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Abstract. Support Vector Machines for pattern recognition are ad-
dressed to binary classification problems. The problem of multi-class
classification is typically solved by the combination of 2-class decision
functions using voting scheme methods or decison trees. We present
a new multi-class classification SVM for the separable case, called K-
SVCR. Learning machines operating in a kernel-induced feature space
are constructed assigning output +1 or -1 if training patterns belongs
to the classes to be separated, and assigning output 0 if patterns have
a different label to the formers. This formulation of multi-class classifi-
cation problem ever assigns a meaningful answer to every input and its
architecture is more fault-tolerant than standard methods one.

1 Introduction

The problem of multi-class classification from examples addresses the general
problem of finding a decision function f, approximation of an unknown
function f, defined from an input space {2 into an unordered set of classes
{01,...,0K}, given a training set

T = {(%p,yp = f (%)) }y_, C 2% {01,...,0k}. (1)

Support Vector Machines (SVMs) that learn classification problems - in short
SVMC -, are specific to binary classification problems, also called dichotomies.
The problem of multi-class classification (K j 2) is typically solved by the com-
bination of 2-class decision functions.

In this paper we present a new multi-class classification SVM for the sepa-
rable case, called K-SVCR. When K ; 2, we will construct learning machines
assigning output +1 or —1 if training patterns belongs the classes to be sepa-
rated, and output O if patterns belongs a different class to the formers. So, we
are forcing the computed separating hyperplane to cover all the ’0-label” training
patterns. Like in the construction of SVMs, the new method exploits the basic
idea of map the data from the input space {2 into some other higher dimension
dot product space F, called feature space, via a non linear map and perform
the above linear algorithm in F. The associated restricted QP-problem could be
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subject to

a; >0, i=1,...,0 (8)

¢
Z a;y; = 0.
i=1

The hyperplane decision function can thus be written as

sV
f(x) = sign (Z ;yik (xi, %) + b> ) 9)

where b is computed using the Karush-Kuhn-Tucker complementary condi-
tions

Among all the training patterns, only a few of them have an associated weight
a; non-zero in the expansion (9). These elements lie on the margin - some strict
constraint in (6) is accomplished - and them are called support vectors.

To generalize the SV algorithm to regression estimation, an analogue of the
margin is constructed in the space of the target values - y € R - by using Vapnik’s
e-insensitive loss function

ly — £ ()] < max {0, |y - f (x)| — ¢} . (11)

For a priori chosen € > 0, the associated constrained optimization problem
for the separable case is

. 1
argminT (w) = || (12)

subject to

((W,xi)r+0) —yi<e, i=1,...,¢ (13)
yi — ((w,x;) g +b) <e, i=1,...,0

Introducing Lagrange multipliers, we arrive at the constrained optimization
problem: find multipliers o, o > 0 which

¢
. o1 : x
min W (o, « )25”221 (of — o) k(x5 %) (O‘j _O‘j)+ (14)
tey (af +ai) =) (af —a)
i=1 =1
subject to

L odi=1,...,0 (15)
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£
> (i —af)=0.

i=1
The regression estimate takes the form:

%
Fx) =) (o] — ) k(xi,x) +b. (16)
i=1
The solution expands again in terms of a subset of the training patterns,
and b is calculated from (13) in strict equal form over the support vectors.

3 Multi-class Support Vector Machines

The standard method of decomposing a general classification problem into di-
chotomies is to place K binary classifiers in parallel. In the original method [3,10],
the ¢th SVMC is trained with positive labels for all the examples in the ith class,
and negative labels for all other examples. We refer to SVMs trained in this way
as 1-v-r SVMCs - short for one-versus-rest -. The training time of the standard
method scales linearly with K.

The output scale of a SVM is determined so that the separating hyperplane
is in canonical form, i.e., support vector output is 1. In [6] is asserted that this
scale is not robust, since it depends on just a few points, often including outliers,
and different alternatives are proposed to circumvent this problem

Another general method to construct multi-class classifiers is to build all
possible binary classifiers - K-(K-1)/2 hyperplane decision functions - from a
training set of K classes, each classifier being trained on only two out of K classes.
We refer to the SVMCs trained with this method like 1-v-1 SVMCs - short for
one-versus-one -. The combination of these binary classifiers to determine the
label assigned to each new input can be made by different algorithms, for example
the voting scheme [4]. The 1-v-1 approach is, in general, preferable to the 1-v-r
one [5]. Unfortunately, the size of the 1-v-1 classifier may grow superlinearly
with K.

In addition to these two general methodologies, it is possible to construct
multi-class classifiers combining 1-v-1 SVMCs with decision trees, that are able
to handle many classes. In [8] a learning architecture is presented, the DAGSVM
algorithm, which operates in a kernel-induced feature space and uses 2-class max-
imal margin hyperplanes at each decision-node of the Decision Directed Acyclic
Graph (DDAG). The class of functions implemented naturally generalizes the
class of decision trees.

In [1] the relationship between SVMC and a family of mathematical program-
ming methods (MPM) are examined and a new method for nonlinear discrim-
ination, the Support Vector Decision Tree (SVDT), is generated. It construct
decision trees in which each decision is a support vector machine. In this sense,
the architecture method is similar to the DAGSVM algorithm.

Working in a different way, in [11] the original SVMC constrained optimiza-
tion problem is redefined and generalized to construct a decision function by
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considering all classes at once. The K-SVCR multi-class classification method
is also defined in this sense, the constrained QP problem is redefined, but we
are not considering the classification of all classes at once. In the other hand, it
is possible to make an extension of our algorithm to capture the advantageous
properties of the DAGSVM algorithm.

4 K-SVCR Learning Machine

Given the training set 7 defined in (1) we would find a decision function f in
the form (3) with:

f(Xp) :+17 p:17"'7£1 (17)
=—1, p=Oi+1,....00+ 0
=0, p=bi+b+1,...,¢,

where, without loss of generality, we suppose the first {15 = £1 + {5 patterns
corresponding to the two classes to be separated, and the other patterns ( {3 =
¢ — {12 ) belonging to any different class - we will label them with 0 -.

Obviously, in general, do not exist any hyperplane accomplishing the con-
straints (17) in the input space (2, and hence is useless looking for a linear
solution to the problem in this space. But, if we insert this space via a nonlinear
map into a feature space with a dimension high enough, the hyperplane capacity
to accomplish the constrains increase, and it will be possible to find a solution.

For instance, when we solve the QP problem leading to the SVMC solution it
is very usual to formulate the problem with b = 0, which is equivalent to require
that all hyperplanes contain the origin. This is considered a mild restriction for
high dimensional spaces, since it is equivalent to reduce the number of degrees
of freedom by one [2].

The requirement of the K-SVCR learning machine is higher. It requires that
optimal hyperplane contains all {3 training patterns with label 0.

We define below the constrained optimization problem associated to K-SVCR
method, for the separable case: for 0 < § < 1 chosen a priori,

. 1
argmin7 (w) = 5 ||W||§- (18)

subject to
yi - (W, X))z +0)—1>0, i=1,... /012 (19)
<W,Xi>}—+b§57 i:flz+1,...7£
<W7Xl>]-"+b257 i:£12+1a"'7£7
with a decision function solution similar to (3), defined by
f(x)=41, if (w,x)+b>0 (20)
=-1, if (w,x)+b<0

=0, otherwise.
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If § = 0 then decision function (20) is the same as (3) and we are exactly re-
quiring that the separating hyperplane will contains the last 3 training patterns.
Nonetheless, this imposition implies no generalization for the ’0-label class’, no
sparsity in the support vectors set over the training patterns with label 0 [9], and
higher computational cost. So, even if our task is learning pattern recognition,
it could seems that we make a certain use of the e-insensitive loss function (11)
employed in the SVMR method for the output y; = 0.

A solution for the problem defined in (18) and (19) can be found by locating
the saddle point of the Lagrangian

l12

L (Wa b7 O‘767ﬂ*) |W||_7: Zal y’b W Xl + b) - 1] + (21)

£ Bl (w45~ 8] =

i=L12+1
4
Y By ((woxi) g + ) — 4]
i=L12+1
with constraints
047;207 i:17...,£12 (22)

Bi,Bf >0, i=lin+1,...,0

which has to be maximized with respect to the dual variables a; and 3;, 3; and
minimized with respect to the primal variables w and b. In the saddle point the
solution should satisfy the conditions, leading to

€12 Z

w = Z QYiX; — Z (Bi — B7) % (23)
i=1 i=l1a41
512 0

0=> aii— Y. (Bi—B)x
i=1 i=l1o+1

Finally, if we define
Yi = QYi, 1= 17"'a£12 (24)

"}/7;:/87;7 i:£12+17...,£
’yz:ﬁ;;k_e:‘, Z:€+17,€+€3

the primal variables are eliminated and we arrive at the Wolfe dual of the opti-
mization problem: for 0 < § < 1 chosen a priori

1
argmin L (y) = 57" -H-y+cl -y (25)



K-SVCR. A Multi-class Support Vector Machine 37

with
AT = (s Ve Yoty - - -5 Yorts) € RE2HETE (26)
T — __17...7__1757._.’5 € Rb2Hs+ts
Y yen
(k (xi, %)) — (k (xi,%7)) (K (x4,%;))
H= | —(k(xi,x)) (k(xi,x;)) —(k(xi,%;)) | = H" € S (R,
(k’(Xi,Xj)) (k’ Xi7Xj)) (k(XuX]))
subject to
Vi yi >0, i=1,..., 012 (27)
'YiZO, iiglg,...,f+f3
iz ¢ 0405
i=1 i=L12+1 i=0+1

The hyperplane decision function can be written as
F) =41, if > vik(xi,x)+b>6 (28)

=1, if Zyik(xi7x)+b<6
=0, otherwise

where

vi=", i=1...,lp (29)
Vi = Yiges — Vi, t=Llia+1,...,¢,

and b is calculated from (19) in strict equal form over the support vectors
in terms of parameters ;. We observe that the third constraint in (27) can be

written as
SV
> vi=0. (30)
i=1

This formulation of multi-class classification problem is more fault-tolerant
than the 1-v-r general method, because there exist more redundancy in the
answers [7]. On the other hand, all the K-SVCRs answers have sense: each
machine classifies any input into a class, the two class implicated in the binary
classification or into the 'rest’ class (0-label class). The 1-v-1 general classification
method is more fault-tolerant that the 1-v-r one, but the classifiers give no sense
answers if the evaluated input does not belong to the classes implicated in the
binary classification.
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5 Conclusions and Further Research

The K-SVCR algorithm, a novel learning machine based in SVMs for multi-
class pattern recognition for the separable case is presented. This algorithm
construct a decision function to separate two classes containing the patterns of
all the others classes. These 1-v-1 SVMCs can be combined in an ” AND” scheme,
in a voting scheme or in a decision tree formulation. Two initial schemes are
easily implemented, meanwhile the last formulation is part of our actual study,
employing a DDAG architecture to reduce the evaluation time and control the
generalization performance.

Further research involves the test of the method on large data sets and a
more detailed comparison with other methods over real data benchmarks.

A generalization of the K-SVCR procedure for the non-separable case is being
developed in the present, and future work will establish a comparison between
the generalized algorithm and a modification over the sensitivity parameter for
the present formulation.
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