of events. Such a relation could be forward that tells if
an event of one type, say A, occurs now then what will be the chance an event
of another type (could be the same type), say B, will occur in a future time, say
in 5 minutes or between 5 and 10 minutes. A relation could also be backward
that tells if an event of one type occurs now an event of another type must
have occurred in a past time. When there is no time delay in a dependency of
two events, we often call such a relation an association ([Agrawal et al.1996]).
Sometimes there could be a mutual effect between two types of events such that
one leads to the other and vice versa. Such a dependency provides a stronger
association between two types of events.

The generic problem typically has the following features: The events are
sparse over time, and they are irregularly distributed. Figure 1 shows a simple
example how such an event sequence may present. The example contains four
types of events: A, B, C, and D. Sometimes events may occur in a quite adjacent
time (e.g., at time step 33 and 35). Sometimes there could be no event occurrence
in a long period of time (e.g., no event between 123 and 199).

2.2 Minimal Temporal Regions

There are two basic ideas applied in the temporal region-based approach. One
is rely on input event data to first develop all potential strong event correlations
in the notion of minimal temporal regions as the hypothesis. The second is ap-
ply a set of evaluation criteria to test these hypothesis to select those of most
significant correlations. Let us first look at minimal temporal regions.

A temporal region rule defines a temporal region condition for a target event
type ET , where a condition is represented in the form of a condition event
type EC associated with a period of time [a, b] (a, b ∈ �; 0 ≤ a ≤ b). This rule
can be written as

EC [a, b]⇒ ET ,

448 Wei Zhang

which says two things: first, if an event of EC occurs now then there will be at
least one event of ET to occur between future a and b time scope, and second, if
an event of ET occurs now then there must be at least one event of EC occurred
between past a and b time scope.

While there is infinite number of temporal regions that can be defined for a
pair of events, our idea is to only look at rules with minimal temporal regions
with respect to a given data set. Let S be a given sequence of events where each
event records two pieces of information, the type of the event and the time this
event occurs. For all pair of events of types EC and ET where the EC event
occurs no later than the ET event, we can compute the lag between them and
obtain a set of lag values Slag. For any subset s′ of Slag, we can define its minimal
temporal region, which is the smallest time interval that covers all the values in
the subset, or [min(s′), max(s′)]. The complete set of minimal temporal regions
for EC ⇒ ET for a given sequence is comprised of all different minimal temporal
regions. Therefore, there are a total of

(
m+1

2

)
minimal temporal regions for a lag

set Slag of size m (m = |Slag|).
For example, for the sequence in Figure 1, the lag set for rule C ⇒ A is

{0, 17, 62, 87}. This results in 10 minimal temporal regions: [0,0], [0,17], [0,62],
[0,87], [17,17], [17,62], [17,87], [62,62], [62,87], and [87,87].

2.3 Metrics

Six metrics have been developed for assessing temporal region rules.
1. Prediction Accuracy (AccP): This computes the percentage of cases

that a target event occurs in the time region over all cases that a condition event
occurs.

2. Recall Accuracy (AccR): This computes the same metric in the op-
posite temporal direction. It is the percentage of cases that a condition event
occurred in the time region earlier over all cases that a target event occurs.

3. Prediction Bonus (BnsP): Sometimes target events may occur mul-
tiple times in a given time region. This metric provides a score for additional
occurrences of target events. Let FwdCnt be the number of cases satisfying a
rule (condition-target event pair) while each condition event occurrence is only
allowed to be counted at most once (this is the count used in AccR computa-
tion), and let AllCnt be the count including all cases satisfying the rule where
a condition event occurrence may be counted multiple times because of multiple
target event occurrences. We compute the bonus as 1− FwdCnt/AllCnt.

4. Recall Bonus (BnsR): Similarly, we define BwdCnt by counting at
most once for each target event occurrence. This bonus is defined as
1−BwdCnt/AllCnt.

5. Range (Rng): While both AccP and AccR reward larger regions (their
values increase monotonously as the size of a temporal region grows), it is impor-
tant to have some metric encouraging smaller regions. Rng is the one. The Be-
stRegionRules algorithm (see the updated version later) lets users define a lag
scope in searching temporal relations, which is specified by a minimal lag MinLag

Some Improvements on Event-Sequence Temporal Region Methods 449

and a maximal lag MaxLag. Rng is defined as 1−Intv(r)/(MaxLag−MinLag+1),
where Intv(r) is the region size of rule r.

6. Coverage (Cov): This metric computes the rate of cases covered by a
rule over all cases that are covered by the same condition-target pair but with
the full search scope defined by MinLag and MaxLag. We denote the latter as
AllCntScp. Then Cov is AllCnt/AllCntScp.

Briefly, both AccP and BnsP assess the predicting power of events. On the
other hand, both AccR and BnsR are designed for causal analysis and diagno-
sis, finding reasons on event occurrences. Rng narrows down temporal regions,
which is important for finding key structures of data. While sometimes this pa-
rameter may be slightly tricky to apply, fortunately, accordingly to previous
study, there is often a wide range of selections available for achieving similar,
good results [Zhang1999]. Cov is designed for finding regions with large coverage
of cases over all cases in the search scope.

3 Rule Selection Methods

3.1 Multiple Rules

The early BestRegionRules algorithm has a limitation that only one region
rule (the best one) may be returned for a pair of event types. To enable finding
more complete set of significant relations, we add the multiple rules functionality.

The approach developed here is comprised of two steps. The first is to segment
the temporal region space of a rule into several portions. After segmentation is
completed, the next step is to select rules from the segmented space. We select
one best rule for each segment. We also select rules across segment boundaries.
This ensures the system be able to find correlations with a large lag range.

Two questions need to be answered in segmentation. First, how many seg-
ments should be selected? And second, how should we determine segments and
segment boundaries? In general, answers to the first question depend on applica-
tion problems. A nice feature of our approach is that since we select rules across
segment boundaries, the number of segments does not affect the results on the
best rules.

For the second question, several simple segmentation methods can be applied.

– Uniform segmentation. The simplest method is to segment a lag space
uniformly. A uniform segmentation divides a lag space in the scope of MinLag
and MaxLag into a number of equal-sized segments.

– Clustering. We can also apply clustering methods like K-Mean to seg-
ment a space. This may improve selection of rules but certainly adds some
computational cost.

A problem one needs to keep in mind when applying more sophisticated seg-
mentation methods is that there are three different counting methods applied
here: Cnt, FwdCnt, and BwdCnt. While Cnt sums over all number of the cases

450 Wei Zhang

covered under a region, both FwdCnt and BwdCnt apply a different aggrega-
tion operator—the set Union operation—to avoid multiple counting of an event
occurrence. Segmentation using different counting methods may come up with
different results. Applying which type of methods should be determined based
on whether an analysis is for discovery of a forward model or a backward model
and whether multiple occurrences are important.

After segmentation is finished, selection of multiple rules is trivial. We apply
the following simple procedure. For each of k segments we have determined,
we select the best rule in terms of the combined metric value score, which is
a weighted sum of the six metric values. We also select a best rule across each
of k − 1 segmentation boundaries. For the ith boundary, a pre-condition event
must occur in segment i and a target event must occur in segment i + 1 or
later. Furthermore, there is another parameter in the rule selection procedure.
The Minimal Score parameter specifies that only rules with scores larger than
or equal to this value are selected. Therefore, the rule selection procedure may
return a maximum of 2k − 1 rules for each pair of event types.

3.2 Heuristic Pruning

The standard rule selection procedure tests over all minimal temporal regions
to find a set of best region rules for each event pair. When an event sequence is
very long, the number of cases under an event pair can become very large. This
may result in a large set of distinctive lag values. In this situation, the minimal
temporal region method no longer becomes efficient. Test over all

(
m+1

2

)
minimal

temporal regions is costly when the number of lag values m is very large.
To make rule selection more efficient, we introduce another parameter δ to

define the granularity of the rule selection process. The following describes the
method based on Integer typed lag space (It is not difficult to extend the
method to the � domain). The δ parameter defines the maximal number of lag
steps that can be skipped in forming minimal temporal regions. When δ = 1,
we do not skip any lag step, so we will test all minimal temporal regions. When
δ > 1, lag values may be pruned. For any lag value, if the difference between its
next larger lag value and its next smaller lag value is larger than δ, then this lag
value must be selected. Otherwise, selection of this lag value is optional.

Specificly, let us look at a simple example. Let {0, 1, 2, 3, 4, 5, 6, 15, 25} be a
given lag set and let δ = 5. We start the selection process from lag 0. First,
we have to select 0 because there is no lag value smaller than 0. After then
we consider lag 1. Selection of 1 is optional because the difference between its
next larger lag 2 and previous selected lag value 0 is 2, smaller than 5. Likewise,
selection of 2, 3, or 4 is all optional. Let us suppose we do not select all these.
Then next we consider lag 5. At this time we have to select it because if 5 is not
selected then this will cause a skip of the lag space with 6 time steps. After 5 is
selected, next we have to select 6 because the difference between the next larger
value 15 and the previous selected value 5 is 10, larger than 5. We can see that the
selection process just went through a cluster and both boundaries of the cluster,
0 and 6, are selected. Following this, we consider 15 and 25 subsequently and

Some Improvements on Event-Sequence Temporal Region Methods 451

we have to choose them. Now we have obtained a pruned lag set {0,5,6,15,25}.
This reduces future rule test from

(
10
2

)
tests to

(
6
2

)
.

We develop a simple heuristic to determine whether or not to skip a lag when
its selection is optional. We compare the number of cases under the current
lag ct with the number of cases under the previously selected lag ct−1. If ct >
1.5 ∗ ct−1 + 2, then we select the current lag. Otherwise we skip it. When the
number of cases under the current lag is significantly larger than the previous
one, it makes sense to select this one because a temporal region either starting
or ending at this point is likely to provide a better score.

Table 1. The Updated Best Region-Rules Algorithm

procedure BestRegionRules(S, M1, M2, W, v, k, δ)
inputs: S // Event sequence

M1 // Minimal Lag, default = 0
M2 // Maximal Lag
W // Weights for the score function
v // Minimal Score
k // The number of segments

δ // The pruning factor
if (S not empty) Push(L, Pop(S)) // Move first element of S to list L
while (S not empty) do

e := Pop(S)
for all e′ ∈ L

let t be time of e and t′ be time of e′

let d = t − t′

if (M1 ≤ d ≤ M2)
let E and E′ be the type of events e and e′

AddLag(E, E′, d, t′)
if (d = 0) AddLag(E′, E, d, t′)

Push(L,e)
end while
SelectRules(W, v, k, M1, M2, δ)
end procedure

procedure AddLag(Etar , Econd, d, t)
inputs: Etar // A target event type

Econd // A condition event type
d // Lag between the two events
t // Start time, used as the index to represent a case

r := FindRule(Etar , Econd, R) // R maintains a list of rules
if (r = NIL) // if this rule does not exist

r := MakeRule(Etar , Econd)
AddRule(r, R) // add the rule into R

SubAddLag(d, t, r) // add the lag and index into r
end procedure

procedure SelectRules(W, v, k, M1, M2, δ)
for all r ∈ R

g := Segment(k, M1, M2, r) // g defines segment boundaries
l := PruneLagSet(r, δ) // l is a pruned lag set
for (i := 1, i ≤ 2k − 1, i + +) best[i] := NIL // Initialize best
for all c ∈ pair-wise combinations of l // c develops a region

i := SegmentID(c, g) // determine the segment of c
if (Score(c, W) ≥ v and Score(c, W) ≥ Score(best[i], W)) best[i] := c

for (i := 1, i ≤ 2k − 1, i + +) PrintRegionRule(r, best[i])
end procedure

452 Wei Zhang

3.3 Algorithm

Table 1 shows the updated BestRegionRules algorithm that includes new rule
selection methods. Besides taking parameters S, M1, M2, W , and v, the updated
BestRegionRules procedure also takes the segmentation parameter k and
pruning parameter δ. In SelectRules, Segment call is in the loop for all rule
in the complete rule set R. This step can be moved to the outside of the loop
if uniform segmentation is applied. PruneLagSet computes a set of pruned
lags. After then, temporal regions are generated by pair-wise combination of the
pruned lag values and then evaluated. For each temporal region, the evaluation
step first determines its segment and then computes its score—the weighted sum
of the six metric values using weights W . Finally, the best evaluated region for
each segment is selected if its score is larger or equal to the Minimal Score
parameter.

4 Experimental Study

We conducted a series of experiments to observe the behavior of the new meth-
ods. These experiments used the same data sets as in the [Zhang1999] work:
event sequences generated based on 10 M15-18 models (15 event types and 18
direct temporal relations), 10 M30-36, and 10 M60-72. Figure 2 shows one model
in the M15-18 set. Among 18 direct temporal relations, three are associations
(A4 ⇒ B2, B2 ⇒ B5, and B5 ⇒ C2). The rest all is involved with a time lag,
described with lag region [a, b]. Both types of relations are associated with a
probability to represent the dynamics of event occurrences.

A5

C5

[1,56]
 85

A1 A4

B1 B2

A3A2

B3 B4

B5 C4

C3C2

C1

[232,331]
 80

[14,58]
 95

 [18,31]
 85

 [97,182]
 90 [5,69]

 85
 [4,12]
 90

[18,33]
 80

[15,67]
 95

 [7,76]
 80

 [279,329]
 80

[8,36]
 95

 75
[15,28]

[68,155]
 95

95

95

75

 [0,79]
 95

Fig. 2. An example of forward temporal models

Some Improvements on Event-Sequence Temporal Region Methods 453

4.1 Model Discovery

Again, this paper presents the results on forward model discovery (Similar results
have been obtained on learning backward models). For forward model discovery,
we do not need to apply the metrics on recall. We set weight 0 for AccR and
BnsR and 1 for all other four metrics. As discussed earlier, the only slightly
tricky parameter is Rng. We did some simple experiment that found setting it
at 1 is reasonably good.

Also, we set the minimal-score parameter 140, the minimal lag 0 and the
maximal lag 500. We set the number of segments 4. This may give a maximum
of 7 region rules for each event pair. δ is set at 1 in this experiment, so no pruning
is performed. For all model in the three sets, simulation was conducted with a
total of 8000 events. To observe the behavior of learning, we extract learned
rules when simulation is finished with 1000, 2000, 4000, and finally 8000 events
respectively.

Table 2. This table gives detailed information in comparison of the learned
models and the underlying models

Data Near Region Term Fitness
Set Match Match Overlap Match Unmatch Score

Min 11.00 0.00 0.00 0.0 0.0 0.8194
1st Qu 14.75 0.75 0.00 0.0 0.0 0.9132

M15-18 Median 17.00 1.00 1.00 0.0 0.0 0.9583
Set Mean 15.70 1.30 1.00 0.0 0.0 0.9403

3rd Qu 17.00 1.25 1.25 0.0 0.0 0.9861
Max 18.00 4.00 3.00 0.0 0.0 1.0000

Min 29.00 0.00 0.00 0.0 0.0 0.9306
1st Qu 32.00 1.00 0.00 0.0 0.0 0.9514

M30-36 Median 34.00 2.00 0.00 0.0 0.0 0.9757
Set Mean 33.05 2.30 0.55 0.0 0.1 0.9698

3rd Qu 34.00 3.25 1.00 0.0 0.0 0.9861
Max 36.00 7.00 2.00 0.0 1.0 1.0000

Min 56.00 2.00 0.0 0.0 0.0 0.9306
1st Qu 59.75 6.75 0.0 0.0 0.0 0.9514

M60-72 Median 61.50 8.50 0.0 0.0 0.0 0.9566
Set Mean 62.35 8.95 0.5 0.1 0.1 0.9611

3rd Qu 65.00 12.25 1.0 0.0 0.0 0.9757
Max 70.00 15.00 2.0 1.0 1.0 0.9931

After learning is completed, we compared the learned models with the un-
derlying models. For all direct temporal relation in a underlying model, we find
rules in the corresponding learned model with the same names of condition event
and target event. If we find a rule that has at least 80% region overlapping with
this relation and vice versa (80% region of the relation is also in the rule) and
the prediction accuracy of the learned rule is close to the probability of the un-
derlying rule with difference no bigger than 0.1, then we say the two rules match.
Otherwise, if they both have at least 50% region overlapping with each other and
the probability difference is no bigger than 0.25, we say they are “near-match”.

454 Wei Zhang

Otherwise, we say the two rules “region-overlap” if there is at least at one point
covered by the both rules. If we do not find rules that overlap with this relation
then we say there is a “term-match” that describes a correct event temporal
order. If we do not find a rule with the same condition and target names in the
learned model, then we say this relation in the underlying model is unmatch to
the learned model.

After this assessment, we computed a fitness function for each underlying
model in comparing to its learned model. For each relation in a underlying
model, we gave 1 point for a match, 0.75 point for a near-match, 0.25 point for a
region-overlap, 0.1 point for a term-match, and 0 for unmatch. The fitness score
is the sum of all the points divided by the number of relations in the underlying
model.

Table 2 shows the performance assessed by these six measures. We separate
problems from three different sets. Each set shows six statistics including Min,
Mean, and Max on the six measures. The table concludes that learning was well
performed on all three sets of problems. These statistics are made on learned
rules at 4000 and 8000 event simulations. The match rate is high, in average it
is about 87%. For the rest of the relations, most are near-match. The ratios for
region-overlap, term-match, and unmatch are almost 0.

4.2 One Rule vs. Multiple Rules

The next experiment compares the multiple rules method (MultiBest) versus
one using the single rule method (OneBest). Both procedures use the same pa-
rameter settings as described earlier. Figure 3 compares how they perform in
terms of their fitness scores over simulation. It plots the median statistic plus
the errorbars using the 1st Qu and 3rd Qu values. These statistics are com-
puted over all three sets of the problems. We can see that clearly MultiBest
outperforms OneBest in uncovering underlying models.

While MultiBest finds rules in underlying models more accurately, it also
comes up with a larger set of other rules. Figure 4 compares all rules found
by both procedures. Here, we use One and Multi to represent OneBest and
MultiBest respectively. True represents the underlying model. We plot statistics
on three sets of the problems separately. For True we plot the average number
of direct relations and the average number of transitive relations (Transitive
relations are those that can be derived from directed relations, e.g., A ⇒ C is
the transitive relation derived from A⇒ B and B ⇒ C). For One and Multi, we
plot the average number of rules matching direct relations, transitive relations,
both types of relations, and none of the relations respectively, which are denoted
as Direct, Transit, Both, and Others respectively. When a rule belongs to Both,
it is not counted in either Direct or Transit. Here, either Match or Near-Match
is considered as a match.

The plot gives a general summary about the discovered rules. Multi performs
better than One not only on direct relations, but more substantially on transitive
relations. For transitive rules, since the implementation is set to attempt to find
temporal relations in the time scope between 0 and 500 and with range under

Some Improvements on Event-Sequence Temporal Region Methods 455

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1024 2048 4096 8192

F
itn

e
ss

of Events (log)

MultiBest
OneBest

Fig. 3. MultiBest outperforms
OneBest in uncovering underlying
models

One Multi True One Multi True One Multi True

0
50

10
0

15
0

20
0

M15-18s M30-36s M60-72s

Others
Transit
Both
Direct

Fig. 4. A summarized comparison of
the two procedures

0.75

0.8

0.85

0.9

0.95

1

1024 2048 4096 8192

F
itn

e
ss

 o
n

 D
ir
e

ct
 R

e
la

tio
n

s

of Events (log)

M15-18s
M30-36s
M60-72s

Fig. 5. Performance on finding direct
relations

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1024 2048 4096 8192

F
itn

e
ss

 o
n

 T
ra

n
si

tiv
e

 R
e

la
tio

n
s

of Events (log)

M15-18s
M30-36s
M60-72s

Fig. 6. Performance on finding transi-
tive relations

100 (range is controlled by the Rng parameter), transitive relations beyond the
scope are not selected. This is why the number of rules found for this part is
smaller than the one in the underlying model. It is good to see that the number
of rules that Multi selected is not substantial. Besides, the number of rules
belonging to Both is almost 0, which means that basically direct relations and
transitive relations are quite different and the algorithm can work properly to
find distinctive rules for different relations.

We also observed how the multiple rules procedure performs during simu-
lation processes. Figure 5 and Figure 6 shows the performance on both direct
relations and transitive relations respectively. Again, they plots the median, 1st
Qu, and 3rd Qu statistics. We compare the performance with respect to the size
of models. Intuitively, a big model needs longer simulation. The plots in general
suggests that for problems of size M15-18 the most gain can be obtained by
simulation to about 1000 events. The median fitness score on direct relations
for M15-18 reaches 0.92 at 1000 events. But for larger-sized problems in M30-36
and M60-72, it is worth to train up to 8000 events. For these problems, the
performance gain is substantial for simulation from 1000 events to 8000 events.

456 Wei Zhang

16

64

256

1024

4096

16384

65536

1024 2048 4096 8192

A
ve

ra
ge

 C
P

U
 T

im
e

(lo
g

S
ec

on
ds

)

of Events (log)

δ=1, Μ15−18
δ=1, Μ30−36
δ=5, Μ15−18
δ=5, Μ30−36

δ=10, Μ15−18
δ=10, Μ30−36

Fig. 7. CPU Time compared on with
and without pruning

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1024 2048 4096 8192

F
itn

e
ss

of Events (log)

δ=1
δ=5

δ=10

Fig. 8. With pruning the change on
fitness scores is small

4.3 Speed Up

Now let us examine how the pruning factor δ affects the performance on model
discovery and search time. Without surprising, we found that for the same
amount of event data, in general, learning on fewer event types takes more
time than on more event types. This is because with fewer event types, more
cases and lags are developed for a pair of event types, thus much more tem-
poral regions need to be evaluated. Our experiments found that on average for
the same amount of data, learning for a M15-18 problem takes about twice as
much time as learning for a M30-36 problem takes. This provides another reason
to discourage longer simulation on small models. Similarly, a M30-36 problem
simulation needs about nearly twice as much time as a M60-72 simulation with
same number of events.

Accordingly, experiments for testing the δ parameter focus on smaller prob-
lems. A large model in M60-72 probably may not generate many lags in a event
pair so pruning may not be crucial. However, this does not mean for a real
problem with many event types (say over several hundred types) pruning is not
useful. A particular manufacturing problem in Boeing involves more than 300
types of events, but about 40% of event occurrences fall into a small set of 32
event types. In this case, we found pruning is very helpful for quick and scale-up
analysis.

Figure 7 and Figure 8 plots the performance on both M15-18 and M30-36
problems. They compares learning without pruning (δ = 1) and with pruning on
two settings, δ = 5 and δ = 10. First, let us look at the time needed for each of
the settings. Clearly, time reduction with pruning is substantial. For simulation
with 8000 events on a M15-18 model, on average it takes 40180 seconds for
without pruning, but 3963 seconds with pruning on δ = 5 and 1159 seconds
with pruning on δ = 10.

Let us now look at the performance on model discovery. We employ median,
1st Qu, and 3rd Qu on the direct-relation fitness for all problems in both sets.
We can see that the performance on the three different processes is very close.
Pruning does not affect the performance up to 4000 event simulation. δ = 5 and

Some Improvements on Event-Sequence Temporal Region Methods 457

δ = 10 both reach high fitness scores at about 0.95 (median) at 4000, which
is the same as the un-pruned process. At 8000 events, we see δ = 10 can not
continue to improve the performance well, while δ = 5 still keeps close to δ = 1.

The plots showed clear evidence that pruning is very effective on both M15-18
and M30-36 problems. In conclusion, when a data set is reasonably large with
respect to the number of event types, pruning is always suggested. The pruning
mechanism allows this temporal region method to scale up to mine over a large
amount of data.

5 Concluding Remarks

This paper investigates region-based methods for discovering temporal struc-
tures in data in a greater depth. It introduces rule selection methods to allow
selection of multiple rules for more complete uncovering of hidden relations. It
also introduces pruning methods for quick and scale-up analysis.

In particular, this paper showed how close direct and transitive relations
can be found using the updated BestRegionRules procedure. Indeed, this
procedure also discovers other relations which are neither direct nor transitive—
They are parallel in the general sense. While all significant relations can be found
under a general pool, extracting direct relations among them still remains in big
challenges. In real-world applications, such analysis often relies on extensive
domain knowledge. Investigating how domain knowledge should be applied and
how such analysis may be formalized is a very interesting research issue.

References

Agrawal and Srikant1995. R. Agrawal and R. Srikant. Mining sequential patterns. In
Proceedings of the Eleventh International Conference on Data Engineering. IEEE
Press, 1995. 446

Agrawal et al.1996. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo. Fast discovery of association rules. In U. M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthrumsamy, editors, Advances in Knowledge Discovery
and Data Mining, chapter 12, pages 307–328. AAAI/MIT, 1996. 447

Howe and Somlo1997. A. Howe and G. Somlo. Modeling discrete event sequences as
state transition diagrams. In Proceedings of the Second Conference on Intelligent
Data Analysis, 1997. 446

Mannila et al.1995. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering fre-
quent episode in sequences. In Proceedings of the First International Conference
of Knowledge Discovery in Databases and Data Mining. AAAI Press, 1995. 446

Oates et al.1997. T. Oates, M. D. Schmill, D. Jensen, and P. R. Cohen. A family
of algorithms for finding temporal structure in data. In Proceedings of the Sixth
Internationl Workshop on Artificial Intellegence and Statistics, 1997. 446

Srikant and Agrawal1996. R. Srikant and R. Agrawal. Mining sequential patterns:
generalizations and performance improvements. In Proceedings of the Fifth Inter-
national Conference on Extending Database Technology, 1996. 446

458 Wei Zhang

Zhang1999. W. Zhang. A region-based learning approach to discovering temporal
structures in data. In Proceedings of the Sixteenth International Conference on
Machine Learning. Morgan Kaufmann, 1999. 446, 449, 452

	Some Improvements on Event-Sequence Temporal Region Methods
	Introduction
	Background
	The Problem
	Minimal Temporal Regions
	Metrics

	Rule Selection Methods
	Multiple Rules
	Heuristic Pruning
	Algorithm

	Experimental Study
	Model Discovery
	One Rule vs. Multiple Rules
	Speed Up

	Concluding Remarks
	References

