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Abstract. In this paper, a new similarity measure for nearest-neighbor
classification is introduced. This measure is an approximation of a theo-
retical similarity that has some interesting properties. In particular, this
latter is a step toward a theory of concepts formation. It renders identical
some examples that have distinct representations. Moreover, these exam-
ples share some properties relevant for the concept undertaken. Hence, a
rule-based representation of the concept can be inferred from the theo-
retical similarity. Moreover, in this paper, the approximation is validated
by some preliminary experiments on non-noisy datasets.

1 Introduction

Learning to classify objects is a fundamental problem in artificial intelligence and
other fields, one which has been addressed from many sides. This paper deals
with the nearest-neighbor methods (Cover and Hart [6]), also known as exemplar-
based (Salzberg [8]) or instance-based learning programs (Aha et al. [1]). These
algorithms classify each new example according to some past experience (a set
of examples provided with their labels) and a measure of similarity between the
examples. Actually, they assign to each new example the label of its nearest
known example.

At first glance, similarity seems a rather intuitive notion. Examples are de-
noted by some properties and are similar if they have some properties in common.
Thus, the more similar examples are, the more likely they share some relevant
properties for the concept to learn. When the size of the dataset increases, new
examples and their nearest neighbors become more and more similar. And, in
the limit, classification is accurate.

Such a convergence has been studied many times. Despite positive results,
such a similarity has been criticized for not being explanatory. It does not iden-
tify among the properties shared by some similar examples the ones that are
relevant for the concept undertaken.

This paper is focused on the problem of explanation. The concepts to learn
are assumed to have some rule-based representations. In this case, the relevant
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properties are the preconditions of these rules. To explain the classification of
each example, the proposed similarity measure enables to infer a rule-based
representation of the concept undertaken.

For that matter, we suggest that examples are similar because they satisfy
the same rules and, no longer, because the properties they are denoted by are
somewhat similar. Such a similarity measure relies on the rules characterizing
the concept undertaken. For a classification task, such a similarity is theoretical
as the rules are unknown. However, this similarity can be approximated from
each dataset and some rules inferred from this latter.

This paper is organized as follows. §2 summarizes some notations and defini-
tions. §3 introduces the theoretical similarity. §4 is devoted to its approximation
and to the resulting classifier. §5 deals with some related research.

2 Preliminaries

Let us introduce a few useful definitions. Let F : {f1, f2, . . . , fn} be a set of
features, where each feature fi can take values in its domain Domi: a finite
unordered set. An example x: (x1, x2, . . . , xn) is characterized by an instanti-
ation xi of each feature fi. The example x satisfies the conjunction xc: f1 =
x1 ∧ f2 = x2 ∧ . . . ∧ fn = xn. Let U denote the universe: the set of all the
possible examples. Considering a finite unordered set L of labels, a concept C is
a function from U to L. An exemplar e is a couple (x, C(x)) of an example and
its label. Let E be the set of all the exemplars. A dataset D is a subset of E.

For example, for the monk1 dataset, examples are represented by 6 features.
The domain of f1, f2 and f4 is {1, 2, 3}. The domain of f3 and f6 is {1, 2} and
the domain of f5 {1, 2, 3, 4}. The set of labels is {0, 1}. The universe contains
432 (=3× 3 × 2 × 3 × 4 × 2) examples. The concept undertaken is the boolean
function (f1 = f2) ∨ (f5 = 1). Two exemplars are:

e1: ( (1,1,1,1,1,1), 1 ) and e2: ( (2,2,1,3,2,1), 1 )

Definition 1. A rule r is a partial function from U to a particular label lr
denoted by cr =⇒ lr. It associates to each example x such that cx =⇒ cr the
label lr. cr is a conjunction of conditions upon the values of each feature. For
each feature fi, its value is required to be in a subset (not empty) of Domi.

On the monk1 problem, a rule r∗ is:
f1 ∈ {1, 2} ∧ f2 ∈ {1, 2} ∧ f3 ∈ {1} ∧ f4 ∈ {1, 3} ∧ f5 ∈ {1, 2} ∧ f6 ∈ {1} =⇒ 1
Let us denote such a rule by:

{1, 2}, {1, 2}, {1}, {1, 3}, {1, 2}, {1} =⇒ 1

An example x or an exemplar e = (x, l) is covered by a rule r iff cx =⇒ cr.
Let U/r (resp. E/r) be the subset of the examples (resp. exemplars) covered by r.
An exemplar refutes r if it is covered by r but has a different label. r is coherent
with the dataset D if there is no exemplar in D to refute r. r is coherent with
the concept C if all the exemplars of E/r have the label of r. A rule r1 is more
specific than a rule r2 if U/r1 ⊂ U/r2 . In this case, r2 is more general than r1.
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Definition 2. Let the generalization of each subset s of exemplars of the same
label be G(s) the most specific rule covering s and coherent with s.

Notice that the generalization of a subset of exemplars is unique. Actually, the
label of a generalization G(s) is the label of the exemplars in s. And, for each
feature fi, the value xi of an example covered by G(s) is required to be in the
union of the values of fi appearing in s. For example, G({e1, e2}) is r∗.

The reader shall see that the operator G satisfies the two properties:

1. (monotonicity) The generalization of a subset of exemplars covered by a
rule coherent with a concept C is coherent with C.

2. (stability) Let C be a concept, r a rule and e an exemplar. If ∀e′ ∈ E/r,
G({e, e′}) is coherent with C then G({e} ∪ E/r) is coherent with C.

In the reminder of this paper, these two properties will be the only ones required
for G. As they are rather natural for an operator of generalization, we guess that
our approach can be extended to many other representation languages.

3 Similarity with Respect to a Concept

3.1 Definition

This section is devoted to the definition of the theoretical similarity with respect
to a concept C. For that matter, we assume that C is well-defined.

Definition 3. A well-defined concept C is a function from a universe U to a
set of labels L characterized by a set of rules R. Thus, for each example x of U
and each rule r (cr =⇒ lr) of R covering x, there is lr = C(x).

Many sets of rules characterize a concept. However, as we suggest that examples
are similar because they satisfy the same rules, we have to choose these rules.

Definition 4. Let the definition of a well-defined concept C be the set of all the
most general rules coherent with C. For each exemplar e, let DefC(e) be the
subset of the rules covering e and defining C.

Notice that the rules defining a concept contain only relevant properties. Actu-
ally, all the conditions that could have been dropped from the maximal rules
have already been. The definition of the monk1 concept is:

{1}, {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,2} =⇒ 1 (I)
{2}, {2}, {1,2}, {1,2,3}, {1,2,3,4}, {1,2} =⇒ 1 (II)
{3}, {3}, {1,2}, {1,2,3}, {1,2,3,4}, {1,2} =⇒ 1 (III)
{1,2,3}, {1,2,3}, {1,2}, {1,2,3}, {1}, {1,2} =⇒ 1 (IV)
{1}, {2,3}, {1,2}, {1,2,3}, {2,3,4}, {1,2} =⇒ 0 (V)
{2}, {1,3}, {1,2}, {1,2,3}, {2,3,4}, {1,2} =⇒ 0 (VI)
{3}, {1,2}, {1,2}, {1,2,3}, {2,3,4}, {1,2} =⇒ 0 (VII)
{2,3}, {1}, {1,2}, {1,2,3}, {2,3,4}, {1,2} =⇒ 0 (VIII)
{1,3}, {2}, {1,2}, {1,2,3}, {2,3,4}, {1,2} =⇒ 0 (IX)
{1,2}, {3}, {1,2}, {1,2,3}, {2,3,4}, {1,2} =⇒ 0 (X)



Toward an Explanatory Similarity Measure 241

Definition 5. The neighborhood of an exemplar e with respect to a well-defined
concept C is defined as follows: NC(e) = {e′ ∈ E | DefC(e) ∩DefC(e′) �= ∅}.

Our similarity between two exemplars is measured between their neighbor-
hoods. We choose the ratio between the numbers of exemplars common to the
two neighborhoods and the number of examples belonging to one of them:

Definition 6. Considering two exemplars e and e′, their similarity with respect
to a well-defined concept C is: SimC(e, e′) = |NC(e)∩NC(e′)|

|NC(e)∪NC(e′)|

3.2 An Accurate Similarity for Nearest-Neighbor Classification

Let two exemplars be equivalent if and only if their similarity is 1. First of all,
notice that two equivalent exemplars have the same label.

Theorem 1. Let C be a well-defined concept and e and e′ two exemplars. If e
and e′ are equivalent, they have the same label.

Proof. By definition of SimC , e and e′ are equivalent iff NC(e) = NC(e′). As e
belongs to its neighborhood, e belongs to NC(e′). By definition of NC(e′), there
is a rule r of DefC(e′) that covers e. Therefore, e and e′ have the label of r.

Thus, if the dataset contains an equivalent exemplar for each new example, the
nearest-neighbor rule is accurate.

Definition 7. Let C be a well-defined concept, e an exemplar. Then, the class
of equivalence of e considering SimC is: EqC(e) = {e′ ∈ E | SimC(e, e′) = 1}
The number of classes of equivalent exemplars does not depend on the dataset
(theorem 2). Therefore, when the size of the dataset increases, more and more
classes are represented. And, in the limit, the classifier is accurate. For the monk1
concept, there are only 13 such classes and 432 exemplars.

Theorem 2. Let C be a well-defined concept.
∀e ∈ E EqC(e) = {e′ ∈ E | DefC(e) = DefC(e′)}

Proof. If DefC(e) = DefC(e′) then NC(e) = NC(e′) and SimC(e, e′)=1. Now,
assume that SimC(e, e′) = 1 (i.e. NC(e) = NC(e′)) and let r be in DefC(e).
Each exemplar e′′ covered by r belongs to NC(e) = NC(e′). Thus, G({e′, e′′}) is
coherent (definition of NC(e′) and monotonicity). It follows that r′′ = G({e′} ∪
E/r) is coherent (stability). As r is maximal, it means that r′′ is r. Therefore, r
belongs to NC(e′). Hence, if SimC(e, e′) = 1, then DefC(e)=DefC(e′).

3.3 An Explanatory Similarity

Considering such a similarity, each exemplar is equivalent to many others. The-
orem 3 states that the generalizations of some equivalent exemplars are coherent
with the concept. Therefore, among the properties shared by some equivalent
exemplars, some of them are relevant. This is the reason why such a similarity
is somewhat explanatory.
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Theorem 3. Let C be a well-defined concept.
∀e ∈ E, G(EqC(e)) is coherent with C.

Proof. Theorem 2 shows that all the exemplars of EqC(e) are covered by the
same rules: DefC(e). Their generalization G(EqC(e)) is thus more specific than
each of the rules of DefC(e) and, therefore, coherent with the concept C.

In the example, e2 satisfies the rule II only and is equivalent to all the exam-
ples that satisfy only this rule. Therefore, the generalization G(EqC(e2)) is

{2}, {2}, {1,2}, {1,2,3}, {2,3,4}, {1,2} =⇒ 1
It requires each covered example to satisfy f1 = 1, f2 = 1 and f5 �= 1. The
other conditions are trivial as each value is necessary in its domain. The two
first properties are relevant for the concept. However, the last one is not. It is
present to prevent the exemplars covered from satisfying the rule IV.

4 Application to Nearest-Neighbor Classification

The theoretical similarity depends on the definition of the concept undertaken.
In a classification task, such a definition is unknown. However, the previous
similarity can be approximated from a dataset.

4.1 An Approximated Similarity Measure

The approximation relies on the ability to approximate each neighborhood by:

Definition 8. The neighborhood of an example e with respect to a dataset D is:
ND(e) = {e′ ∈ D | G({e, e′}) is coherent with D}.

Actually, for each exemplar e, the approximated neighborhood ND(e) converges
toward NC(e) ∩ D, when the size of the dataset increases. This result follows
from the proposition:

Proposition 1. Let C be a well-defined concept, D a dataset and e ∈ D.

1. NC(e) ∩D ⊂ ND(e)
2. The probability to be in ND(e) but not in NC(e)∩D decreases when the size

of the dataset increases.
3. In the limit, D=E and ND(e) ⊂ NC(e) ∩D

Proof. Proposition 1 follows from the monotonicity of G. Proposition 2 states
that each generalization is more likely to be refuted when more exemplars are
provided. When all the exemplars are provided, generalizations coherent with
the dataset are also coherent with the concept, which explains proposition 3.

Therefore, for each exemplar e, the size of NC(e) is approximated by the average
number of exemplars of D that belong to ND(e). Let us approximate the sizes
of the intersection and of the union of two neighborhoods in the same way. The
theoretical similarity is, then, approximated by:

Definition 9. Considering two exemplars e and e′, their similarity with respect
to the dataset D is: SimD(e, e′) = |ND(e)∩ND(e′)|

|ND(e)∪ND(e′)|
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4.2 IBLG Classification

On these considerations, we developed a nearest-neighbor classifier based upon
the approximated similarity measure and called IBLG (Instance-Based Learning
from Generalization). Each new example has several neighborhoods whether it is
assumed to have a particular label or another. Hence, IBLG has to compute the
nearest-neighbor for each of the possible neighborhoods and choose the nearest
one. The pseudo-code of IBLG is shown below. Its complexity is O(N3) where N
is the size of the dataset.

For each label l,
initialize Nl as an empty list.

For each exemplar e = (x, l) in D,
compute and add the neighborhood ND(e) to Nl

classify(example x)
for each label l

let e be the exemplar (x, l)
compute the neighborhood ND(e)
retrieve its nearest neighborhood ND(e′) in Nl

let SimD(e, e′) be the similarity of x for l
return a label of maximal similarity

4.3 Some Experimental Evidences

To validate our approach, some experiments have been carried out to compare
IBLG with four other classifiers: CN2 (Clark and Niblett [4]) for rule induction,
PEBLS (Cost and Salzberg [5]) and SCOPE (Lachiche and Marquis [7]) for
nearest-neighbor. As default classifier, the nearest-neighbor classifier based upon
the Hamming distance1 has been chosen.

As IBLG has no parameter, we have chosen the default parameters of the
other algorithms. However, SCOPE has three parameters that are automatically
assessed to deal with noisy datasets. Here, datasets are non-noisy and these
parameters left to their theoretical values.

The experiments are summarized figure 1. IBLG appears to be less sensitive
to the concept undertaken. Therefore, with respect to the other methods, IBLG
performs best for complex concepts.

5 Related Research

5.1 SCOPE Classification

SCOPE (Lachiche and Marquis [7]) is a nearest-neighbor algorithm introduced in
1998. It classifies each new example according to the label of its most numerous
1 The Hamming distance counts the number of features whose values are different.
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Fig. 1. Experimental learning curves for IBLG when target concepts are less
and less complex boolean functions of 10 boolean features. Each measure is the
average classification accuracy on the unseen examples for 25 trials. The parity
concept denotes the parity of the number of features whose value is true among
the five first features.

neighborhood. IBLG chooses the label of the most similar known neighborhood.
The improvement may appear rather small. However, each neighborhood (a set
of exemplars) carries much more information than its size. And, in this paper,
this information has been shown to be relevant from both theoretical and exper-
imental points of view.

5.2 Feature Weighting Methods

The usual similarity measure is inversely correlated to the average distance be-
tween the values of each feature. However, when too many irrelevant features
describe the examples, this similarity is irrelevant as well. The most studied
solution is to weight the contribution of each feature to the overall similarity.

The problem is, then, to estimate from the dataset how relevant is a feature
or even a value. For example, for the context similarity measure, Biderman ([2])
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emphasizes that examples sharing a particular value are perceived more similar
if this value is uncommon in the dataset. However, the problem of relevance
is still open. The problems raised in this research area are reviewed in (Blum
and Langley [3]) and the main contributions to nearest-neighbor methods in
(Wettschereck et al. [10]).

For example, PEBLS (Cost and Salzberg [5]) is one of the state-of-the-art
nearest-neighbor classifiers for symbolic features. It relies on the Value Difference
Metric (Stanfill and Waltz [9]) and outperforms the Hamming classifier on most
of the usual datasets but not all. The poor performances of PEBLS on the parity
concept (cf fig. 1a) emphasize the difficulties encountered by this approach of
similarity.

6 Conclusion

In this paper, we have introduced a new way to measure the similarity between
some examples. This similarity measure has some theoretical advantages over
the usual ones. Firstly, it becomes more and more accurate when the size of the
dataset increases. And, in the limit, similar examples do have the same label.
Therefore, convergence does not follow only from the ability to retrieve more
and more similar examples. Secondly, this similarity is explanatory: it allows
to build a rule-based representation of the concept undertaken. Determining
whether these rules make an accurate rule-based classifier will be the scope of
another paper. But, preliminary results are promising.
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