Asymmetric Co-evolution for Imperfect-Information
Zero-Sum Games

Ole Martin Halck and Fredrik A. Dahl

Norwegian Defence Research Establishment (FFI)
P.O. Box 25, NO-2027 Kjeller, Norway
{0le-Martin.Halck, Fredrik-A.Dahl}@ffi.no

Abstract. We present an asymmetric co-evolutionary learning algorithm for
imperfect-information zero-sum games. This algorithm is designed so that the
fitness of the individual agents is calculated in a way that is compatible with the
goal of game-theoretic optimality. This compatibility has been somewhat
lacking in previous co-evolutionary approaches, as these have often depended
on unwarranted assumptions about the absolute and relative strength of players.
Our algorithm design is tested on a game for which the optimal strategy is
known, and is seen to work well.

1 Introduction

Within the field of machine learning, learning to play games presents special
challenges. Whereas other learning tasks usually involve a fixed problem
environment, game environments are more variable, as a game-playing agent must
expect to face different opponents. In imperfect-information games, a class of games
that has received relatively little attention in machine learning, the challenges are even
greater, due to the need of acting unpredictably. In addition to the challenges
encountered during the learning itself, there are also difficulties connected to
evaluating the success of the training procedure, as this evaluation will need to take
into account the agent’s performance against varying opposition.

One main approach that has been applied to the problem of learning to play games
is co-evolution. In co-evolutionary learning, agents are evaluated and evolved in
accordance to their performance in actual game-play against other evolving agents.
The degree of success achieved by the co-evolution of agents has been variable; in
this paper, we attempt to shed some light on the reasons for this.

The main contributions of this paper comprise a theoretical and a practical
component. We argue that much previous research of machine learning in games
reveals a need of theoretical awareness regarding the evaluation of game-playing
agents in the two phases of the learning itself and the assessment of the success of
learning. We attempt to address this need by presenting a theoretical evaluation
criterion that is consistent with game theory. On a practical level, we use this
theoretical viewpoint in reviewing different co-evolutionary learning methods, and
present a new, asymmetric co-evolutionary design that solves some of the problems
attached to more traditional approaches.

R. Lépez de Mdntaras, E. Plaza (Eds.): ECML 2000, LNAI 1810, pp. 171-182, 2000.
© Springer-Verlag Berlin Heidelberg 2000

172 Ole Martin Halck and Fredrik A. Dahl

The remainder of the paper is laid out as follows: Section 2 treats the relationship
between machine learning and game theory; here we present our evaluation criterion
and discuss the goals of learning in games. In Section 3 we describe different designs
for co-evolutionary learning in games — including our new algorithm — and examine
their properties in a game-theoretical light. Section 4 describes experiments that
illustrate the treatment given in Section 3. A discussion of our goals, method and
results is given in Section 5, while Section 6 concludes the paper.

2 Machine Learning and Imperfect-Information Games

In game theory, a distinction is made between games with perfect and imperfect
information. In perfect-information games, the players always have the same
information about the game state; in imperfect-information games, the players have
different state information. Poker is an example of an imperfect-information game —
the players know their own cards, but not those of their opponents. A seemingly
different source of information imperfection occurs in games with simultaneous
actions, such as scissors—paper—rock. However, these games may be transformed into
equivalent alternating-turn games with “normal” imperfect information (see e.g. [2]),
and vice versa.

In the literature on machine learning in games, most of the focus has been on
games with perfect information. Imperfect-information games seem to have been
somewhat neglected in comparison, as noted and discussed in [4] and [2].

In this paper, we restrict our attention to two-player zero-sum games with
imperfect information. The consequences of the zero-sum restriction, along with other
important game-theoretical background, is explained in the following. We then turn to
the significance this theory has for evaluating game-playing agents and for machine
learning of games.

2.1 Theory of Imperfect-Information Zero-Sum Games

In the tradition of von Neumann and Morgenstern [10], a game is defined as a
decision problem with two or more decision makers — players — where the outcome
for each player may depend on the decisions made by all players. Each player
evaluates possible outcomes in terms of his own utility function, and works to
maximise his own expected utility only. Here, we restrict ourselves to games with two
players; these players will be called Blue and Red.

A pure strategy for a player is a deterministic plan dictating his actions in every
possible observed state of the game. A mixed or randomized strategy is a weighted
average of pure strategies, where the weights are interpreted as the probability of
choosing the associated pure strategy. A mixed strategy may also be specified in a
behavioural way, by giving the probability distributions over available actions in each
possible game state. Only finite games are considered in this paper, that is, we will
assume that each player has a finite number of pure strategies, and that the payoffs are
bounded.

Asymmetric Co-evolution for Imperfect-Information Zero-Sum Games 173

We further limit our attention to zero-sum games, that is games where one player
wins what the other loses, thus eliminating any incentive for co-operation between the
players. Any finite two-player zero-sum game has a value v, a real number with the
property that Blue has a strategy (possibly mixed) which guarantees that the expected
payoff will be at least v, while Red has a strategy guaranteeing that Blue’s payoff is at
most v [9]. Clearly, these strategies are then minimax strategies or solutions, strategies
that give the respective players their highest payoffs against their most dangerous
respective opponents. Furthermore, when (and only when) both players employ
minimax strategies, a minimax equilibrium or solution of the game occurs; the
definition of such an equilibrium is that neither player gains by deviating from his
strategy, assuming that the opponent does not deviate from his. The minimax
equilibrium need not be unique, but in zero-sum games all such equilibria are
associated with the same value.

In perfect-information games, there exist deterministic minimax equilibria, that is
equilibria where each player can play optimally in the game-theoretic sense by
employing a pure strategy. In games with imperfect information, however, mixed
strategies are in general necessary. In scissors—paper-rock, for instance, the unique
minimax strategy for each player is to choose randomly, with uniform probability,
between the three pure strategies.

A more thorough treatment of these and other aspects of game theory can be found
ine.g. [7].

2.2 Evaluating Performance

We now present a game-theoretic evaluation criterion for players of two-player zero-
sum imperfect-information games. The set of all mixed strategies as defined above is
denoted by M, a player is specified by the strategy it employs. Although this
theoretical criterion is not practically applicable in games that have not been solved, it
is crucial for a stringent treatment of game learning. For a further discussion of
evaluation criteria in games, see [2].

The criterion we use is that of equity against worst-case opponent, denoted by
Gegq. For a given P e M itis defined as

Geq(P) = inf (E(P.Q)). M

where E(P,Q) denotes the expected outcome of P when playing against Q.
According to this definition, the Geq measure gives the expected outcome for P when
playing against its most dangerous opposing strategy. In a game with value v, it is
clear that Geq(P)<v for all Pe M; P is a minimax solution if and only if
Geq(P) =v. Thus, the Geq criterion has an immediate game-theoretic interpretation.
It should also be noted that for a given P, there exists a pure opposing strategy Q that
reaches the infimum, that is, there is a deterministic agent which makes P look the
worst.

174 Ole Martin Halck and Fredrik A. Dahl

2.3 The Goals of Learning

The general goal of machine learning algorithms is to perform well in a problem
domain by using information gained from experience within that domain. The agent
typically trains itself on a limited set of domain data in order to become adept at
handling situations that are not covered by the training set. If this is to succeed, it is
clearly important that the feedback received during training corresponds to what we
mean by good performance within the domain. In addition, the practitioner of
machine learning needs to assess the degree to which the learning has been
successful. Thus, performance evaluation is important both in the learning itself and
in the assessment of the success of the learning procedure. Without evaluation,
learning can neither be measured nor occur.

Machine learning in games presents special problems compared to other domains.
The feedback received by an agent during game play depends critically on the agent it
is playing against; that is, the environment is not fixed. Furthermore, for games that
have not already been solved, it is difficult to define an objective evaluation criterion,
and performance has to be measured in actual game play, which, again, depends on
the opponents used.

Often, the goal of game-learning work is inadequately expressed. It is taken for
granted that we want the resulting player to play “well”, hopefully even “optimally”,
without any clear definition of what this entails — the idea of objective game-play
quality is taken for granted. In some cases, agents are trained against and evaluated by
the same opponents; this in essence turns the problem into a normal learning problem
rather than a game-learning one. Sometimes, however, the goal is clearly stated, as in
[6], where it is said: “In the game theory literature, the resolution of this dilemma is to
eliminate the choice and evaluate each policy with respect to the opponent that makes
it look the worst.” According to this view, “optimal play” takes on the natural
meaning of “game-theoretic solution”, and the Geq criterion is the correct one for
player evaluation. This is the view that will be used in the following.

3 Co-evolutionary Approaches

Within the framework of evolutionary computation, co-evolution has been used as a
way of overcoming the problems presented by game-playing domains, see e.g. [1] and
[12]. Here, an agent’s fitness is measured by its performance in actual game play
against other evolving agents, rather than how well it performs in a fixed
environment. The idea is that the evolving players will drive each other toward the
optimum by an evolutionary “arms race”. In the following we discuss some basic
forms of co-evolutionary learning and certain problems associated with these, and
present an algorithm designed to overcome these problems. In all cases discussed, we
consider two-population co-evolution, where each population contains players of one
side in the game.

Asymmetric Co-evolution for Imperfect-Information Zero-Sum Games 175

3.1 Basic Forms of Co-evolution

Accumulated Fitness. A seemingly natural way of evaluating the individuals in co-
evolving populations is to play a tournament where each Blue individual plays each
Red individual, accumulating the scores from the single games. An individual’s
fitness is then the total number of points scored against all members of the other
population.

This approach may work in special cases, but fails in general. Several plausible
reasons for this type of failure have been suggested, e.g. in [12], along with remedies
for these problems. However, we see the main problem as lying in the “arms race”
assumption mentioned above. This assumption is based on the idea that relative
performance between players correlates well to the quality of the players as measured
by the ultimate goal of the training (in our case a high Geq score), so that players
beating each other in turn will get closer to this goal. Thus, a high degree of
transitivity in the “who-beats-whom” relation is assumed.

Unfortunately, games generally display a lack of such transitivity, and this is
especially true for imperfect-information games — scissors—paper—rock provides a
trivial example. (This has also been recognised in e.g. [11].) Thus we see that the
essential fault in this form of co-evolution is the discrepancy between the criterion
used for giving feedback to the players and the criterion we evaluate them according
to after training is done.

Worst-Case Fitness. With the above in mind, we naturally seek a better way of
assigning fitness to the players during co-evolution, a way which corresponds better
to our goal of a high Geg score. Since the Geg criterion tells us the expected
performance when pitted against the most effective counter-strategy, it is tempting to
let each individual’s fitness be given by an estimate of its performance against the
member of the other population which is most dangerous to the individual being
evaluated.

Due to the mixed strategies of the agents, this calls for a more time-consuming
tournament than in the case of accumulated fitness. With accumulated fitness, one
game against each opponent gives an unbiased estimate of the fitness, as the expected
value of the sum of the outcomes equals the sum of the expected values. Worst-case
fitness, on the other hand, requires several games against each opponent, as the
expected value of the minimum of the outcomes (which can be estimated by playing
one game against each) is different from the minimum of the expected values, which
is the fitness measure we want.

What is even worse, though, is that even if we play the number of games necessary
for achieving good worst-case fitness estimates, this method cannot be expected to
converge towards an optimal Gegq score. The reason lies in the somewhat paradoxical
nature of the minimax solution concept. At an equilibrium, where both sides play
mixed strategies that are minimax solutions, neither side has anything to gain by
deviating unilaterally. On the other hand, there is also nothing to /ose by unilateral
deviation, as long as only pure strategies present in the optimal mixture are used.
Thus, even if the co-evolutionary procedure were to attain the optimum, this would
not be a stable state.

176~ Ole Martin Halck and Fredrik A. Dahl

3.2 An Algorithm for Asymmetric Co-evolution

We are now able to identify some conditions that should be met by a co-evolutionary
game-learning algorithm if we are to expect convergence towards the game-theoretic
optimum. First, the fitness evaluations should conform to the goal of the training —
that is, they should be estimates of the Geg values of the individuals. Secondly, the
minimax strategy — which is what we want — should be a stable state of the algorithm.
We here propose an algorithm that is designed to meet these conditions.

The Populations. The most important feature of our algorithm is its asymmetry.
Recall from Section 2.2 that among the most effective strategies against a given
individual, there is always a pure one. Since we want the fitness of our resulting
individuals to reflect the Geq criterion, we give one of the populations the task of
being Geq estimators, and let it consist of deterministic agents rather than
randomising ones. This also solves the problem of the minimax solution being
unstable, as the solution is the only strategy that is not punished by any pure strategy.

Consequently, we let the Blue population be the one we train towards the optimal
game-theoretic strategy. This population then consists of individuals with a
representation that allows them to employ mixed strategies. In practice, this means
that the output of each Blue agent in a game state should be a vector of nonnegative
real numbers that sum to unity; this vector is interpreted as the agent’s probability
distribution for choosing between the available actions. When playing the game, the
agent picks a random action using this distribution.

The Red population consists of individuals that are only able to play pure
strategies, that is, in a given game state each Red individual always chooses the same
action. Note that it is not necessary to devise another design and representation for
this purpose. We may use the same as for Blue, and just change the interpretation of
the output vector, so that the Red agent always chooses the action associated with the
highest value. (In the case of ties between two or more actions, we may use an
arbitrary policy for choosing between these, as long as it is consistent — this is
necessary for maintaining the determinism of the agents.)

In order to ensure that the learning task for Blue gets monotonically more difficult
over time, forcing it towards the optimum, we use a hall of fame, consisting of
effective pure strategies found during training, for the Red population. This device
has also been used for similar reasons in [12].

The Algorithm. The algorithm itself runs as follows: After initialising the
populations with individuals having the properties described above, we use some
method — such as a random draw, a heuristic or a simple tournament — for selecting a
Blue individual that we designate as our nominee for the currently “best” Blue player.
Then the following procedure is repeated (cf. Figure 1):

e Train the Red population for a few generations; the fitness measure for each
individual is its performance against the Blue player currently nominated as best;
e Add the Red individual coming out on top after this training to the hall of fame;

Asymmetric Co-evolution for Imperfect-Information Zero-Sum Games 177

e Train the Blue population for a few generations; the fitness measure for each
individual is its performance against the member of the Red hall of fame which is
most dangerous to that Blue individual;

e Nominate the Blue individual coming out on top after this training as the currently
best Blue player.

Blue Red Blue Red Blue Red

Fig. 1. Algorithm for asymmetric co-evolution

The goal of the Blue training is to find individuals that randomise between pure
strategies in a way that makes it impervious to exploitation by the dangerous Red
agents found; this drives the Blue agents towards the optimum. The Red training
amounts to searching for a hole in the defence of the best Blue agent, thus giving the
Blue population a chance to mend this flaw in the next training cycle. The metaphor
of hosts and parasites [12] is particularly fitting in this setting, more so than in the
symmetric cases where it is otherwise used. A host needs to guard itself against a
broad variety of parasites, whereas a parasite is more than happy as long as it can
break through a single host’s defence. The parallel to the asymmetric layout of our
algorithm should be obvious.

As for worst-case fitness (Section 3.1), it is necessary to play several games for
each pair of players to obtain good performance estimates, due to the randomisation
performed by the Blue agents (see also Section 5).

4 Experiments

The purpose of the experiments reported in this section is to illustrate the claims made
about the different co-evolutionary designs discussed above. Therefore, we have
applied the designs to a toy problem for which the solution is known, namely a
modified version of the game Undercut. Furthermore, in order to factor out the effect
of inaccurate performance estimates from our investigation of the designs themselves,
we have used calculated expected results in our fitness assignments instead of
sampled estimates.

Some standard terminology of evolutionary computation is used in the descriptions
below; see e.g. [8] for definitions and explanations.

178 Ole Martin Halck and Fredrik A. Dahl

4.1 The Game of Zero-Sum Undercut

The two-player imperfect-information game of Undercut was invented by Douglas
Hofstadter [3]. The rules are as follows: Each player selects a number between 1 and
5 inclusive. If the choice of one player is exactly one lower than that of the opponent
(the player “undercuts” the opponent), the player receives a payoff equalling the sum
of the two numbers. Otherwise, each player receives a payoff equalling his own
choice. To make the game more challenging, we expand the available choices to the
numbers from 1 through 30.

Undercut is clearly not zero-sum; we make a zero-sum version by changing the
payoff structure somewhat. A player undercutting his opponent receives the sum of
the choices from the opponent; if there is no undercut, the player with the highest
choice receives the difference between the choices from the opponent. If, for example,
Blue plays 14 and Red 22, Red wins 8 from Blue (i.e. Blue gets payoff —8, Red gets
8); if Blue plays 26 and Red 27, Blue wins 53 from Red. As the game is symmetric,
its value is clearly zero; thus, the optimal Geg evaluation is also zero. The worst
possible Geq score, incidentally, belongs to the strategy of always playing 30; the
most effective counter-strategy is always playing 29, and the minimum score is —59.

The game can be solved using techniques like linear programming [14] or fictitious
play [7]; the probability distribution of the solution is given in Table 1. (Choices not
appearing in the table should not be played.)

Table 1. Solution of zero-sum Undercut with 30 choices

Choice 22 23 24 25 26 27 28 29 30

Probability | 0.095 | 0.084 | 0.151 | 0.117 | 0.161 | 0.110 | 0.135 | 0.069 | 0.078

4.2 Experimental Setup

For the experiments reported here, the behaviour of each individual was specified by
a string of 30 real numbers in (—1,1). These numbers naturally represent the
probability of making the corresponding choices; to map the string into a valid
probability vector, all negative entries are set to zero and the rest normalised to sum to
unity. (Note that this does not affect the string itself.)

The population sizes were set to 50; 500 generations were completed for each
population. Tournament selection was used for selecting parents for the genetic
operations. For each pair of parents a genetic operator was chosen at random to
produce two offspring; the operations and probabilities used were:

e Uniform crossover (probability %2): for each position in the string, distribute the
two parent values randomly between the children;

e Average crossover (probability %4): for each position in the string, let p and ¢ be the
two parent values, and set the offspring values to (2p+¢)/3 and (p+2q)/3.

e Mutation (probability Y4): the children are copies of the parents, except that each
string position is changed to a random number in (—1, 1) with probability 1/15.

Elitism was used; the two individuals with the highest fitness survived from one
generation to the next.

Asymmetric Co-evolution for Imperfect-Information Zero-Sum Games 179

Accumulated fitness

Generations

Fig. 2. Geq for the best individual of each Blue generation, using accumulated fitness

4.3 Results

We now present the results of applying the different co-evolutionary designs to the
game of zero-sum, 30-value Undercut. We evaluate the training using the Geg
criterion; the optimal value is then zero.

Accumulated and Worst-Case Fitness. Figure 2 shows the Geq of the best Blue
individual of each generation when using symmetric co-evolution with accumulated
fitness, averaged over five runs.
It is clear that this form of learning does not work given our goal; the reason is the
lack of transitivity between strategies, as described in Section 3.1. Simply put, there is
no incentive to move towards the optimum for either population, as long as the most
effective strategy for exploiting the vulnerabilities of the opposing population is itself
equally vulnerable.

When using worst-case fitness, the co-evolution produces better individuals than in
the case of accumulated fitness, but still does not converge towards the optimum
(Figure 3; notice the difference in scale compared to Figure 2).

Worst-case fitness

1 51 101 151 201 251 301 351 401 451

Generations

Fig. 3. Geq for the best individual of each Blue generation, using worst-case fitness

180 Ole Martin Halck and Fredrik A. Dahl

Asymmetric co-evolution

:20 \ & W
AN L%
-50 \

Geq

1 51 101 151 201 251 301 351 401 451

Generations

Fig. 4. Geq for the best individual of each Blue population, using asymmetric co-evolution

The reason for the improved performance is that worst-case fitness corresponds far
better to game-theoretic evaluation than does accumulated fitness. On the other hand,
the non-coerciveness of minimax play hinders a stable improvement of the agents.

Asymmetric Co-evolution. In the case of our asymmetric design of Section 3.2, we
let each population train for 25 generations within each main iteration, and ran 20 of
these iterations, so that the total number of generations for each side was the same as
for the other designs. The results for the best Blue individual of each generation,
again averaged over five runs, are shown in Figure 4.

The algorithm clearly pushes the Blue population towards better performance; the
improvement gets more monotonic the more members are present in the Red hall of
fame. This is due to the increased correspondence over time between Blue fitness and
the Geg measure, as the Red hall of fame is filled with parasites that are dangerous to
the various Blue strategies that may occur.

Note also that although the number of generations for each side is the same as for
the symmetric designs, the total number of actual Blue—-Red match-ups is much
smaller than in those cases. Each Red agent always trains against one Blue strategy
instead of a whole population, while the Blue agents are trained against a hall of fame,
the size of which starts at one and increases over time. Of course, when training
proceeds further, the number of opponents for each Blue agent will grow.

5 Discussion

The results of our experiments bear out what was said in Section 3 about the various
designs for co-evolution of game-playing agents. In particular, they show that the idea
that co-evolution works by setting up an “arms race” between the populations is not
necessarily sound — for an arms race to take place and give the desired results, we
require games in which there is a good correspondence between the true strength of
the players (measured game-theoretically) and who beats whom. This is often not the
case; in imperfect-information games this correspondence can be especially poor.

Asymmetric Co-evolution for Imperfect-Information Zero-Sum Games 181

Therefore, we require a mode of fitness evaluation that enforces such a
correspondence; our asymmetric design has this property.

In the experiments, we used a simple game where the solution is known, and used
the calculated expected results of the match-ups in the fitness calculations, instead of
results from actual game play. This was done to give a noise-free validation of our
claims about the different co-evolutionary designs; for our method to be of practical
interest — i.e. in games where the solution is not known — we obviously need to
estimate the expected results by playing repeated games for each match-up. This,
along with the fact that the number of matches in each generation increases, makes
the algorithm relatively expensive in computational terms. This is, of course, a
general problem with evolutionary algorithms, as these are rather blind searches
compared to methods that glean information about the fitness terrain in more
systematic ways.

The question, then, is when and why we should use co-evolutionary approaches,
rather than more informed methods? One obvious answer is that they may be useful
when other approaches fail, for instance when it is difficult to find agent
representations amenable to other machine-learning techniques. Another situation in
which co-evolution (and, indeed, evolution in general) is useful is when we
specifically desire to use a certain representation that does not lend itself well to other
approaches. As an example, we mention that we have work in progress on a far more
complex game, where the individuals are small computer programs for playing the
game, and the method of evolution is genetic programming [5]. The point of using
this non-parametric representation is to evolve game-playing policies that are
semantically understandable to humans; neural-net training, for instance, does not
produce this kind of information in a readily accessible way.

All of our claims and conclusions in this paper are based on the goal of training
agents that are strong in the game-theoretic sense; their ability to randomise strategies
in a minimax-like way is the criterion for evaluation. We have already touched upon
certain problems with this view, in particular the instabilities connected to the
defensive nature of minimax strategies. This defensive approach may seem counter-
intuitive to humans, as the goal of these strategies is to randomise in such a way as to
be invulnerable to a possibly more intelligent opponent. Furthermore, they do not use
information about their opponents, for instance information gleaned from previous
games. A minimax strategy has only a weak ability of punishing vulnerable
opponents; in fact, it is only expected to win if the opponent performs actions that are
not a part of the optimal mixed strategy. Some other research, such as the work on
poker reported in e.g. [13], has the more ambitious goal of using opponent modelling
for exploiting the weaknesses of other agents. While there are certain problems with
this approach, such as the lack of theoretically sound performance measures, the work
is indeed very interesting. In a nutshell we can say that an agent trained in this way
assumes that is can become more intelligent than its opponents, and thus be able to
beat them, while a minimax-trained agent assumes that it will meet more intelligent
strategies, and prepares for the worst.

182 Ole Martin Halck and Fredrik A. Dahl

6

Conclusion

We have presented an asymmetric co-evolutionary learning algorithm for imperfect-
information zero-sum games. This algorithm has been designed so that the fitness of
the individual agents is calculated in a way that is compatible with the goal of game-
theoretic optimality. This compatibility has been somewhat lacking in previous co-
evolutionary approaches, as these have often depended on unwarranted assumptions
about the absolute and relative strength of players. Our algorithm is seen to work well
on a toy problem for which the optimal strategy is known.

References

10.

11.

12.

13.

14.

Angeline, P.J., Pollack, J.B.: Competitive environments evolve better solutions for complex
tasks. In: Forrest, S. (ed.): Proceedings of the Fifth International Conference on Genetic
Algorithms, Morgan Kaufmann, San Mateo (1993) 264-270.

Halck, O.M., Dahl, F.A.: On classification of games and evaluation of players — with some
sweeping generalizations about the literature. In: Fiirnkranz, J., Kubat, M. (eds.):
Proceedings of the ICML-99 Workshop on Machine Learning in Game Playing, Jozef
Stefan Institute, Ljubljana (1999).

Hofstadter, D.R.: Metamagical Themas. Questing for the Essence of Mind and Pattern.
Basic Books, New York (1985).

Koller, D., Pfeffer, A.: Representations and solutions for game-theoretic problems.
Artificial Intelligence 94(1) (1997) 167-215.

Koza, J.R.: Genetic Programming. On the Programming of Computers by Means of
Natural Selection. MIT press, Cambridge, Massachusetts (1992).

Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In:
Proceedings of the 11th International Conference on Machine Learning, Morgan
Kaufmann, New Brunswick (1994) 157-163.

Luce, R.D., Raiffa, H.: Games and Decisions. Wiley, New York (1957).

Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Third,
Revised and Extended edition. Springer-Verlag, Berlin—Heidelberg—New York (1996).

von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100 (1928)
295-320.

von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton
University Press, Princeton (1944).

Pollack, J.B., Blair, A.D.: Co-evolution in the successful learning of backgammon strategy.
Machine Learning 32(3) (1998) 225-240.

Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evolutionary
Computation 5(1) (1997) 1-29.

Schaeffer, J., Billings, D., Pefia, L., Szafron, D.: Learning to play strong poker. In:
Fiirnkranz, J., Kubat, M. (eds.): Proceedings of the ICML-99 Workshop on Machine
Learning in Game Playing, Jozef Stefan Institute, Ljubljana (1999).

Strang, G.: Linear Algebra and Its Applications. Second Edition. Harcourt Brace
Jovanovich, Orlando (1980).

	Asymmetric Co-evolution for Imperfect-Information Zero-Sum Games
	1 Introduction
	2 Machine Learning and Imperfect-Information Games
	2.1 Theory of Imperfect-Information Zero-Sum Games
	2.2 Evaluating Performance
	2.3 The Goals of Learning

	3 Co-evolutionary Approaches
	3.1 Basic Forms of Co-evolution
	3.2 An Algorithm for Asymmetric Co-evolution

	4 Experiments
	4.1 The Game of Zero-Sum Undercut
	4.2 Experimental Setup
	4.3 Results

	5 Discussion
	6 Conclusion
	References

