
B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 232-246, 2000
© Springer-Verlag Berlin Heidelberg 2000

CHAOS: An Active Security Mediation System

David Liu1, Kincho Law2, and Gio Wiederhold1

1 Electrical Engineering Department, Stanford University, Stanford, CA
davidliu@stanford.edu

2 Civil and Environmental Engineering Department, Stanford University, Stanford, CA
law@cive.stanford.edu

3 Computer Science Department, Stanford University, Stanford, CA
gio@db.stanford.edu

Abstract. With the emergence of the Internet, collaborative computing has
become more feasible than ever. Organizations can share valuable information
among each other. However, certain users should only access certain portions
of source data. The CHAOS (Configurable Heterogeneous Active Object
System) project addresses security issues that arise when information is shared
among collaborating enterprises. It provides a framework for integrating
security policy specification with source data maintenance. In CHAOS,
security policies are incorporated into the data objects as active nodes to form
active objects. When active objects are queried, their active nodes are
dynamically loaded by the active security mediator and executed. The active
nodes, based on the security policy incorporated, can locate and operate on all
the elements within the active object, modifying the content as well as the
structure of the object. A set of API’s is provided to construct more complex
security policies, which can be tailored for different enterprise settings. This
model moves the responsibility of security to the source data provider, rather
than through a central authority. The design provides enterprises with a flexible
mechanism to protect sensitive information in a collaborative computing
environment.

1 Introduction

1.1 Security in Collaborative Systems

The emergence of Internet has greatly extended the scope of collaborative computing.
Businesses share information to shorten their product development time; hospitals
share information to provide better care to their patients [Rin+97]. However,
collaborations pose extensive security problems. In fact, protecting proprietary data
from unauthorized access is recognized as one of the most significant barriers to
collaborative computing [HSRM96].

Software engineers have attempted to apply traditional security approaches to their
specific collaborative computing paradigm. Encryption, firewalls, and passwords are
used for secure transmission and storage of information [Den83]. User access rights
are used in file systems to protect directories and files from unauthorized accesses
[GS91]. These systems rely on domain access control for the security of their data and

CHAOS: An Active Security Mediation System 233

focus on protecting systems from adversaries. However, they do not properly address
the security issues in collaborative computing environments, where information needs
to be selectively shared among different domains [JST95]. The following
characteristics can be observed in a collaborative computing environment:

1. There is no clear enemy. Users access parts of the information sources.
Unless information sources can be broken into small autonomous units,
firewalls and passwords cannot provide the functionality needed. If the data
sources are finely partitioned, their management becomes complex and
difficult.

2. Typically, the information stored in an organization is not organized according
to the needs of external accesses. It is in rare cases that security requirements
can be properly aligned with organizational needs. For example, medical
records are created and organized according to the patients in a hospital rather
than according to doctors and staff on whom security clearance needs to be
placed.

3. It is impossible to rigorously classify the data by potential recipients. For
instance, a medical record on a cardiac patient can include notations that
would reveal a diagnosis of HIV, so that this record should be withheld from
cardiology researchers. A product specification may include cost of the
components provided by suppliers, a competitive advantage that should be
withheld from customers.

Ideally, collaborating enterprises would integrate their multiple existing relevant
data sources and access them for specific collaborations as a single system. Such
seamless interoperation is inhibited today by different protection requirements of the
participating systems. Different systems, autonomously developed and managed,
implement different access control policies and will impose different constraints to be
satisfied before allowing participants access to data.

1.2 Security Mediator

Previous proposals address the problem within a federated database context, where a
global schema, possibly under control of a central authority, is defined on the local
data sources [Bel95, JD94, ON95, VS97]. Moreover, access control is generally
assumed to be regulated by discretionary policies, where access decisions are taken
with respect to authorizations stated by users. Mandatory security policies in
distributed systems have been investigated, and some interoperation aspects have been
addressed [GQ96, TR92].

Unfortunately, protection capabilities of current systems provide limited and little,
if any, support for security of dynamic information. First of all, current DBMS work
under the assumption that data are classified upon insertion, by assigning them the
security level of the inserted subject. They provide no support for the re-classification
of existing databases, when a different classification lattice and different classification
criteria need to be applied [CFM+95, Lun+93]. Most approaches to managing
security are static, where data structures, as columns and rows in relational databases
are pre-classified to have certain types of access privileges. These systems
presuppose a central model, in the hands of a database administrator [JL90].

234 D. Liu, K. Law, and G. Wiederhold

To cope with security issues in dynamic collaborative computing environments,
security mediators are introduced. Mediators [WG97] are intelligent middleware that
sit between information system clients and sources. They perform functions such as
integrating domain-specific data from multiple sources, reducing data to an
appropriate level and restructuring the results into object-oriented structures. The
mediators that are applied to security management are called security mediators
[WBSQ96b]. An example of a security mediation system is the TIHI project
[WBSQ96a], in which a rule system is used to automate the process of controlling
access and release of information. Applicable rules are combined to form security
policies, which are enforced by the mediator for every user. Results are released only
if their contents pass all tests. This model (Fig. 1) formalizes the role of a mediation
layer, which has the responsibility and the authority to assure that no inappropriate
information leaves an enterprise domain.

Heterogeneous Information Source

Client
Interface

Result
Filtering

Query
Filtering

Security
Policies

Mediation Engine

Source Query

Certified QueryUnfiltered Result

Certified Result

Foundation

Mediation

Application

Fig. 1: Static Security Mediation

Security rules act like meta-data in a database. They are predefined by the security
expert for the system and are applied to data items that are returned from the queries.
Since all rules are statically specified and checked, we call this type of system static
security mediation system. In such systems, there is a security officer whose
responsibility is to implement and control the enterprise policies set for the security
mediator. Databases and files within the domain provide services and meta-data to
help the activities of the security mediator.

While static security mediation addresses a broad range of security issues in
collaborative computing, it suffers certain shortcomings that motivate the proposed

CHAOS: An Active Security Mediation System 235

approach to move security policies from the mediation layer to the foundation layer
and to give more flexibility in specifying security policies.

First of all, in many scenarios, it is natural to have the information source set and
manage its own security policy. A heterogeneous information system may organize
its source data as information islands, and each island is maintained distinctively from
the others. This organization is becoming more pervasive for Internet services. We
observe that source data maintenance and security policy specification are tightly
related in these situations. When source data get updated, especially when their data
structure changes, the related security policies may need to be modified accordingly.

Secondly, it is difficult to design a rule base security mediator that fits a broad
range of heterogeneous information systems. Enterprise security policies are
specified in terms of the primitive rules predefined for the static mediation system,
making it difficult to develop a comprehensive set of rules that can be effectively
combined to satisfy a very broad range of security needs.

Generally, rules are best applied to relational databases since they are defined on
table schemas. In the case of unstructured data that lack a predefined schema, rules
are difficult to apply. Furthermore, acting as meta-data in a database, rules act on
tables. They are most suited to filter out rows of data entries, but lack the capability
to prune the structure of the result entries to allow partial access to the data.
Traditional view based access control system [GW76] could be used to amend this
deficiency. Separate views can be constructed for each partial structure while
appropriate access rights can be assigned to each view. However, this approach is
similar to that of domain access control. Managing views and maintaining their secret
labels become very complex as the system grows [WBSQ96b].

1.3 Active Security Mediation

We propose a solution to these problems in CHAOS. We define a special type of
objects, active objects, which incorporate security policies into data objects as active
nodes. Rather than treating rules as meta-data acting on tables, we enforce security by
invoking functions contained in active nodes that act on data objects. The design of
CHAOS is schematically shown in Fig. 2.

In CHAOS, each information source is treated as an information island that has its
own access control policies. An incoming client query request is first checked by a
Query Filtering module, where unauthorized request to the heterogeneous system are
denied. The Query Planner and Query Dispatcher modules are in place to decompose
a client query into source queries that individual heterogeneous sources can answer.
The methods of query transformation belong to a different scope of schema
integration, hence are not discussed in detail here. Upon receiving query requests
from the mediation layer, the foundation layer sources fetch the query results, wrap
them as active objects, and pass the active objects onto the mediation layer. The
Result Filtering module will interpret encapsulated active nodes and translate active
objects into regular data objects before passing them onto the client.

In the TIHI model [WBSQ96a], it is assumed that the people controlling the sources
do not care much about security. That is true for many medical doctors, who
willingly share data and do not realize how far the data might spread and embarrass
the patients. When private information gets leaked, it is the institution, as the holder

236 D. Liu, K. Law, and G. Wiederhold

of the data, who assumes the responsibility. In the CHAOS model the assumption is
that the owners of the data care about the security of the data, often for competitive
business reasons, sometimes perhaps even being competitive within an institution.
This model fits those institutions that delegate much authority to enterprise units.

DB A

Access
Control

Active
Object

Wrapper

Query Dispatcher /
Result Integrator

Query
Planner

Result
Filtering

DB B

Access
Control

Active
Object

Wrapper

DB C

Access
Control

Active
Object

Wrapper

Reference Schema
Mapping Rules

Security Policies

Query
Filtering

Client
Interface

Security
Policy

A

Security
Policy

B

Security
Policy

C

Admin

Application

Mediation

Foundation

Security Mediator

Fig. 2: CHAOS Active Security Mediation

By incorporating active nodes into data objects, we provide a tight integration
between security policy specification and source data maintenance. Each data object
has a clear view of all policies that are applicable to it. Furthermore, security policies
can be applied to individual data objects, providing a fine grain of control. We use
Java as the active node specification language, giving greater expressive power to the
security system. For the ease of system configuration and maintenance, we provide
an extendible set of API’s that allow more complex policies to be composed. At the
same time, unlike static security mediation system where policies are solely based on
primitive rules, CHAOS does not place any restriction on whether active nodes use
API’s to manipulate their objects.

CHAOS: An Active Security Mediation System 237

2 CHAOS System Design

2.1 Active Object

Objects are used as the basic data model to describe source data in the CHAOS. Most
clients are best served by information in object-oriented form that may integrate
multiple heterogeneous sources [PAGM96]. Specifically, in CHAOS, data are
represented in XML1. Such choice is made because of XML's nature of extensibility,
structure, and validation as a language. However, the concept and our system design
can be easily extended to other data models. In subsequent section we show a sample
application of the CHAOS system architecture that uses a relational database as the
source data repository.

XML is a meta-markup language that consists of a set of rules for creating
semantic tags used to describe data. An XML element is made up of a start tag, an
end tag, and content in between. The start and end tags describe the content within
the tags, which is considered the value of the element. In addition to tags and values,
attributes are provided to annotate elements. In essence, XML provides the
mechanism to describe a hierarchy of elements that forms the object.

Active object is a special type of XML object. In active objects, two types of
elements are defined: data elements and active elements. A data element, like any
regular XML elements, describes the content of an object; an active element, on the
other hand, no longer describes the content of an object but rather contains the name
of an active node that operates on the object and generates the content. We use
attributes to identify active elements by setting their active-node attribute to true.

2.2 Active Element

Each active element contains one active node, a Java class that will be interpreted by
the mediator runtime environment. Java2 is chosen as the function description
language because of Java's support for portability, its flexibility as a high-level
language, and its support of dynamic linking/loading, multi-threading and standard
libraries.

All active nodes are derived classes of ActiveNode (See Appendix A.1), and they
overload the execute function to provide specific functionality. The execute function
takes three parameters: the current active element handle, the root element handle, and
the client environment information. The mediator runtime environment fills in these
three parameters when the mediator loads the active nodes during the runtime.

Java Project X3, a Java based XML service library package, is preloaded into the
CHAOS security mediator runtime environment. The package provides core XML
capabilities including a fast XML parser with optional validation and an in-memory
object model tree that supports the W3C DOM Level 1 recommendation4. Using the

1 For details about XML, go to http://www.w3.org/XML/.
2 For details about Java, go to http://www.javasoft.com.
3 For details about Java Project X, go to http://developer.java.sun.com/developer/products/xml.
4 For details about document object model, go to http://www.w3.org/DOM.

238 D. Liu, K. Law, and G. Wiederhold

API’s provided by the package, we can parse XML documents, query elements in an
XML object, and modify the content and structure of the object.

In order for active nodes to interact with data elements in an active object, a
mechanism is needed to locate all elements. We employ the concept of label path
[GW97] from the LORE [MAG+97] project and define tag path:

Definition: A tag path of an element e0 is a sequence of one or more dot-separated
tags, t1(s1).t2(s2)…tn(sn), such that we can traverse a path of n elements e1,e2,…,en from
e0 where node ei is the child of ei-1 and is the si- th child that has the tag ti. In case
where si is not specified, its default value is 1.

With the tag path definition, active nodes can uniquely locate an element e by
specifying the root element of the object and a tag path that traverse from the root
element to e. All elements within an active object can be reached and manipulated by
the active nodes that are contained in the object. In the cases where multiple active
objects are to be manipulated by a common active node, the active objects can be
combined together to form a larger object such that a common root element can be
provided to the execute function.

The CHAOS system provides a set of ActiveNode API’s. Elements within an
active object can be queried, structure of an active object can be altered, and statistical
information about an active object or an element can be generated. Based on these
API’s, more complex functionality can be constructed. As opposed to static
mediation system, where policies are constructed based on primitive rules,
ActiveNode API’s place no limitation on how the policies can be constructed. The
API’s are provided merely for convenience rather than for restriction.

With multiple active nodes in an active object, the order in which they are executed
may affect the final mediated result. CHAOS adopts a depth first ordering approach
in loading and interpreting active elements within an active object.

2.3 Security Mediator

Security mediator is the component in CHAOS where client source query is parsed
and certified, active objects are queried and interpreted, and mediated results are
returned. As shown in Fig. 3, a security mediator is composed of two main modules:
Query Filtering and Result Filtering. In addition, an exception-handling module is
inserted in case abnormal system behavior occurs.

Query Filtering Module
A Query Filtering module deals with parsing and certifying incoming query request to
the heterogeneous source. The Client Environment Handling component customizes
the active security runtime environment depending on specific client. Client
environment information is put into a system defined ClientEnv object, which will be
passed onto Query Certification and Active Node Invocation Components. Similar to
the TIHI system, the mediator processes the incoming query and checks for its
validity. The Query Certification components can look up a static table of rules.
Based on the incoming query request and client environment information, it

CHAOS: An Active Security Mediation System 239

restructures and forwards the query to the underlying heterogeneous information
source.

Heterogeneous Information Source
(Active Object Repository)

Client
Environment

Handling

Query
Certification

Active Node
Invocation

Active
Node
API

Exception
Handling

Client

ClientEnv

Souce Query
+

ClientEnv

Exception Ex
ce

pt
io

n

Certified Query

Active Objects

Mediated R
esu

lt Source Query

Result Filtering Query Filtering

Exception

Fig. 3: Active Security Mediator Architecture

Result Filtering Module
The core of the Result Filtering module is the Active Node Invocation component.
For all the incoming active objects, the component identifies the active nodes in an
object and dynamically loads in the appropriate encapsulated active nodes. Active
nodes are invoked by calling their execute function with parameters assembled by the
mediator. Active nodes will operate on the active objects that contain them. The
resulted objects will be forwarded to the client. An Active Node API library is
provided to facilitate security policy construction. As indicated in the previous
section, all active nodes are derived from ActiveNode class. Useful functions and
class definitions are put in the ActiveNode class. They can be accessed as API’s
through ActiveNode's method interface. The library is preloaded into the mediator for
dynamic linking and invocation by active nodes.

Exception Handling
It is critical for the system to have a comprehensive exception handling policy. Our
current implementation prohibits any results from getting through the mediator in the
case of exception. In addition, the conditions are logged for future maintenance.

240 D. Liu, K. Law, and G. Wiederhold

3 System Implementation

In this section, we describe our implementation of a sample business inventory system
using CHAOS system architecture. We study the quality of our design by comparing
it with other alternatives that can be chosen to achieve the same objectives.

In order to better compete in the marketplace, businesses have the need to
streamline their procurement and distribution processes which requires integration of
all relevant data. Our example considers a PC company, for whom it is important to
deliver the product design information and pricing information to its distributor in a
timely and convenient manner. At the same time, it is critical to protect its cost
structure from the competitors.

The source data are originally stored in ORACLE, a relational database, on top of
which a CHAOS system is built to provide integrated product information. The
schemas are shown in Fig. 4.

Id
Brand
Speed
Cost

Table: CPU
Id

Brand
Speed
Cost

Table: CPU
Id

Brand
Capacity

Cost

Table: Memory
Id

Brand
Capacity

Cost

Table: Memory
Id

Brand
Capacity
Function

Cost

Table: Video
Id

Brand
Capacity
Function

Cost

Table: Video
Id

Brand
Capacity

Cost

Table: HD
Id

Brand
Capacity

Cost

Table: HD

CPU-Id
Memory-Id

HD-Id
Video-Id

Table: PC
CPU-Id

Memory-Id
HD-Id

Video-Id

Table: PC

Fig. 4: Relational Schemas for an Inventory Database

In a heterogeneous information system, no particular data model can be assumed
for the original information source. Using XML, however, we can pack
heterogeneous data into uniform logical objects. Integrating heterogeneous
information is a research issue that is addressed in [PAGM96, GW97]. Necessary
mediators are added to perform the data conversion. Therefore, we treat the
heterogeneous information source in CHAOS as an active object repository. All
source data are converted into active objects before they are exchanged between the
foundation layer and the mediation layer of the information system. Necessary
mediators are added to perform the data conversion.

For our example, relational data stored in ORACLE database are converted into
active objects. Together with regular data elements, active elements are assembled to
form active objects. Fig. 5 shows a sample active object that is assembled by a source
mediator that queries the relational information source.

There are two active nodes contained in the active object: price and security1,
which will be dynamically loaded and interpreted by the security mediator when the
object is passed through the security mediator. The price information will be
generated by the active node price, and security will be enforced by the active node
security1. Both price and security1 are written in Java (See Appendix A.2) and are
based on the ActiveNode API’s provided by the system.

CHAOS: An Active Security Mediation System 241

Fig. 5: Sample Active Object

The active node price sums up the cost of all elements and then multiply the cost by a
factor (here specified as 1.2). Effectively, active nodes provide a simple mechanism
to specify derived data, thereby maintaining data dependency among various
components in an object. To achieve the same objective with traditional database
system designs, few other alternatives can be considered, each with certain
drawbacks. A database update program can be run on top of a relational database to
maintain the data dependency. However it is extremely difficult if not impossible to
determine the optimal update frequency. As an alternative, every client application
can embed a procedure that updates the database on queries. Obviously, this approach
is a software engineering nightmare. Active database systems [Day88] could also be
considered to address this issue. These systems integrate production rules facility into
the conventional database systems. Production rules can be considered as the bonding
between the data and the functions in a database system. However, data are required
to be migrated into a single active database, a very difficult process for heterogeneous
data sources. With active objects, such migration is not needed.

The responsibility of the active node security1 for the active object shown in Fig. 5
is to filter the information and reshape the structure of the active object based on the
client that makes the query. For different clients, certain information needs to be
withheld. Only internal users are granted the access to the cost structure of any
product. Specified in the active node security1, if the client is not an internal user, the
Cost elements of all components will be trimmed, hence withholding the confidential
information.

242 D. Liu, K. Law, and G. Wiederhold

Comparing to a view based access control system, an alternative to address the
partial data access issue, CHAOS is cleaner and more flexible. In a view based access
control system, different views need to be specified, each with a different schema.
For two different user groups, that may not seem to be a great challenge. However,
maintenance of views and their secret labels can quickly become a significant
management problem when the complexity of the security needs grows. For example,
if we want to change the security policy to allow each procurement department access
to the cost information of their own components but not the cost information of the
other components, four more views need to be specified and maintained. Whereas in
CHAOS, no separate views need to be constructed. The information source can
specify the policy for partial access to its content by adding few more clauses in the
active node security1.

The results for different client queries are shown in Figure 6 and Figure 7. The
internal result is generated by a query submitted by a client who belongs to the
internal clique. All component information and pricing information are returned in
the result object. In addition, the active node security1 adds a time-stamp element to
the object. The external result is generated for an external client. Comparing to the
internal result, external result does not contain any component cost information,
which is pruned by the active node.

Fig. 6: internal Result Fig. 7: external Result

4 Conclusion

The CHAOS system provides a framework for integrating security policy
maintenance with data source maintenance. Active nodes are incorporated into the
data objects of which they control the security policy. They can locate and operate on
all elements within the active object, modifying the data content and the structure of

CHAOS: An Active Security Mediation System 243

the object. This approach moves the responsibility for security to the source provider,
rather than through a central authority.

We would like to emphasize that there are many fundamental differences between
CHAOS and view-based access control approach:

1. View-based approach is mostly adopted in the presence of structured data
sources, in particular relational data source. In the case of unstructured data
that lack a predefined schema, view-based approach is not applicable.
CHAOS, on the other hand, does not depend on a predefined schema. It is
applicable to all types of data sources.

2. In view-based approach, policies are specified on table, defining the actions
of columns of data. In CHAOS, policies are specified on individual data
object level, providing a finer grain of control.

3. Views-based approach predefines the structure of a view. The structure of a
view is not modifiable once it is defined. CHAOS allows ActiveNode to
dynamically modify the structure of an active object.

4. By incorporating active nodes into data objects, CHAOS provides a tight
integration between security policy specification and source data
maintenance. Each data object has a clear view of all policies that are
applicable to it.

Unlike rule based security systems, policies in CHAOS are specified in a general
programming language. The system does not need to rely on an initial set of primitive
rules to be functional. We provide a set of API’s that can be used to construct more
complex and powerful policies. These API’s are provided for mere convenience and
can be expanded. This approach offers much greater flexibility.

Similar to most security measures, the active security mediation does not offer
100% guarantee. It is restrained by the quality of the system design and the
implementation of the policies. However, it provides a clear, simple and powerful
mechanism to carry out enterprise policies effectively.

Acknowledgements

This work is partly supported by the Center for Integrated Facility Engineering at
Stanford University, by the National Science Foundation under grant ECS-94-22688,
and by DARPA/Rome Laboratory under contract F30602-96-C-0337. The authors
would also like to acknowledge a “Technology for Education 2000” equipment grant
from Intel Corporation in support of the research.

References

[Bel95] Steven M. Bellovin. Security and Software Engineering. In
B.Krishnamurthy, editor: Practical Reusable UNIX Software. John Wiley
& Sons, 1995.

[CFM+95] S. Castano, M.G. Fugini, G. Martella and P. Samarati. Database Security.
Addison-Wesley, 1995.

[Day88] U. Dayal. Active Database Management Systems. In Proceedings of the
Third International Conference on Data and Knowledge Bases, 1988.

244 D. Liu, K. Law, and G. Wiederhold

[Den83] Dorothy E. R. Denning. Cryptography and Data Security. Addison-
Wesley, Reading, MA, 1983.

[GS91] Simson Garfinkel and Gene Spafford. Practical Unix Security. O'Reilly
and Associates, Inc., 1991.

[GQ96] L. Gong and X. Qian: Computational Issues in Secure Interoperation. IEEE
Transactions on Software Engineering, IEEE, January 1996.

[GW76] P. P. Griffiths and B. W. Wade. An Authorization Mechanism for a
Relational Database System. ACM Transactions on Database Systems,
1(3):243-255, Sept. 1976.

[GW97] Roy Goldman and Jennifer Widom. Dataguides: Enabling Query
Formulation and Optimization in Semistructured Databases. VLDB
Conference, 1997.

[HSRM96] Martin Hardwick, David L. Spooner, Tom Rando, and K.C. Morris.
Sharing Manufacturing Information in Virtual Enterprises. Comm. ACM,
39(2):46-54, Feb. 1996.

[JD94] D. Jonscher and K.R. Dittrich. An Approach for Building Secure Database
Federations. In Proc. of the 20th VLDB Conference, 1994.

[JL90] Sushil Jajodia and Carl E. Landwehr: Database Security IV: Status and
Prospects. North-Holland, 1990.

[JST95] D. Randolph Johnson, Fay F. Sayjdari, and John P. Van Tassell. Missi
Security Policy: A Formal Approach. Technical Report R2SPO-TR001-95,
National Security Agency Central Service, July 1995.

[Lun+93] Luniewski, A. et al. Information Organization Using Rufus. ACM
SIGMOD, Washington DC, May 1993. pp. 560-561.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore:
A Database Management System for Semistructured Data. SIGMOD
Record, 26(3):54-66, Sept. 1997.

[ON95] YongChul Oh and Shamkant Navathe. Seer: Security Enhanced Entity-
Relationship Model for Secure Relational Databases. In Papazoglou (ed.):
OOER'95, Springer LCNS 1021, 1995, pp.170-180.

[PAGM96] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object Fusion
in Mediator Systems. VLDB Conference, 1996.

[Rin+97] David M. Rind et al.: Maintaining the Confidentiality of Medical Records
Shared over the Internet and the World Wide Web. Annals of Internal
Medicine, Vol.15 No.127, July 1997, pp.138-141.

[TR92] B. Thuraisingham and H.H. Rubinovitz. Multilevel Security Issues in
Distributed DBMS III. Computer & Security, 11:661-674, 1992.

[WBSQ96a] Gio Wiederhold, Michel Bilello, Vatsala Sarathy, and XiaoLei Qian.
Protecting Collaboration. In Proceedings of the NISSC'96 National
Information Systems Security Conference, pages 561-569, Oct. 1996.

[WBSQ96b] Gio Wiederhold, Michel Bilello, Vatsala Sarathy, and XiaoLei Qian. A
Security Mediator for Healthcare Information. In Proceedings of the 1996
AMIA Conference, pages 120-124, Oct. 1996.

[WG97] Gio Wiederhold and Michael Genesereth. The Conceptual Basis for
Mediation Services. IEEE Expert, Intelligent Systems and their
Applications, 12(5), Oct. 1997.

[VS97] S. De Capitani di Vimercati and P. Samarati. Authorization Specification
and Enforcement in Federated Database Systems. Journal of Computer
Security, 5(2):155-188, 1997.

CHAOS: An Active Security Mediation System 245

Appendix

A.1 Sample ActiveNode API

public class ActiveNode
{
 /*
 * Entry point, needs to be overloaded
 */
 public String execute(Element current, Element root,

ClientEnv env);

 /*
 * Query elements within an active object
 */
 protected Node getNode(Element root, String path);
 protected String getString(Element root, String path);
 protected int getInt(Element root, String path);

 /*
 * Manipulate structure of an active object
 */
 protected Node removeNode(Element root, String path);
 protected void removeAllNode(Element root, String tag);
 protected void appendNode(Element root, String path,

Node child);
 protected void appendNode(Element root, String path,

Node child);

 /*
 * Miscellaneous statistical functions
 */
 protected int sumAllNodes(Element root, String tag);
 protected int getNumChildren(Element root, String tag);

 /*
 * Utility functions
 */
 protected void initLog(boolean onoff);
 protected void log(String msg);
}

246 D. Liu, K. Law, and G. Wiederhold

A.2 Sample Active Nodes

Active Node price

public class price extends ActiveNode
{
 public String execute(Element current, Element root,

ClientEnv env)
 {
 int cost = sumAllNodes(root, "Cost");

 return String.valueOf(1.2 * cost);
 }
}

Active Node security1

public class security1 extends ActiveNode
{
 public String execute(Element current, Element root,

ClientEnv env)
 {

/* Check the clearance of the client */
if (!env.Clique().equals("internal")) {
 removeAllNodes(root, "Cost");
}

/* Add a time stamp to the object. */
createTextElement(root,

 "",
 "TimeStamp",
 new Date().toString());

return "checked for " + env.Clique();
 }
}

	1 Introduction
	1.1 Security in Collaborative Systems
	1.2 Security Mediator
	1.3 Active Security Mediation

	2 CHAOS System Design
	2.1 Active Object
	2.2 Active Element
	2.3 Security Mediator

	3 System Implementation
	4 Conclusion
	References
	Appendix
	A.1 Sample ActiveNode API
	A.2 Sample Active Nodes
	Active Node price
	Active Node security1

