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Abstract. In this paper, an extended P3P (Perspective Three Points)
problem is investigated. It is formulated as fitting three moving vertices
along their associated optical rays to a known triangle structure. This
allows the three optical rays to come from one, two or three cameras
respectively. The classical P3P problem for only single camera is consid-
ered as a special case of the extended P3P problem. An analysis on these
different cases is given in a uniform way. Experiments with simulated
data show the effectiveness of the approach.

1 Introduction

Pose estimation is an important task in model-based vision and photogramme-
try. The problem may be stated as: For a known model and a calibrated camera,
given N 2D-3D correspondences, find the respective pose between the object
and the camera, which is addresed as Perspective N Points (PNP) problem.
Classical techniques for parameter estimation such as least squares and iterative
algorithms [1,2,3] can give an optimal solution when no mismatch is present.
However, they have no internal mechanisms for detecting and rejecting gross
errors. Contrast to the least squares methods which use as much of the data
as possible for initial estimation, the RANSAC algorithm [4] uses as small an
initial set as possible and scores this set by its consistent data, which was proved
to be robust to outliers. Six pairs of 2D-3D matching points are minimal for
a linear pose estimation. For less than six matches, nonliear estimation is in-
volved and a closed form of the solution is often proposed. See [4,5,6] for P4P
problem and [4,7,3] for P3P problem. Three points are the minimal set from
which a finite number of solutions can be derived. There are eight solutions in
total, no more than four of them can be found to be feasible [4]. Although P3P
problem has been addressed since 1841 by the German mathematician Grunert
[8], the present P3P problem still persists in the single camera case. Now let
us consider a configuration shown in the left of Figure 1, the calibrated camera
triplet views a known triangle with its vertices on the sphere surface of a ball.
Due to occlusion, every camera is able to capture only one of the vertices, a
P1P problem for each camera. This configuration is not covered by the classical
P3P problem. Our motivation is to extend the classical P3P problem from a
single camera consideration to stereo pair and triplet considerations. We have
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two reasons to do so. First, the extended configuration is more general than
the classical one, which should be covered from a theoretical viewpoint. Second,
there are also demands from applications. For example, in an augmented reality
system involving a multi-user interface, each user wears a Head Mounted Display
(HMD), of which the extrinsic parameters could be determined by an ultrasound
or magnetic system. When the users are sitting around a table and viewing a
Place Holder (PH) object on the table, the PH object may be partially occluded
to some of the users. An extreme situation is as shown in the left of Figure 1. It
is desirable to collect the non-occluded information from the different users to
determine the pose of the PH object with respect to the users.

In this paper, the P3P problem is restated as fitting three points moving on
three optical rays to a known triangle structure, an analysis on these different
cases is given in a uniform way. It is trivial to verify that the classical P3P prob-
lem falls into a special case of the extended P3P problem.

The paper is organized as follows: A general formulation of P3P problem is
presented in Section 2, an analysis on the extended P3P problem under different
configurations is given in Section 3, the experiments in Section 4 are carried on
simulated data. Finally, this paper is summarized in Section 5.

Fig. 1. The P3P problem in different situations

2 General Formulation of P3P Problem

In this paper we use the standard camera model, setting the principle point in
the image center and focal length to 1, which is obtainable by a transformation
using the calibration matrix for the image coordinates. In the left of Figure
1, let the euclidean transformation from the world coordinate system to the
i-th (i = 1, 2, 3) camera be (Ri, Ti). In the local camera coordinate system,
the 3D coordinates of the optical center is Ci = (0, 0, 0)T and the image point
mi = (ui, vi, 1)T , where (ui, vi) is its 2D coordinate. In the world coordinate
system, these two points have their coordinates as Cwi = −RTi · Ti and mw

i =
RTi ·mi −RTi · Ti. The three points Mi, mw

i and C
w
i are collinear, so,

Mi = si ·RTi ·mi −RTi · Ti , i = 1, 2, 3 (1)

where si are three unknowns.
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When si varies, the 3D point Mi is moving along its optical rays defined by its
projection and the associated optical center. In order to make sure that Mi is
located in front of its viewing camera, the intuitive constraint on si is that si
should be positive. Other constraints come from the lengths of the triangle sides,
say L1, L2 and L3, which can be formulated as:

|M1 −M2| = L1 , (2)
|M2 −M3| = L2 , (3)
|M3 −M1| = L3 , (4)

where | · | is the 2-norm of a vector.
Let Ri = (r

p,q
i ), p, q ∈ {1, 2, 3} and Ti = (t1i , t2i , t3i )T , Eqn. (1) is expanded as:

Mi =



a1i si + b1i
a2i si + b2i
a3i si + b3i


 , (5)

with

a1i = r1,1i ui + r2,1i vi + r3,1i , (6)

a2i = r1,2i ui + r2,2i vi + r3,2i , (7)

a3i = r1,3i ui + r2,3i vi + r3,3i , (8)

b1i = −r1,1i t1i − r2,1i t2i − r3,1i t3i , (9)

b2i = −r1,2i t1i − r2,2i t2i − r3,2i t3i , (10)

b3i = −r1,3i t1i − r2,3i t2i − r3,3i t3i . (11)

Substitute Eqn. (5) into Eqn. (2), (3) and (4), we get

A1s1
2+B1s2

2+C1s1s2+D1s1+E1s2+F1−L1
2 = 0 , (12)

A2s2
2+B2s3

2+C2s2s3+D2s2+E2s3+F2−L2
2 = 0 , (13)

A3s3
2+B3s1

2+C3s3s1+D3s3+E3s1+F3−L3
2 = 0 . (14)

The computation of A1, B1, . . . , F1 in the first equation only involves
(a1i , a

2
i , a

3
i , b

1
i , b

2
i , b

3
i ) for i = 1, 2. The coefficients of the second equation in-

volve the case of i = 2, 3 and the third ones involve the case of i = 3, 1. In
this way, the k-th coefficients (k = 1, 2, 3) are associated with indices (i, j) in
(a1i , a

2
i , a

3
i , b

1
i , b

2
i , b

3
i ), can be expressed as:

Ak = a1i
2
+ a2i

2
+ a3i

2
, (15)

Bk = a1j
2
+ a2j

2
+ a3j

2
, (16)

Ck = −2a1i a1j − 2a2i a2j − 2a3i a3j , (17)
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Dk = 2a1i (b
1
i − b1j ) + 2a

2
i (b

2
i − b2j ) + 2a

3
i (b

3
i − b3j ) , (18)

Ek = −2a1j (b1i − b1j )− 2a2j (b2i − b2j )− 2a3j (b3i − b3j ) , (19)

Fk = (b1i − b1j )
2 + (b2i − b2j )

2 + (b3i − b3j )
2 . (20)

These coefficients can be completely determined by the camera extrinsic
parameters and image coordinates of the projections, and then the three
quadratic equations with three unknowns Eqn. (12), (13) and (14) remain to be
solved. There exist as many as 2 × 2 × 2 = 8 solutions. In the next section we
present an analysis of the solutions in the different cases.

3 Analysis of Different Cases

This extended P3P problem is about the minimal condition for pose estimation.
We assume none of the vertices appears simultaneously in two or three images,
otherwise its 3D position is obtainable by 3D triangulation, and then the infor-
mation becomes redundant. The general configuration is as shown in the left of
Figure 1. The minimal configuration for a single cameraa and a stereo camera
are illustrated in the middle and right of Figure 1, respectively. In the stereo
case, two image planes and their optical centers are coincident, or the two cam-
era frames are coincident. In the single camera case, all three camera frames are
coincident.

3.1 A Single Camera

In this case, all three vertices are projected on the same image plane, or we
say the three camera frames are coincident. In Eqn. (9), (10), (11), bki remains
invariant when i runs over i = 1, 2, 3, which results in the vanishing of Dk,
Ek and Fk in Eqn. (18), (19), (20). Taking the camera coordinate system as
reference, we set R = I, the 3 × 3 Identity matrix and T = (0, 0, 0)T . Let
di = (ui2 + vi

2 + 1)1/2, which is the distance from the i-th image point to the
optical center. Let cosθi = (uiuj + vivj + 1)/(didj), which is the cosine of the
angle of two optical rays formed by two image points with the optical center
respectively. By scaling si as a = d1s1, b = d2s2 and c = d3s3, we rewrite the
Eqn. (12), (13), (14) as:

a2 + b2 − 2ab cos θ1 = L1
2 , (21)

b2 + c2 − 2bc cos θ2 = L2
2 , (22)

a2 + c2 − 2ac cos θ3 = L3
2 , (23)

here we see a, b, c are the distances of three vertices to the optical center. For
these three equations a closed form solution is derived in [4]. Usually, there
are four complex solutions and four real solutions. For the four real solutions,
two of them are positive and the other two are just isomorphic negative ones,
which are unfeasible since the 3D points are not in front of the camera. In some
configurations there may exist four feasible solutions, see [4].
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3.2 A Stereo Camera

As shown in the right of Figure 1, two points are projected in the first image
plane and the third one is projected on the second image plane. Without loss
of generality, we can take the first camera as the reference with R1 = I, T1 =
(0, 0, 0)T . It can be shown that the rotation and translation from camera 1
to camera 2 coordinate system can be expressed as R2 = Ro2R

o
1
T and T2 =

−R◦2Ro1TT o1 +T o2 respectively, where R
o
1 and T

o
1 are the rotation and translation

from the world coordinate system to camera 1 coordinate system, Ro2 and T o2
are that to camera 2 coordinate system.

For this stereo camera situation, the symbolic computation in our computer
is not fast enough for deriving an analytical solution. The way we deal with this
situation is that once the image measurements are obtained, the coefficients in
Eqn. (12)∼(14) are determined. The numeric algorithms in Maple or Matlab are
exploited to find the solutions.

3.3 A Triplet Camera

As shown in the left of Figure 1, for the triplet camera configuration, the equa-
tions (12), (13), (14) are three quadratic equations with the most general form
among the different P3P cases. There exist as many as eight solutions. Usually,
no more than four solutions are feasible. But in some special configurations, all
the eight solutions can be in front of the cameras. As the stereo camera situation,
our computer did not derived a closed form of solutions within two days compu-
tation, thus, we use some numeric algorithms in Maple or Matlab to derive the
solutions for the measured image points.

4 Experiments

A. At first we present an experiment with simulated data. Three vertices of a
cube with their coordinates as M1 = (1, 1, 1)T , M2 = (1,−1,−1)T and M3 =
(−1, 1, 1)T form a triangle. Three cameras with a focal length 1 are simulated,
their optical centers are randomly located between the sphere with radius 3 and
the sphere with radius 8, and with their viewing directions facing to the origin
(0, 0, 0)T . The first test is done with all three vertex images coming from the
first camera, i.e., the classical P3P problem. Then in the second test we collect
two vertex images from the first camera and the third vertex image from the
second camera, which means a stereo camera case. While in the third test, each
camera of the triplet contributes one vertex image, a triplet camera case. For the
two or three camera case, we take the first camera as the reference camera and
calculate respective rotation and translation of the second and the third ones as
presented in Section 3.2. The estimated triangle poses are compared with the
ground truth. In order to simulate the measurement noise, we add guassian noise
with different deviations. Let Imax = max(|ui|, |vi|), i = 1, 2, 3 represent the
maximum value of the absolute coordinates among all image points in the three
images, then we set the signal noise ratio as SNR(dB) = 20 log Imaxσ , where σ is
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the deviation of the guassian noise. The results of the estimated poses in terms
of mean absolute angles errors are shown in Table 1, 2 and 3, where the three
rotation angles are calculated from the rotation matrix as φ = − sin−1(R3,3),
θ = tan−1(R3,2/R3,3), ψ = tan−1(R2,1/R1,1). The experimental results show
that pose estimations for the three different cases have similar level of accuracy,
which is out of our intuitive expectation. The stereo and triplet camera case
should has better accuracy than single camera case in that for the single camera
case the three optical rays are closer to parallel. The analysis on the sensitivity
of poses to the image noise will be the future work.

Table 1. Poses of the triangle with the single camera

SNR ∆θ ∆φ ∆ψ ∆t1 ∆t2 ∆t3
(dB) (deg) (deg) (deg)
48 0.49 0.78 0.65 0.006 0.007 0.067
36 1.51 1.99 2.03 0.042 0.029 0.246
24 13.49 16.54 11.56 0.153 0.139 1.445
12 28.87 34.96 45.27 0.336 0.388 2.384

Table 2. Poses of the triangle with the stereo camera

SNR ∆θ ∆φ ∆ψ ∆t1 ∆t2 ∆t3
(dB) (deg) (deg) (deg)
48 1.04 1.06 0.45 0.036 0.008 0.023
36 1.83 3.18 3.90 0.131 0.033 0.048
24 13.65 12.84 11.96 0.366 0.139 0.411
12 30.55 54.55 39.20 0.795 0.360 1.826

Table 3. Poses of the triangle with the triplet camera

SNR ∆θ ∆φ ∆ψ ∆t1 ∆t2 ∆t3
(dB) (deg) (deg) (deg)
48 0.48 0.59 0.53 0.024 0.004 0.012
36 1.99 2.10 1.27 0.091 0.026 0.041
24 6.65 8.95 4.53 0.299 0.093 0.109
12 33.92 42.96 29.03 0.676 0.663 0.730

B. In practical, one typical application of minimal pose estimation is to deal with
the problem with outliers. This test is to evaluate our algorithm when outliers
are involved. We propose two step approach: 1) Use extended P3P for outlier
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Fig. 2. The mean angle errors w.r.t outliers (left) and the translation errors w.r.t
outliers (right)

removal. 2) Use standard PNP on the left inliers. In the experiment, 100 3D
points are generated randomly around the origin with the coordinates ranges as
(X,Y, Z) ∈ [−1, 1]. A camera is randomly generated in the exact same way as in
the first test. For the projected 2D image points, by exchanging some indices, we
get the wrong correspondence between 3D and 2D points. We set the percentages
of outliers, denoted as p, from 10% to 60% in a step of 10%. In order to find all
the inliers to carry out the pose estimation, the RANSAC method is exploited.
Every time we choose 3 correspondences randomly, use our algorithm to calculate
the rotation and translation parameters. No matter how many solutions there
are, all the real and positive solutions are used to check all the correspondences.
Each solution is scored by the number of its fitting correspondences. Repeat
this procedure to N times, finally, the highest scored solution and its fitting
correspondences can be used to derive an optimized solution by least square
methods, see [1,2]. The number N can be derived as follows, if we repeat N times
and the probability of all the three selected points to be inliers is larger than

0.99, the relation is formulated as, 1−
(
1− (1− p)3

)N
> 0.99. For the different

p of outliers, the minimum number N is listed in Table 4. The results of the

Table 4. The minimum trial number vs. outliers percentage

p (%) 10 20 30 40 50 60
N 4 7 11 19 35 70

estimated angle errors and translation errors are shown in the left and right of
Figure 2, in which the errors are represented as: 	R = (|	θ|+ |	φ|+ |	ψ|) /3,
	T =

√
(	t1)2 + (	t2)2 + (	t3)2.
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5 Summary and Conclusions

In this paper, we describe the P3P problem in a new viewpoint. The classical P3P
problem is extended to the multiple camera cases. A formulation is proposed to
solve this extended P3P problem in a uniform way for the case of single, stereo
and triplet cameras. The experiments show the robustness of our approach to
different noise level, as well as the evaluation for outliers.
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