
B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 212-231, 2000
© Springer-Verlag Berlin Heidelberg 2000

Design Principles for Application Integration

Paul Johannesson and Erik Perjons

Department of Information and Systems Sciences,
Stockholm University/Royal Institute of Technology,

Electrum 230, 164 40 Kista, Sweden
{pajo, perjons}@dsv.su.se

Abstract. Application integration is a major trend in information technology
today. In this paper we present a number of principles for the design, validation
and presentation of process models which align the applications of an
organisation to its business processes. The design principles are divided into
two groups. The first group consists of guidelines that obtain different views of
the models and thereby facilitate for different stakeholders, e. g. business
managers, designers and operators, to use common models and process
languages. The second group of principles consists of guidelines to check the
completeness of the process models. The paper also presents a process
description language, BML (Business Model Language), which is tailored for
modelling application integration.

1 Background

Three of the major trends in information technology today are the Web, enterprise
software packages, and application integration. The Web provides an environment
that can link a company’s customers, suppliers, partners, and its internal users.
Enterprise software packages offer an integrated environment to support business
processes across the functional divisions in organisations. Some packages, like
enterprise resource planning (ERP), for example SAP R/3 and BaanERP, manage
back-office requirements, while other packages provide front-office capabilities, e.g.
customer services. Common to Web applications as well as enterprise software
packages is the need for application integration. Application integration is required to
connect front office systems with back office systems, to transfer business processes
to the Web, and to create extended supply chains involving customers, partners, and
suppliers. Application integration is also needed for wrapping legacy systems and for
migrating to new environments.

The demand for application integration is also fuelled by the move to process
orientation in many organisations. Traditionally, organisations have been functionally
divided, i.e. companies have been separated into departments such as market,
production, and service. However, the functional organisation has been shown to have
a number of weaknesses. In particular, it requires a huge administration to handle
issues crossing functional borders, and considerable resources are allocated to tasks
that do not create value. In order to overcome the problems of a functional
organisation, companies have been concentrating on business processes, i. e. the set of
related activities that create value for the customers. These processes cross the

Design Principles for Application Integration 213

internal borders of an organisation and also sometimes the external borders to other
organisations, [6], [22], [27].

Supporting cross-functional processes raises new demands on the IT systems or
applications. Traditionally, the applications have been built around departments or
functions in the companies. The result has been a “stovepipe” like relation between
the functions and the applications, where every function in the company is supported
by its own IT-system or applications. This architecture is not satisfactory for process
oriented organisations; to support the business processes in full the applications must
be integrated, [18], see Fig. 1.

To handle this integration of applications in an efficient way, technologies, tools,
and methodologies are required. One main technology is the Process Brokers, also
called Process Management Systems, which aim at aligning the applications of an
organisation to its business processes. A Process Broker provides an integrated,
graphical environment in which all process logic for connecting applications can be
encapsulated. The Process Broker enables users to visualise, construct, analyse,
simulate and execute processes for application integration. Utilising the Process
Broker technology for application integration is a complex design activity. Therefore,
it requires adequate methodological support so that well-structured and easily
understandable models can be produced. The purpose of this paper is to contribute to
such methodological support by introducing a number of principles for the design,
validation, and presentation of process models aligning the applications of an
organisation to its business processes. The paper is a result of a joint project between
the Royal Institute of Technology and Viewlocity, which aims at further developing
technology, methods and Viewlocity’s modelling language BML for application and
process integration, [20], [27].

The remainder of the paper is organised as follows. Section 2 provides a brief
overview of different architectures for application integration, in particular the
Process Broker architecture. The section also discusses characteristics and problems
of application integration. Section 3 describes related research about process
modelling languages, and in Section 4 we describe a process modelling language
BML (Business Model Language) which is used in the remainder of the paper. A
classification of messages and processes, which is the base of the proposed design
principles, is described in Section 5. In Section 6, we present our design principles
with modelling examples. Finally, in Section 7, we summarise the paper and give
suggestions for further research.

Fig. 0. The traditional function oriented structure, to the left, with the “stovepipe” like
relation between business functions and IT systems. To the right the process oriented
organisation which requires an integration of the IT systems.

Business Function

IT-support

Business Process 1

Business Process 2

214 P. Johannesson and E. Perjons

2 Architecture and Problems

2.1 Architectures for Application Integration

Integration of applications can be supported by many different architectures. One
architecture for integrating applications is the point-to-point solution where every
application is directly connected to every other application, see Fig. 2 (left). This
solution could work for a small number of applications, but as the number of
applications increases, the number of connections quickly becomes overwhelming.
The Message Broker architecture reduces this complexity, see Fig. 2 (middle). The
main idea is to reduce the number of interfaces by introducing a central Message
Broker and thereby make it easier to support the interfaces. If one of the applications
changes format, only one connection has to be changed: the one to the Message
Broker, [26].

Message Broker

Application A

Application B

Application A

Application B

Application C
Application D

Application A Application B

Application C

Process Broker

Application C

Application AApplication D Person A

Fig. 1. The point-to-point strategy to integrate applications, to the left. In the middle the
Message Broker architecture, which reduces the number of interfaces. To the right the Process
Broker, which collect all process logic in the Broker.

The Process Broker, see Fig. 2 (right), is an extension of the Message Broker. In
addition to handling format conversions, the Process Broker also encapsulates the
process logic for connecting applications. When all process logic resides in one place,
it becomes possible to study, analyse, and change the processes using a graphical
interface, [5], [15], [27]. This visualisation reduces the complexity and enables
different categories of people to take part in the process design.

2.2. Problems in Application Integration

The Process Broker technology requires methodological support so that designers can
construct models that align the applications to the business processes. Experiences of
a real world modelling study at a European telecommunication company demonstrate
several problems when modelling application integration. The telecom company
intended to handle an integration of applications by means of a Process Broker, which
aimed at facilitating the complex interaction between administrative and technical
applications. The problems we noticed can be summarised as follows:

Design Principles for Application Integration 215

Unstructured and complex models. Application integration often results in highly
unstructured and complex models. One reason for this is that exception handling,
which describes what to do when applications and human users do not respond in an
expected way, makes up a large part of an application integration specification and
thereby easily obscures the main business logic. Furthermore, there is often extensive
communication between the Process Broker and different applications, which also
tends to conceal the essential business logic.

Redundancy. The Process Broker does not maintain control over external
applications, which means that these applications can be updated without the Broker
being notified. As a consequence, it is often desirable to maintain redundant
information that duplicates parts of the information in the external applications. This
redundant information enables the Process Broker to maintain a complete, correct,
and easily available record of its interactions with customers. However, this
duplication of information requires mechanisms for handling possible inconsistencies.

Incomplete models. Since models for application integration tend to become large
and complex, there is a risk that designers overlook parts of the models that are
needed to maintain completeness and consistency.

Communication among stakeholders. It is possible to distinguish among four kinds
of stakeholders: domain experts such as business managers, owners of external
applications, business and technical designers, and operators that handle the day-to-
day operations. Different stakeholders require different views of the system, while at
the same time they need to be able to communicate with each other using common
models and languages.

In the rest of the paper, we try to address these problems by proposing a set of design
principles for application integration. We also introduce a process language called
BML and argue that it facilitates communication between stakeholders. Table 1
summarises how the problems identified are addressed.

Table 1. The table shows in which section of the paper the identified problems are attended.

Problems:

Section 4:
Choice of
language: BML

Section 5.2:
Process
Classification

Section 6.1:
View
guidelines

Section 6.2:
Completeness
Guidelines

Unstructured and complex models X X

Redundancy X

Incomplete models X

Communication among stakeholders X X

3 Related Work

In the beginning of the 90’s process orientation became one of the most important
trends in management practice as well as research. Authors such as Hammer and
Davenport, [6], [14], advocated a radical change from a functional perspective to a
process focussed perspective in order to improve customer satisfaction, shorten lead
times, increase productivity, and handle technological development. Initially, process

216 P. Johannesson and E. Perjons

orientation achieved most attention in the manufacturing discipline, but in recent
years it has also gained prominence in the information systems community, [12].

A number of languages and methodologies for process specification and design
have been proposed. Many of these languages are based on Petri nets, [21], e.g. UML
activity diagrams. A distinction can be drawn between activity oriented and
communication oriented process languages. An activity oriented process language,
e.g. UML activity diagrams or EPC, [23], is intended for handling arbitrary processes
including material processes involving physical actions. Therefore, the activity
oriented language diagrams usually represent a mix of automated and manual actions.
A communication oriented language, on the other hand, focuses on communicative
processes describing the interaction between people and systems in terms of sending
and receiving messages, which provides an opportunity to support the communication
by means of information technology. Communication oriented languages have been
heavily influenced by speech act theory, [24]. One of the first systems based on a
communication and speech act oriented approach was the Coordinator, developed by
Winograd and Flores, [25], which supported the communication process in the work
place. The idea of applying a speech act based approach to information systems
analysis and design was also employed by the SAMPO (Speech-Act-based office
Modelling aPprOach) project in the middle of the eighties, [3]. These ideas were
further developed in recent work on Business Action Theory, [13], [17], and in the
DEMO (Dynamic Essential Modelling of Organisations) approach, [7], [8]. We
believe that a communication oriented approach is particularly suitable for application
integration and Process Brokers, as application integration basically consists of the
interchange of messages between systems and people.

A technology related to the Process Broker is the Workflow Management System,
[16]. The first generation of Workflow systems, during the 80’s and the early 90’s,
was supporting communication between people, concentrating on document routing.
The next generation of Workflow technologies put the business processes in focus. By
also involving automatic actors, the automation of the processes could be facilitated
further, [18]. The next step for the Workflow systems should be to implement
enterprise wide workflow solutions and provide tools for managing the processes
themselves. This process management includes process modelling, process
reengineering as well as process implementation and automation, [11], [27]. The
Process Broker can be seen as this next step to process management, by providing
modelling and simulation capabilities, but the Process Broker also enables rapid
modifications of the business processes thanks to its flexible way of handling
application integration.

In the marketplace, a new breed of middleware technologies focused on enterprise
application integration has emerged. Message Broker vendors provide functionality
that enable applications to interoperate with a minimum of custom coding. Some of
the major products here are Viewlocity’s AMTrix and SmartSync, [1], IBM’s
MQSeries Integrator, [19], and Entire Broker from Software AG, [9]. Several of the
Message Broker vendors are adding process modelling and simulation capabilities to
their products, thereby moving into the Process Broker market. Some of the major
products in this market are: Viewlocity’s SmartSync Model Manager [27], Extricity
Software’s AllianceSeries [10], Vitria Technology’s BusinessWare [2], and HP’s
Changeengine [15].

Design Principles for Application Integration 217

4 BML – A Language for Application Integration

To visualise the application integration there is a need for a process description
language. This section briefly introduces such a language, BML (Business Model
Language), which is developed by Viewlocity, [27]. The language has similarities to
SDL (Specification and Description Language), [4], but is more adapted to
application integration. BML is a communication oriented process language, see
Section 3, which means that it focuses on describing interaction between systems
through the sending and receiving of messages. This makes the language suitable for
application integration and Process Brokers. Another important advantage of BML is
that the language can be used for the business specification and design as well as
operation of systems. This means that the same language can be used in different
phases of a system’s life cycle: in feasibility analysis, in requirements specification, in
the design and implementation phases, and even in the operation phase. This enables
different categories of stakeholders to use the same language for different purposes.
The language can also be used directly as an implementation language and to some
extent replace ordinary programming language. Further advantages with BML are its
capability to describe and partition the interaction and interfaces between processes
that work concurrently. Concurrency is common in application integration, when for
example several applications are to be updated in parallel. The possibility of
partitioning in BML reduces the complexity of handling large systems, through
creating manageable and understandable parts with limited dependencies.

BML can describe the structure as well as the behaviour of a system by using two
kinds of graphical diagrams. The structure of the system is visualised by a static
diagram, see Fig. 3, which describes the processes in a static mode. The static
diagram describes the messages sent between the processes and between the processes
and the environment, i. e. the external applications and people.

The dynamic behaviour of a system is described by using process diagrams, see
Fig. 4. These diagrams can be seen as templates, visualising the order in which the
messages shall be sent and received. For each process diagram there is a number of
process instances, that are created during runtime. The process instances execute
independently of each other, but can communicate by sending and receiving messages
asynchronously. Each instance has an input queue, see down to the left in Fig. 4,
where received messages are stored. A process instance can either be waiting in a
stable state or perform a transition from one state to another. A transition is initiated
when a message in the input queue is chosen and consumed.

Following the example in Fig. 4, the process instance starts in a Start state (circle
without a name). Only the messages m1 from process a and m2 from process c can
initiate a transition. The message m1 is first in the queue and is therefore consumed,
and the process instance performs a transition to the state Wait for Event 1. During the
transition a message m3 is sent to process c. Thereafter the message m9 is first in the
queue. Since only message m5 can initiate a further transition from Wait for Event 1,
the message m9 is discarded. The next message in the queue is then m5, which can
initiate a transition from Wait for Event 1 to some other Wait for Event state (not
specified in the example). During the transition data can be manipulated, decisions
can be made, new process instances can be created and messages can be sent to other
process instances or to the process instance itself.

218 P. Johannesson and E. Perjons

process a

process c

process b

c u s to m e r

[m8]

[m7]

[m2]
[m3]

[m1, m5,
 m9]

[m10]

[m6]

[m4]

a p p li c a t io n A

a p p l i c a t io n B

Fig. 2. The static diagram in BML visualises the structure of the processes in a system.

process b

m1

m2

m3

m4 End

W a it
for

Even t 1

process a process c

process c

m5

process a

m1

m9

m5

m10

ap pl icat ion B

Fig. 3. A process instance with the input queue.

An important feature of BML is also the data model, which is not used in the
examples of this paper. Each process diagram has a data model that describes the
structure, type and meaning of the data that is handled in the diagram. The data model
also describes the structure of the data in the different messages.

The main BML symbols are the following, see also Fig. 5:

Wait for Event and Start. The process instance is waiting in the Wait for Event state
until a message is received or a timer has expired. A Wait for Event symbol without a
name is the starting state.

End. Describes the end of the flow of the process instance.

Receive Message. Describes the consumption of a message from the input queue.

Design Principles for Application Integration 219

Send Message. Describes the sending of a message.

Automated Business Activity. Describes operations that will be performed on the
process instance.

Automated Business Decision. The control flow is dynamically changed depending
on different business rules.

Start Timer and Expire Timer. In application integration, the notion of time is
important and timers occur frequently to obtain delays and supervision. When a timer
is started it will be provided with a timeout value. The starting is represented by an
hourglass “full of time”, and the timeouts by an hourglass “out of time”.

Application and Human actor. Both are symbols of external actors.

W a it
fo r

E ve n t x

E n d M es sag e x M essa g e z
Act iv ity

o p er a t io n a

D ec is io n
co n d it io n

b
T im er

T 1

T im er
T 1

P erso n A

EndWait for Event Receive Message Send Message

Automated
Business Decision

Start Timer

Automated
Business Activity

Expire Timer Application Human agent
A p plica ti on A

Fig. 4. Symbols used in BML

5 Classifications of Messages and Processes

5.1 A Classification of Messages

In this section, we introduce a classification of messages as a basis for formulating the
design principles in Section 6. The classification is based on speech act theory.
However, it is our experience that users often find it difficult to classify messages
directly according to the basic speech act types. Therefore, we introduce a set of
message types which are more closely related to the messages typically found in
application integration.

The study of speech acts has been an active research area in analytical philosophy
since World War II, and the most influential approach to date is speech act theory as
developed by John Searle, [24]. Searle proposes a taxonomy for speech acts
consisting of five classes: assertives, commissives, directives, declaratives, and
expressives. These are also called the illocutionary points of a speech act. An
assertive is a speech act, the purpose of which is to convey information about some
state of affairs of the world from one agent, the speaker, to another, the hearer. An
example is “It is raining”. A commissive is a speech act, the purpose of which is to
commit the speaker to carry out some action or to bring about some state of affairs.
An example is “I promise to be at home before nine o’clock”. A directive is a speech

220 P. Johannesson and E. Perjons

act, where the speaker requests the hearer to carry out some action or to bring about
some state of affairs. An example is “Please bring me the salt”. A declarative is a
speech act, where the speaker brings about some state of affairs by the mere
performance of the speech act. An example is “I hereby pronounce you husband and
wife”. An expressive is a speech act, the purpose of which is to express the speaker’s
attitude about some state of affairs. An example is “I like coffee”.

Based on Searle’s classification of speech acts, we give a list of message types
below which frequently occur in application integration. The message types are
requests for information and services and the responses to these requests. We also
identify messages for reserving, booking, and releasing resources. The difference
between reserving and booking is that reserving is a preliminary stage to booking. A
reservation could either be followed by a booking or a cancelation of the reserved
resource. The distinction is important if the system automatically should cancel
reserved resources that not have been booked after a certain time. For example, a
person can reserve several telephone numbers for a certain time, so that he or she can
choose to book one or more numbers from them. The reserved numbers which are not
booked after a time limit are automatically released so that other persons can reserve
or book the numbers.

The message types are the following:

Information request. An information request is a directive speech act in which the
sender asks the receiver for a piece of information. Example: What is the telephone
number to the help desk?

Service request. A service request is a directive speech act in which the sender asks
the receiver to carry out a service. Typical examples of services are to deliver a
product, get an authorisation, and booking a resource. In contrast to an information
request, a service request does not ask for information about a state of affairs – it
requires a state of affairs to be changed. Example: Provide me with a new telephone
subscription.

Reservation request. A reservation request is a special service request in which the
sender asks the receiver to reserve a resource for a period of time, meaning that the
resource cannot be reserved or booked by anyone else during this period of time.
Example: Reserve five different telephone numbers (which the customer can choose
from).

Booking request. A booking request is a special service request in which the sender
asks the receiver to make a resource available for the sender. Example: Book the
telephone number that the customer has chosen.

Information confirmation. An information confirmation is an assertive speech act in
which the sender, in response to an information request, provides the receiver with a
piece of information. Example: The telephone number to the help desk is 07-70 70 70.

Service confirmation. A service confirmation is an assertive speech act in which the
sender, in response to a service request, informs the receiver that the required service
has been carried out. Example: You have been provided with a new telephone
subscription.

Design Principles for Application Integration 221

Reservation confirmation. A reservation confirmation is a special service
confirmation in which the sender, in response to a reservation request, informs the
receiver that the required reservation has been made. Example: The telephone number
is reserved (until the customer has chosen to book the number or a certain time limit
has passed).

Booking confirmation. A booking confirmation is a special service confirmation in
which the sender, in response to a booking request, informs the receiver that the
required booking has been made. Example: The telephone number is booked.

Service promise. A service promise is a commissive speech act in which the sender,
in response to a service request, commits itself to carry out the required service.
Example: The delivery department promises to send the ordered telephone.

Notification. A notification is an assertive speech act in which the sender informs the
receiver about the changes of some state of affairs. Example: The customer has
started to use the subscription.

Cancel reservation. A cancel reservation is a directive speech act in which the sender
asks the receiver to cancel a previous reservation. Example: Release a reserved
number.

Cancel booking. A cancel booking is a directive speech act in which the sender asks
the receiver to cancel a previous booking. Example: Release a booked number.

5.2 A Classification of Processes

In this section, we introduce a classification of processes. The purpose is to support
the designer in building well-structured and easily understandable application
integration models. The classification identifies types of processes which are largely
independent of each other and which can be combined with clear and simple
interfaces. This makes it possible to partition a system of processes into manageable
and understandable parts.

A starting point of the classification is the customer, an actor for whom a process is
to create value. By emphasising the customer, we can distinguish between customer
oriented processes that directly interact with the customer, processes that support the
customer oriented processes in various ways, and processes that manage more
technical and informational aspects.

The classification identifies the following types of processes:

Customer process. A customer process focuses on the interaction with the customer.
A customer process may contain messages to or from a customer or another process
types, but not to and from external actors, i.e. applications or people (except the
customer). The purpose of a customer process is to show the business logic from the
customer’s point of view.

Interface process. An interface process handles the interaction with the external
applications or people (except the customer). An interface process may contain
messages to and from all other types of processes as well as to and from external
applications and people. An interface process interacts with exactly one external
application or person. The purpose of the interface processes is to insulate the

222 P. Johannesson and E. Perjons

interfaces of external applications from the main business logic. For example, when
the format of messages sent from an external application changes, only the data model
in the interface process has to be modified while the customer processes can be left
untouched. There are two subtypes of interface processes:

Request process. A request process handles information or service requests from
other processes.

Release process. A release process handles cancel reservations or cancel bookings
from other processes.

Synchronisation process. A synchronisation process synchronises a number of
interface processes. It may contain messages to and from different types of processes,
but not from external applications and people. The purpose of a synchronisation
process is to encapsulate a piece of business logic – typically a synchronisation
process takes care of a request from a customer process by invoking and
synchronising a number of interface processes.

Maintenance process. A maintenance process handles the internal storage of
information that duplicates the information in external applications, see Redundancy
in Section 2.2. There are two subtypes of maintenance processes:

Update process. An update process takes care of a notification from a customer or
synchronisation process and stores the information carried by the notification.

Consistency process. A consistency process is a process that checks whether there
is any inconsistency between internally stored information and information in external
applications. A consistency process also takes appropriate action when an
inconsistency is detected.

A typical structure of a model using the process classification is shown in Fig. 11. The
customer process contains the main business logic with respect to the customer. It
interacts with synchronisation processes and interface processes in order to take care
of the customer’s requests. It also sends notifications about the customer interaction to
maintenance processes, not shown in Fig. 11. We believe that this structure supports
flexibility, stability, and understandability by separating main business logic from
more technical and informational aspects. By using the design principles of Section 6,
designer will automatically arrive at an application integration model with the
proposed structure.

6 Design Principles

In this section, we introduce a number of design principles in the form of guidelines
for the design, validation, and presentation of application integration models. These
guidelines are divided into two groups. The first group consists of guidelines to obtain
different views of process models, while the second group consists of guidelines to
check the completeness of process diagrams.

The main idea behind the guidelines in the first group, the view guidelines, is to
obtain a series of views of processes starting with a customer oriented view on the
business level. This first view means that the Process Broker can be seen as a
mediator between the customer, i.e. the one for whom value is to be created, and a set

Design Principles for Application Integration 223

of applications and people, see Fig. 6. Note that the customer does not communicate
directly with the applications and other people, but only through the Process Broker.

Process Broker

Customer

Application A Application B Application C Person A

Fig. 5. The customer does not communicate directly with the applications and other people, but
only through the Process Broker.

The succeeding views add more and more details moving from a business perspective
to a more technical perspective. Each view is an extension of the previous one, either
through adding subprocesses or through introducing new components into the existing
diagrams. Note that the Process Broker contains all the modelled processes in the
example, i. e. the Process Broker is the internal system, while the external system is
the one represented by applications and people.

The purpose of the guidelines in the second group, the completeness guidelines, is
to support the designer in creating processes that include complete discourse
structures and not only fragments. In particular, the completeness guidelines can be
used to ensure that requests are always handled in an appropriate way, and that
outstanding bookings and reservations are taken care of in cases of exception.

6.1 View Guidelines

In this section, we present a number of views supporting a top-down approach. Each
view is illustrated by means of a telephony case, in which a customer wants to order a
subscription.
View 1. Customer interaction. This view models the interactions between the
Process Broker and the customer, i.e. the messages exchanged by the customer and
the Broker as well as the flow of control. In this view, there is only one process
diagram.

The first tasks of the designer in this view are to clarify how the process is
initiated, what messages the customer sends to the Process Broker, and what
messages the Process Broker sends to the customer. Based on this information, the
designer constructs a static diagram, see Fig. 7. The corresponding process diagram is
shown in Fig. 8. The Order subscription process is initiated when it receives a
message called Order initiated from the customer. Furthermore, the customer asks for
a number of telephone number suggestions, Request number proposals. The answer
from the Process Broker, is the message Number proposals. The customer can now

224 P. Johannesson and E. Perjons

choose one of the numbers or ask for further telephone number suggestions if he or
she is not satisfied by those suggested. The receiving message from the customer,
Customer response, is therefore evaluated in a decision point, Nr chosen. If the
customer has not chosen a number the process instance follows the ”false” path back
and the customer can ask for more numbers. If the customer has chosen a number the
order is taken care of. The Process Broker will then inform the customer about the
status of the order, Reporting of the order’s state. Finally, if the order is approved of,
the customer will get further information about the subscription, Information delivery.

Customer process:

O rder subscription process

Cu stom er

[Number proposals,
Reportrting of the order’s state,
Information delivery]

[Order initiated,
Request number proposals,
Customer response]

Fig. 6. The static diagram in view 1

R equest
num ber

proposa ls

O rder
in it ia ted

Num ber
p roposals

E nd

Custom er
response

N r
chosen

Tru e

Fa lse

Repor ting
 o f the

order's s ta te

S ub-
scrip tion

O K

Tru e

Fals e

In form ation
de livery E n d

C ustom er Cu st om er Cu st om er C u stom er

Cu st om er

C u stom er

Fig. 7. The Order subscription process (view 1).

Design Principles for Application Integration 225

View 2. Broker requests. This view is an extension of view 1, which describes how
the Process Broker produces the messages it sends to the customer. For each Send
Message symbol from the Broker in view 1, a pair of one Send Message symbol and
one Receive Message symbol is added.

Re q u e s t
n um be r

p ro p o sals

O rd er
in it ia ted

Nu m b e r
p ro po sa ls

E n d

C us to m er
re sp o nse

Nr
cho se n

T rue

F a ls e

Re p or ting
 o f the

orde r's s ta te

S ub -
scrip tion

O K

T ru e

F als e

Info rm a tio n
d elive ry

E n d

C us to m er C u st o m er C us to m er C u st o m er

C u stom er

C u st o m er

Re q u e s t
n um b e r

p ro p o sals

Nu m b e r
p rop o sa ls

Number
handling

Number
handling

O rd er
O rder

a n swe r

Update
applications

Update
applications

Fig. 8. The Order subscription process (view 2).

The first thing the designer must do when creating this view is to determine how the
messages sent by the Process Broker are to be produced, which means that Send
Message symbols in view 1 should be identified and analysed. Before the Send
Message symbol Number proposals in Fig. 9, one Send Message symbol, Request
number proposals, and one Receive Message symbol, Number proposals, are added,
see symbols surrounded by the upper dotted box in Fig. 9. (Note that the dotted boxes
are not part of the BML notation; they are used in the examples to help the reader
identify the extensions for every new view introduced.) The Send Message and
Receive Message symbols in the upper dotted box represent the messages sent to and
received from a new subprocess, Number handling process. In view 2, the
applications to be integrated are still not visible. They will become visible in the next
view, where the introduced subprocesses are modelled.

View 3. External system interaction. Each subprocess introduced in view 2 is
specified here. Only information and service requests and the responses to these are
included in this view.

226 P. Johannesson and E. Perjons

Number handling process (view 3)

O rder
subscription

R e q u est
nu m b e r

p ro p osa ls

R eq u e s t
n um be r

p ro p o sa ls

N u m b er
p rop o sa ls

N u m b e r
p ro po sa ls E nd

Order
subscription

N r
a pplication

N r
a pplication

Req uest
num ber

pro posals

O rder
in it ia ted

Num be r
pro po sa ls

E nd

C ustom er
respo nse

Nr
chosen

True

Fa ls e

Rep or ting
 o f the

order's s ta te

S ub -
scrip tion

O K

Tru e

F als e

Info rm ation
delivery

E nd

C us tomer Customer C us tomer Customer

Customer

Customer

Req uest
num b er

pro posals

Num be r
proposa ls

Number
handling

Number
handling

O rder
O rder

an swe r

Update
applications

Update
applications

Order subscription process

Update applications process (view 3)

Update Nr
application

O rder

O rde r
answ er

E n d

Order
subscription

Bo ok nr B ook nr
an swe r

Reg is te r
cus tom er

R eg is te r
cus tom er
an swe r

All
ap pl ic

an swe red

True

F alse

Order
subscription

Update Reg
application

Update Nr
application

Update Reg
application

Fig. 9. Some of the process diagrams in view 3.

This view models the interaction with the applications to be integrated. In the simplest
case, a subprocess is an interface process, i.e. it communicates with exactly one
application, see Section 5.2. An example of an interface process is Number handling
process at the top in Fig. 10, which makes a call to one application, Nr application,
which returns an answer, Number proposals. The Number handling process finally
forwards the answer to the process that invoked the subprocess, i.e. Order
subscription process.

Design Principles for Application Integration 227

In some cases, it is convenient to introduce two or more levels of subprocesses. If
the subprocess to be specified requires interaction with several applications, the
designer should first construct a synchronisation process, see Section 5.2. The
synchronisation process Update applications process, at the bottom in Fig. 10,
invokes its own subprocesses and synchronises these. These subprocesses, Update Nr
application process and Update Reg application process, and the relation to the
synchronisation process, Update application process, are shown in the static diagram
in Fig. 11. Each of the invoked subprocesses is an interface process and look like the
interface process Number handling process in Fig. 10.

Customer process:

O rder subscrip tion
process

C ustom er

[Number proposals,
Reportrting of the order’s state,
Information delivery]

Interface process:
N r handling proces s

Synchronisation process:

U pdate app lic ations
proce ss

Interface process:
U pdate N r application process

Interface process:
U pdate R eg application process

[Order initiated,
Request number proposals,
Customer response]

[Order]

[Order answer]

[Book nr]

[Book nr answer]

[Book nr]

[Book nr answer]

[Register customer]

[Register customer answer]

[Register customer]

[Register customer answer]

[Number proposals]

[Request number proposals]

[Number proposals]

[Request number proposals]

R eg app lication

N r application

Fig. 10. The static diagram in view 3.

View 4. Exception handling. This view specifies the exception handling. For each
Receive Message symbol, whose sender is an external application or a human actor, a
Start timer and an Expire timer are added as well as the behaviour when the exception
is raised, see dotted boxes a) and c) in Fig. 12.

Views 1 – 3 specify only the normal course of events. In view 4, the designer
specifies how to handle exceptions, i.e. situations where an actor has not replied to a
request within a pre-specified time limit. This means that the designer first has to
extend all interface process diagrams by adding Start timers and Expire timers, as
well as the behaviour after a timer has expired. Furthermore, the designer may have to
extend the process diagrams at a higher level, i.e. the synchronisation or the customer
processes, in order to describe how to handle error messages from the interface

228 P. Johannesson and E. Perjons

processes. An example of this is shown in Fig. 12, describing the interface process
Number handling process which returns a message, Number Proposals=“No answer
in time”, to the Order subscription process when the timer has expired. The Order
subscription process then has to handle the “No answer in time” message. Note that
the timer symbols can only be found in the interface processes and sometimes in the
customer process. The latter situation occurs if the designer wants the system to
handle situations where the customer does not answer in time.

O rde r
s ubs cript ion

R eq ue st
n um b e r

prop osa ls

R e qu est
nu m b er

p ro po sals

Nu mb er
p ro po sals

N u mb er
p ro po sals

= "O K"

E nd

O r der
su bsc ript io n

T i m er
T 1

W ait
for

E v ent 1

T im e r
T 1

N umb e r
prop osa ls

= "N o answer in
time "

E nd

O r der
su bsc ript io n

a) b) c)
Nr

ap pl ication

Nr
ap p lication

Fig. 11. The Number handling process (view 4).

In this view Wait for Event state symbols must also be added before every Receive
Message symbol, see dotted box b) in Fig. 12. Note that before the first Receive
Message symbol, Request number proposal, there is already a state symbol, the Start
symbol. The Wait for Event and Start symbols are described in section 4.

View 5. Resource releasing. This view adds all messages of the type Cancel
reservation and Cancel booking. When a process cannot be completed as intended, it
becomes necessary to release the resources that have been reserved or booked during
the process. This releasing of resources is handled in view 5 by extending the process
diagrams accordingly by introducing certain release interface processes, see Section
5.2. In Fig. 13 the messages Delete booking and Delete registration are sent to the
release interface processes Delete Nr application process and Delete Reg application
process, see dotted box.

View 6. Notifications. This view adds all messages of the type Notification.
There are two main types of situations where notifications are required. First, when

an exception has occurred, it is customary to inform an operator about this event so
that he or she may take appropriate action. Secondly, a notification may be sent to a
maintenance process, see Section 5.2, which redundantly stores information about
essential states of affairs.

6.2 Completeness Guidelines

The completeness guidelines below exploit the fact that messages typically occur in
certain dialogue structures. A very simple dialogue structure consists of a pair: a
question followed by an answer. Another well-known dialogues structure is the

Design Principles for Application Integration 229

conversation for basic action, introduced by Winograd and Flores in [25], which
consists of the four steps: request, negotiation, fulfilment, and acknowledgement.

U pdate Nr
application

O rde r

O rd er
answe r

="OK"
E n d

B oo k n r
B ook n r
answe r

Reg is te r
cus tom er

Reg is te r
cus tom er
answe r Tru e

Fals e

U pda te Reg
application

A nswe r
O K

T r u e

F alse

De lete
boo k ing

De le te
reg is tra t ion

O rde r
answer

="N ot OK"

Order
subscription

Dele te Nr
applica tion

Delete Reg
application

E nd

W ait
for

E v ent 1

All
a pp lic

an swere d

Order
subscription

Order
subscription

U pda te Nr
a pplic ation

Update R eg
application

Fig. 12. The Update application process (view 5).

The following guidelines are a preliminary result of our research. Further research
will produce additional guidelines.

1. In a process diagram, every information request and service request should be
followed by a corresponding information confirmation or service confirmation,
respectively. This pair of request and confirmation is optionally followed by a
notification.

2. In a process diagram, every reservation request should be followed by a
corresponding booking request by the same actor.

3. In a process diagram, every reservation request should be followed by a
corresponding cancel reservation. A process instance typically takes this path when
some intermediate request has not been satisfied.

4. In a process diagram, every booking request should be followed by a
corresponding cancel booking. A process instance typically takes this path when
some intermediate request has not been satisfied.

7 Concluding Remarks and Further Research

In this paper we have addressed methodological support for modelling the aligning of
application integration to business processes. The main contribution is the guidelines
introduced above which can be used in several ways. First, they can be used in design.

230 P. Johannesson and E. Perjons

A designer could utilise the view guidelines by first constructing a process diagram
according to view 1 and then gradually refine it until a set of diagrams in view 6 is
obtained. Furthermore, the designer can use the completeness guidelines to guide the
design of each individual process diagram. Secondly, the guidelines can be a support
for validation and verification. By checking the completeness guidelines, a designer
can ensure that essential parts of discourse structures and exception handling are not
omitted. Thirdly, the guidelines can be used for presentation purposes. Business
oriented users can choose to see only the top view or views, while technical designers
and implementers can proceed to lower views. Even for the latter category of
stakeholders, the layered views can help to understand a system by allowing to focus
on an essential business perspective first and thereafter to proceed to a technical
perspective. Different categories of users, for example customers, business and
technical designers, have the possibility to suggest input on the right level in the
modeling process. Business designers probably want to concentrate on the important
parts of the business processes to clarify how they want the main business logic to
work.

We intend to follow up the work presented in this paper by further research which
goes in several directions. One is to compare designers following the suggested view
guidelines with designers who are not following them. There is also a possibility to let
different kinds of stakeholders design the models. Such an empirical study could give
input to refined or additional design principles. Another direction is to find further
dialog structures to produce additional completeness guidelines for validation of the
models. To obtain a more complete methodology there is also a need for guidelines
helping to design the data models, which describe the structure, type and meaning of
the data beeing handled in the process.

Acknowledgements

This work was performed as part of the NUTEK (Swedish National Board for
Industrial and Technical Development) sponsored project Process Broker [20]. The
authors are grateful to Jan-Owe Halldén, Mikael Nilsson and Christer Wåhlander at
Viewlocity for their valuable suggestions and knowledge. We also tank our
colleagues at the Royal Institute of Technology, especially Birger Andersson, S.J.
Paheerathan, Prasad Jayaweera, Nasrin Shakeri and Benkt Wangler for commenting
earlier versions of this paper.

References

1. AMTrix. Viewlocity. URL: http://www.viewlocity.com/solutions/, 1999-11-25
2. Atwood, R.: Bringing Process Automation to Bear on the Task of Business Integration.

Vitria Technology (1999). URL:
http://www.vitria.com/products/whitepapers/ seyboldwp.html, 1999-11-25

3. Auramäki, E., Lehtinen, E., Lyytinen, K.: A Speech Act Based Office Modelling Approach.
In: ACM Transactions on Office Information systems. Vol. 6, no. 2 (1988) 126-152

4. Belina, F., Hogrefe, D., Amardeo, S.: SDL with Applications from Protocol Specification.
Carl Hanser Verlag and Prentice Hall International, UK (1991)

http://www.viewlocity.com/solutions/frame_enablers.html

Design Principles for Application Integration 231

5. Butterworth, P.: Automating the Business Processes of Mission-Critical Distributed
Applications. Forté Software (1997). URL: http://www.forte.com/product/downloads.html,
1999-10-04

6. Davenport, T.: Process Innovation: Reengineering work through information technology.
Business School Press, Boston (1993)

7. Dietz, J.: Modelling Communication in Organizations. In: Riet R. v. d. (ed): Linguistic
Instruments in Knowledge Engineering. Elsevier Science Publishers (1992) 131 - 142

8. Dietz, J.: Business Modeling for Business Redesign. In: proceedings of the 27th Hawaii
International Conference on System Sciences. IEE Computer Society Press (1994) 723-732

9. Entire Broker. Software AG. URL: http://www.softwareag.com/corporat/solutions/
applintegr/default.htm#b1, 1999-11-25

10.Extricity AllianceSeries. Extricity Software. URL: http://www.extricity.com/products/
alli_series_over.html, 2000-02-21

11.Georgakopoulos, D., Hornick, M.: An Overview of Workflow management: From Process
Modeling to Workflow Automation Infrastructure. In: Distributed and Parallel Databases, 3
(1995) 119-153

12.Green, P., Rosemann, M.: An Ontological Analysis of Integrated Process Modelling. In:
proceedings of the 11th International Conference, CaiSE’99. Springer-Verlag, Heidelberg
(1999) 225-240

13.Goldkuhl, G.: Generic Business Frameworks and Action Modelling. In: proceedings of
conference Language/Action Perspective’96. Springer-Verlag (1996)

14.Hammer, M., Champy, J.: Reengineering the Corporation. A manifesto for Business
revolution. New York (1993)

15.HP Changengine Overview. Hewlett Packard Company (1998). URL:
http://www.ice.hp.com/ cyc/af/00/101-0110.dir/aovm.pdf, 1999-10-04

16.Jablonski, S., Bussler, C.: Workflow Management. Thomson, London (1996)
17.Lind, M., Goldkuhl, G.: Reconstruction of different Business Processes – A Theory and

Method Driven Analysis. In: proceedings of Conference on Language/Action Perspective
’97. Veldhoven (1997).

18.Makey, P. (ed): Workflow: Integrating the Enterprise. Butler Group report. Hessle (1996)
19.MQSeries Integrator, IBM. URL: http://www-4.ibm.com/software/ts/mqseries/, 1999-11-25
20.Process Broker architecture for system integration, Homepage of the Process Broker Project

(1999). URL: http://www.dsv.su.se/~pajo/arrange/index.html, 1999-11-25
21.Reisig, W.: Petri Nets: an introduction. Springer-Verlag, Berlin (1985)
22.Riempp, G.: Wide Area Workflow Management: Creating Partnership for the 21st Century.

Springer-Verlag (1998)
23.Sheer, A.: ARIS-Business Process Modelling. Springer-Verlag, Berlin (1998)
24.Searle, J.R.: Speech Acts – An Essay in the Philosophy of Language. Cambridge University

Press (1969)
25.Winograd, T., Flores, F.: Understanding Computers and Cognition: A New Foundation for

Design. Ablex, Norwood, N.J. (1986)
26.Yeamans, L.: Enterprise Application Integration. NSAG Inc. URL:

http://www.messageq.com/EAI_survival.html, 1999-10-04
27.Wåhlander, C., Nilsson, M., Skoog, A.: Introduction to Business Model Language &

SmartSync Model Manager, Copyright Viewlocity (1998)

http://www.forte.com/product/downloads.html
http://www.softwareag.com/corporat
http://www.softwareag.com/corporat/solutions/applintegr/default.htm#b1
http://www.extricity.com/products/alli_series_over.html
http://www.extricity.com/products/alli_series_over.html
http://www.ice.hp.com/cyc/af/00/101-0110.dir/aovm.pdf
http://www-4.ibm.com/software/ts/mqseries/integrator/
http://www.dsv.su.se/~pajo/arrange/index.html
http://www.messageq.com/EAI_survival.html

	1 Background
	2 Architecture and Problems
	2.1 Architectures for Application Integration
	2.2. Problems in Application Integration

	3 Related Work
	4 BML – A Language for Application Integration
	5 Classifications of Messages and Processes
	5.1 A Classification of Messages
	5.2 A Classification of Processes

	6 Design Principles
	6.1 View Guidelines
	6.2 Completeness Guidelines

	7 Concluding Remarks and Further Research
	References

