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Abstract. We describe in this paper closed-form solutions to the follo-
wing problems in multi-view geometry of n’th order curves: (i) recovery
of the fundamental matrix from 4 or more conic matches in two views,
(ii) recovery of the homography matrix from a single n’th order (n ≥ 3)
matching curve and, in turn, recovery of the fundamental matrix from
two matching n’th order planar curves, and (iii) 3D reconstruction of a
planar algebraic curve from two views.
Although some of these problems, notably (i) and (iii), were introduced
in the past [15,3], our derivations are analytic with resulting closed form
solutions. We have also conducted synthetic experiments on (i) and real
image experiments on (ii) and (iii) with subpixel performance levels, thus
demonstrating the practical use of our results.

1 Introduction

A large body of research has been devoted to the problem of computing the
epipolar geometry from point correspondences. The theory of fundamental ma-
trix and its robust numerical computation from point correspondences are well
understood [16,7,12]. The next natural step has been to address the problem of
lines or point-lines correspondences. It has been showed in that case three views
are necessary to obtain constraints on the viewing geometry [28,31,32,34,13].

Since scenes rich with man-made objects contain curve-like features, the next
natural step has been to consider higher-order curves. Given known projection
matrices (or fundamental matrix and trifocal tensor) [23,19,20] show how to
recover the 3D position of a conic section from two and three views, and [25]
show how to recover the homography matrix of the conic plane, and [6,30] shows
how to recover a quadric surface from projections of its occluding conics. Re-
construction of higher-order curves were addressed in [3] and in [22,8]. In [3]
the matching curves are represented parametrically where the goal is to find a
re-parameterization of each matching curve such that in the new parameteriza-
tion the points traced on each curve are matching points. The optimization is
over a discrete parameterization, thus, for a planar curve of degree n, which
represented by 1

2n(n + 3) points, one would need n(n + 3) minimal number of
parameters to solve for in a non-linear bundle adjustment machinery — with
some prior knowledge of a good initial guess. In [22,8] the reconstruction is done
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under infinitesimal motion assumption with the computation of spatio-temporal
derivatives that minimize a set of non-linear equations at many different points
along the curve. Finally, there have been attempts also [15] to recover the fun-
damental matrix from matching conics with the result that 4 matching conics
are minimally necessary for a unique solution — albeit, the result is obtained
by using a computer algebra system. The method developed there is specific to
conics and is thus difficult to generalize to higher-order curves.

In this paper we treat the problems of recovering fundamental matrix, homo-
graphy matrix, and 3D reconstruction (given fundamental matrix) using mat-
ching curves (represented in implicit form) of n’th order arising from planar n’th
order curves. The emphasis in our approach is to produce closed form solutions.
Specifically, we show the following three results:

1. We revisit the problem of recovering the fundamental matrix from matching
conics [15] and re-prove, this time analytically, the result that 4 matching
conics are necessary for a unique solution. We show that the equations neces-
sary for proving this result are essentially the kruppa’s equations [21] which
are well known in the context of self calibration.

2. We show that the homography matrix of the plane of an algebraic curve of
n’th order (n ≥ 3) can be uniquely recovered from the projections of the
curve, i.e., a single curve match between two images is sufficient for solving
for the associated homography matrix. Our approach relies on inflection and
singular points of the matching curves — the resulting procedure is simple
and is closed-form.

3. We derive a simple algorithm(s) for reconstructing a planar algebraic curve
of n′th order from its projections. The algorithms are closed-form where the
most “complicated” stage is finding the roots of a uni-variate polynomial.

We have conducted synthetic experiments on recovery of fundamental matrix
from matching conics, and real imagery experiments on recovering the homogra-
phy from a single matching curve of 3’rd order, and reconstruction of a 4’th order
curves from two views. The later two experiments display subpixel performance
levels, thus demonstrating the practical use of our results.

2 Background

Our algorithms are valid for planar algebraic curves. We start by presenting
an elementary introduction to algebraic curves, and then some introductory
properties about two images of the same planar curve useful for the rest of our
work. More material can be found in [11].

2.1 Planar Algebraic Curves

We assume that the image plane is embedded into a projective plane. We assume
that the ground field is the field of complex numbers. This makes the formulation
simpler. But eventually we take into account only the real solutions.
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Definition 1 Planar algebraic curve
A planar algebraic curve C is a subset of points, whose projective coordinates
satisfy an homogeneous polynomial equation: f(x, y, z) = 0. The degree of f is
called the order of C. The curve is said to be irreducible, when the polynomial f
cannot be divided by a non-constant polynomial.

We assume that all the curves we are dealing with are planar irreducible
algebraic curves. Note that when two polynomials define the same irreducible
curve, they must be equal up to scale. For convenience and shorter formulation,
we define a form f ∈ C[x, y, z] of degree n to be an homogeneous polynomial in
x, y, z of total degree n.

Let C be a curve of order n and let L be a given line. We can represent the
line parametrically by taking two fixed points a and b on it, so that a general
point p (except b itself) on it is given by a + λb. The intersections of L and C
are the points {pλ}, such that the parameters λ satisfy the equation:

J(λ) ≡ f(ax + λbx, ay + λby, az + λbz) = 0

Taking the first-order term of the Using a Taylor-Lagrange expansion:

J(λ) = f(a) + λ(∂f
∂x (a)bx + ∂f

∂y (a)by + ∂f
∂z (a)bz) = f(a) + λ∇f(a).b = 0

If f(a) = 0, a is located on the curve. Furthermore let assume that ∇f(a).b =
0, then the line L and the curve C meet at a in two coincident points. A point
is said to be regular is ∇f(a) 6= 0. Otherwise it is a singular (or multiple) point.
When the point a is regular, the line L is said to be tangent to the curve C at a.

Since the fundamental matrix is a mapping from the first image plane into
the dual of the second image plane, which is the set of lines that lie on the second
image, it will be useful to consider the following notion:

Definition 2 Dual curve
Given a planar algebraic curve C, the dual curve is defined in the dual plane,
as the set of all lines tangent to C. The dual curve is algebraic and thus can be
described as the set of lines (u, v, w), that are the zeros of a form φ(u, v, w) = 0.
If C is of order n, its dual curve D is of order less or equal to n(n− 1).

We will also need to consider the notion of inflexion point:

Definition 3 Inflexion point
An inflexion point a of a curve C is a simple point of it whose tangent intersects
the curve in at least three coincident points. This means that the third order term
of the Taylor-Lagrange development must vanish too.

It will be useful to compute the inflexion points. For this purpose we define
the Hessian curve H(C) of C, which is given by the determinantal equation:

| ∂2f
∂xi∂xj

|= 0
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It can be proven (see [27]) that the points where a curve C meets its Hessian
curve H(C) are exactly the inflexion points and the singular points. Since the
degree of H(C) is 3(n − 2), there are 3n(n − 2) inflexion and singular points
counting with the corresponding intersection multiplicities (Bezout’s theorem,
see [27]).

2.2 Introductory Properties

In this section, we are interested in providing a few general properties of two
images of the same planar algebraic curve. First, note that the condition that
the plane of the curve in space does not pass through the camera centers is
equivalent to the fact that the curves in the image planes do not collapse to
lines and are projectively isomorphic to the curve in space. Furthermore, the
homography matrix induced by the plane of the curve in space is regular.

Proposition 1 Homography mapping
Let α be the mapping from the first image to the second image, that sends p to
Ap. Let f(x, y, z) = 0 (respectively g(x, y, z) = 0) be the equation of the curve C
(respectively C′) in the first (respectively second) image. We have the following
constraint on the homography A:

∃λ, ∀x, y, z, g ◦ α(x, y, z) = λf(x, y, z)

Proof: Since the curve C and C′ are corresponding by the homography A, the
two irreducible polynomials g ◦ α and f define the same curve C. Thus these
polynomials must be equal up to a scale factor (see previous subsection).

Proposition 2 Tangency conservation
Let J be the set of the epipolar lines in the first image that are tangent to
the curve C, and let be J ′ the set of epipolar lines in the second image that are
tangent to the curve C′. The elements of J and J ′ are in correspondence through
the homography A induced by the plane of the curve in space.

Proof: Let f (respectively g) be the irreducible polynomial that defines C (respec-
tively C′). Let α be the mapping from the first image plane to the second image
plane, that takes a point p and sends it to Ap. According to the previous pro-
position, the two polynomials f and g◦α are equal up to scale µ. Let e and e′ be
the two epipoles. Let p a point located on C. The line joining e and p, is tangent
to C at p if λ = 0 is a double root of the equation: f(p+λe) = 0. (If e is located
on C, we invert p and e.) This is equivalent to say that ∇f(p).e = 0. Since
∇g(p′).e′ = ∇g(Ap).Ae = dg(α(p)) ◦ dα(p).e = d(g ◦ α)(p).e = µdf(p).e =
µ∇f(p).e = 0. Therefore it is equivalent to the tangency of the line e′ ∧Ap with
C′. Given a line l ∈ J , its corresponding line l′ ∈ J ′ is given by: A−T l = l′. 1

1 By duality AT sends the lines of the second image plane into the lines of the first
image plane. Here we have showed that AT induces to one-to-one correspondence
between J ′ and J .
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Note that since epipolar lines are transformed in the same way through any
homography, the two sets J and J ′ are in fact projectively related by any
homography. Some authors have already observed a similar property for apparent
contours (see [1] and [2]).

Proposition 3 Inflexions and singularities conservation
The inflexions (respectively the singularities) of the two image curves are pro-
jectively related by the homography through the plane of the curve in space.

Proof: This double property is implied by the simple relations (we use the same
notations than in the previous proposition):


∂f
∂x (p)
∂f
∂y (p)
∂f
∂y (p)


 = AT




∂g
∂x (Ap)
∂g
∂y (Ap)
∂g
∂y (Ap)




[ ∂2f
∂xi∂xj

(p)] = AT [ ∂2g
∂xi∂xj

(Ap)]A

.

The first relations implies the conservation of the singularities by homography,
whereas the second relation implies the conservation of the whole Hessian curve
by homography.

3 Recovering the Epipolar Geometry from Curve
Correspondences

3.1 From Conic Correspondences

Let C (respectively C′) be the full rank (symmetric) matrix of the conic in
the first (respectively second) image. The equations of the dual curves are
φ(u, v, w) = lT C∗l = 0 and ψ(u, v, w) = lT C′∗l = 0 where l = [u, v, w]T ,
C? = det(C)C−1 and C′? = det(C′)C′−1. C? and C′? are the adjoint matrices
of C and C′ (see [26]).

Theorem 1 The fundamental matrix, the first epipole and the conic matrices
are linked by the following relation:

∃λ 6= 0, such as: FT C′?F = λ[e]xC?[e]x, (1)

where [e]x is the matrix that represents the linear map p 7−→ e ∧ p.

Proof: According to proposition 2, both sides of the equation are in fact the two
tangents of the conic C, passing the epipole e. Each tangent appears at the first
order in both expression. Therefore they are equal up to a non-zero scale factor.

It is worthwhile noting that these equations are identical to Kruppa’s equa-
tions [21] which were introduced in the context of self-calibration.
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From equation 1, one can extract a set, denoted Eλ, of six equations on F,
e and an auxiliary unknown λ. By eliminating λ it is possible to get five bi-
homogeneous equations on F and e.

Theorem 2 The six equations, Eλ, are algebraically independent.

Proof: Using the following isomorphic mapping: (F, e, λ) 7−→ (D′?FD−1,De, λ)
= (X,y, λ), where D =

√
C and D′? =

√
C′?, in the field of complex, the origi-

nal equations are mapped into the upper-triangle of XT X = λ[y]2x. Given this
simplified form, it is possible of compute a Groebner basis ([5], [4]). Then we can
compute the dimension of the affine variety in the variables (X,y, λ), defined
by these six equations. The dimension is 7, which shows that the equations are
algebraically independent.

Note that the equations Eλ imply that Fe = 0 (one can easily deduce it from
the equation 1 2). In order to count the number of matching conics, in generic
positions, that are necessary and sufficient to recover the epipolar geometry, we
eliminate λ from Eλ and we get a set E that defines a variety V of dimension
7 in a 12-dimensional affine space, whose points are (F, e). The equations in
E are bi-homogeneous in F and e and V can also be regarded as a variety of
dimension 5 into the bi-projective space P8 × P2, where (F, e) lie. Now we
project V into P8, by eliminating e from the equation, we get a new variety
Vf which is still of dimension 5 and which is contained into the variety defined
by det(F) = 0, whose dimension is 7 3. Therefore two pairs of matching conics
in generic positions defines two varieties isomorphic to Vf which intersect in a
three-dimensional variety (5 + 5 − 7 = 3). A third conic in generic position will
reduce the intersection to a one-dimensional variety (5 + 3 − 7 = 1). A fourth
conic will reduce the system to a zero-dimensional variety. These results can be
compiled into the following theorem:

Theorem 3 {Four conics} or {three conics and a point} or
{one conic and five points} in generic positions are sufficient to compute the
epipolar geometry.

We conclude this section by notifying that this dimensional result is valid
under the assumption of complex varieties. Since we are interested in real soluti-
ons only, degeneracies might occur in very special cases such that then less than
four conics might be sufficient to recover the epipolar geometry.

3.2 From Higher Order Curve Correspondences

Assume we have a projection of an n’th, n ≥ 3, algebraic curve. We will show
next that a single matching pair of curves are sufficient for uniquely recovering
2 It is clear that we have: FTC′?Fe = 0. For any matrix M, we have: ker(MT ) =
Im(M)T . In addition, C′ is invertible. Hence Fe = 0

3 Since it must be contained into the projection to P8 of the hypersurface defined by
det(Fe) = 0
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the homography matrix induced by the plane of the curve in space, whereas two
pairs of matching curves (residing on distinct planes) are sufficient for recovering
the fundamental matrix.

Let Ci1,...,in
(respectively C ′

i1,...,in
) be the tensor form of the first (second)

image curve. Let Ai
j be the tensor form of the homography matrix.

∃λ 6= 0, such as: C ′
i1,...,in

Ai1
j1
....Ain

jn
= λCj1,...,jn (2)

Since a planar algebraic curve of order n is represented by a polynomial
containing 1

2n(n+3)+1 terms, we are provided with 1
2n(n+3) equations (after

elimination of λ) on the entries of the homography matrix. Let S denote this
system. Therefore two curves of order n ≥ 3 are in principle sufficient to recover
the epipolar geometry. However we show a more geometric and more convenient
way to extract the homography matrix since the system S might be very difficult
to solve.

The simpler algorithm is true for non-oversingular curves, e.g. when a tech-
nical condition about the singularities of the curve holds. In order to make this
condition explicit, we define a node to be an ordinary double point that is a
double point with two distinct tangents, and a cusp to be a double point with
coincident tangents. A curve of order n, whose only singular points are either
nodes or cusps, satisfy the Plucker’s formula (see [35]):

3n(n− 2) = i+ 6 × δ + 8 × κ,

where i is the number of inflexion points, δ is the number of nodes, and κ is the
number of cusps. For our purpose, a curve is said to be non-oversingular when
its only singularities are nodes and cusps and when i + s ≥ 4, where s is the
number of all singular points.

Since the inflexion and singular points in both images are projectively related
through the homography matrix (proposition 3), one can compute the homogra-
phy through the plane of the curve in space of a curve of order n ≥ 3, provided
the previous condition holds. The resulting algorithm is as follows:

1. Compute the Hessian curves in both images.
2. Compute the intersection of the curve with its Hessian in both images. The

output is the set of inflexion and singular points.
3. Discriminate between inflexion and singular points by the additional con-

straint for each singular point a: ∇f(a) = 0.

At first sight, there are i! × s! possible correspondences between the sets
of inflexion and singular points in the two images. But it is possible to further
reduce the combinatorics by separating the points into two categories. The points
are normalized such that the last coordinates is 1 or 0. Then separate real points
from complex points. Each category of the first image must be matched with the
same category in the second image. Then the right solution can be selected as
it should be the one that makes the system S the closest to zero or the one that
minimizes the Hausdorff distance (see [14]) between the set of points from the
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second image curve and the reprojection of the set of points from the first image
curve into the second image. For better results, one can compute the Hausdorff
distance on inflexion and singular points separately, within each category. We
summarize this result:

Theorem 4 The projections of a single planar algebraic curve of order n ≥ 3 are
sufficient for a unique solution for the homography matrix induced by the plane
of the curve. The projections of two such curves, residing on distinct planes, are
sufficient for a unique solution to the multi-view tensors (in particular to the
fundamental matrix).

It is worth noting that the reason why the fundamental matrix can be re-
covered from two pairs of curve matches is simply due to the fact that two
homography matrices provide a sufficient set of linear equations for the funda-
mental matrix: if Ai, i = 1, 2, are two homography matrices induced by planes
π1, π2, then A>

i F + F>Ai = 0 because A>
i F is a symmetric matrix.

In the previous section, the computation of the epipolar geometry was inten-
ded using an equivalent to Kruppa’s equations for any conic. It is of theoretical
interest to investigate the question of possible generalization of Kruppa’s equati-
ons to higher order curves. To this intent, let φ (respectively ψ) be the dual curve
in the first (respectively second) image. Let γ (respectively ξ) be the mapping
sending a point p from the first image into its epipolar e ∧ p (respectively Fp)
in the first (respectively second) image. Then the theorem 1 holds in the general
case, and can be regarded as an extended version of Kruppa’s equation:

Theorem 5 The dual curves in both images are linked by the following expres-
sion:

∃λ 6= 0, such as: ψ ◦ ξ = λφ ◦ γ (3)

Proof: According to their geometric interpretation, the sets defined by each
side of this equation are identical. It is in fact the set of tangents to the first
image curve, passing through the first epipole. It is left to show that each
tangent appears with the same multiplicity in each representation. It is ea-
sily checked by a short computation, where A is the homography matrix bet-
ween the two images, through the plane of the curve in space and α(p) = Ap:
ψ ◦ ξ(p) = ψ(e′ ∧ Ap) = ψ(α(e) ∧ α(p)) ∼= ψ ◦ (tα)−1(p). 4 Then it is sufficient
to see that the dual formulation of the property 1 is written by ψ ◦ (tα)−1 ∼= φ.

4 3D Reconstruction

We turn our attention to the problem of reconstructing a planar algebraic curve
from two views. Let the camera projection matrices be [I;0] and [H; e′]. We
propose two simple algorithms.
4 Indeed for a regular matrix A: Ax ∧ Ay = det(A)A−T (x ∧ y). Then since ψ is a

form, the last equality is true up to the scale factor, det(A)deg(ψ).
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4.1 Algebraic Approach

In this approach we first recover the homography matrix induced by the plane of
the curve in space. This approach reduces the problem of finding the roots of uni-
variate polynomials. The approach is inspired by the technique of recovering the
homography matrix in [25]. It is known that any homography can be written as:
A = H + e′aT (see [29,17]). Using the equation 2, we get the following relation:

µn−1C ′
i1,...,in

e′i1 ....e′in−1Ain
j = λCj1,...,je

i
1....e

in−1 ,

where Ae = µe′.
Note that in fact this equation can be also obtained in a pure geometric way,

by saying that the polar curve with respect to the epipole [11,24,27,35] is conser-
ved by homography. Let ∆j = Cj1,...,je

i
1....e

in−1 and ∆′
in

= C ′
i1,...,in

e′i1 ....e′in−1 .
Therefore we get: ∆′

in
(Hin

j + e′inaj) = λ
µn−1∆j . Thus the vector a can be ex-

pressed as a function of η = λ
µn−1 , (provided the epipoles are not located on

the image curves): aj = 1
β (η∆j − ∆′

kH
k
j ), where β = C ′

i1,...,in
e′i1 ....e′in . Then

Ai
j = Hi

j + 1
β (η∆je

′i − ∆′
kH

k
j e

′i). Substituting this expression of A into the
equation 2 and eliminating λ leads to a set of equations of degree n on η. We
are looking for the real common solutions.

In the conic case, there will in general two distinct real solutions for η cor-
responding to the two planar curves that might have produced the images. For
higher order curve, the situation may be more complicated.

4.2 Geometric Approach

This following approach highlights the geometric meaning of the reconstruction
problem. The reconstruction is done in three steps:

1. Compute the cones generated by the camera centers and the image curves,
whose equations are denoted F and G.

2. Compute the plane of the curve in space.
3. Compute the intersection of the plane with one of the cones.

The three steps are detailed below.

Computing the cones equations.

For a general camera, let M be the camera matrix. Let τ be the projection
mapping from 3D to 2D: τ(P) = MP. Let f(p) = 0 be the equation of the image
curve. Since a point of the cone is characterized by the fact that f(τ(P)) = 0,
the cone equation is simply: f(τ(P)) = 0. Here we have; F (P) = f([I;0]P) and
G(P) = f([H; e′]P).

Computing the plane of the curve in space.
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Theorem 6 The plane equation π(P) = 0 satisfies the following constraint.
There exists a scalar k and a polynomial r, such that: r × π = F + kG.

Proof: F and G can be regarded as regular functions on the plane. Since they are
irreducible polynomials and vanish on the plane on the same irreducible curve
and nowhere else, they must be equal up to a scalar in the coordinate ring of
the plane, e.g. they are equal up to a scalar modulo π.

Let π(P) = α×X+β×Y +γ×Z+δ×T , where P = [X,Y, Y, T ]T . The theorem

provides
(

3 + n
n

)
(which is the number of terms in a polynomial that defines

a surface of order n in the three-dimensional projective space) equations on

k, α, β, γ, δ, (ri)1≤i≤s, where s =
(

3 + n− 1
n− 1

)
and the (ri)i are the coefficients

of r. One can eliminate the auxiliary unknowns k, (ri), using Groebner basis [4],
[5] or resultant systems [33], [18]. Therefore we get 1/2n(n + 3) equations on
α, β, γ, δ.

However, a more explicit way to perform this elimination follows. Let S be
the surface, whose equation is Σ = F + kG = 0. The points P that lie on
the plane π are characterized by the fact that when regarded as points of S,
their tangent planes are exactly π. This is expressed by the following system of
equations:




π(P) = 0
(β ∂Σ

∂X − α∂Σ
∂Y )(P) = 0

(γ ∂Σ
∂X − α∂Σ

∂Z )(P) = 0
(δ ∂Σ

∂X − α∂Σ
∂T )(P) = 0

.

.
On the other hand, on the plane Σ(P) = F (P) + kG(P) = 0. Therefore

k = −F (P)
G(P) for any P on the plane that is not located on the curve itself.

Therefore we get the following system:



π(P) = 0
(β(G ∂F

∂X − F ∂G
∂X ) − α((G ∂F

∂Y − F ∂G
∂Y ))(P) = 0

(γ(G ∂F
∂X − F ∂G

∂X ) − α((G∂F
∂Z − F ∂G

∂Z ))(P) = 0
(δ(G ∂F

∂X − F ∂G
∂X ) − α((G∂F

∂T − F ∂G
∂T ))(P) = 0

Since the plane we are looking for doesn’t pass through the point [0, 0, 0, 1]T

which is the first camera center, δ can be normalized to 1. Thus for a point P on
the plane, we have: T = −(αX + βY + γZ). By substituting this expression of
T into the previous system, we get a new system that vanishes over all values of
(X,Y, Z). Therefore its coefficients must be zero. This provides us with a large
set of equations on (α, β, γ), that can be used to refine the solution obtained by
the algebraic approach.

Computing the intersection of the plane and one of the cones.
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The equation of the curve on the plane Π is given by the elimination of T
between the two equations: αX + βY + γZ + T = 0 and f(τ(P)) = 0. Using
the first cone gives us immediately the equation, since the first camera matrix
is [I;0].

5 Experiments

5.1 Computing the Epipolar Geometry: 3 Conics and 2 Points

In order to demonstrate the validity of the theoretical analysis, we compute the
fundamental matrix from 3 conics and 2 points in a synthetic experiment. The
computation is too intense for the standard computer algebra packages. We have
found that Fast Gb 5 a powerful program for Groebner basis, introduced by
J.C. Faugere [9,10] is one of the few packages that can handle this kind of com-
putation. The conics in the first image are:
f1(x, y, z) = x2 + y2 + 9z2

g1(x, y, z) = 4x2 + y2 + 81 z2

h1(x, y, z) = (4x+ y)x+ (x− 1/2 z) y + (−1/2 y + z) z

The conics in the second image are:
f2(x, y, z) = − 1

100(−4+
√

3)2
(−1900x2 + 800x2√3 − 1309y2 + 400y2√3 + 9820yz

√
3−

16000yz − 72700z2 + 40000z2√3)
g2(x, y, z) = 1

400(4489+400
√

3)2
(33036473600x2 + 5732960000x2√3 + 332999600xy

√
3−

214463200xy − 73852000xz − 1384952000xz
√

3 + 9091399981y2 + 1771266080y2√3−
16090386780yz

√
3 + 10160177600yz + 556496242300z2 + 141582592000z2√3)

h2(x, y, z) = − 1
400(−561+38

√
3)2

(−519504000x2 + 48311700z2−
125749120xy

√
3 + 43249920xy − 254646400xz

√
3 − 6553140yz

√
3 + 56456040yz+

68848000x2√3 + 1279651200xz − 272267400z2√3 + 2522418y2√3 − 298209y2)
Given just the constraints deduced from the conics, the system defines, as

expected, a one-dimensional variety in P8 × P2. When just one point is intro-
duced, we get a zero-dimensional variety, whose degree is 516. When two points
are introduced, the system reduces to the following:



F [1, 1] = F [2, 2] = F [2, 3] = F [3, 2] = F [3, 3] = 0
F [3, 1] + (

√
3 − 1)F [1, 3] = 0

10F [2, 1] + (
√

3 − 1)F [1, 3] = 0
10F [1, 2] + (

√
3 − 2)F [1, 3] = 0

133813 ∗ F [1, 3]2 − 20600 ∗ √
3 − 51100 = 0

Then it is easy to get the right answer for the fundamental matrix:


0 − −2+
√

3√
511−206

√
3

10 1√
511−206

√
3

− −1+
√

3√
511−206

√
3

0 0

−10 −1+
√

3√
511−206

√
3

0 0




5 https://fgb.medicis.polytechnique.fr/
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5.2 Computing the Homography Matrix

We have performed a real image test on recovering the homography matrix
induced by the plane of a 3’rd order curve. The equations of the image curves
were recovered by least-squares fitting. Once the homography was recovered we
used it to map the curve in one image onto its matching curve in the other
image and measure the geometric distance (error). The error is at subpixel level
which is a good sign to the practical value of our approach. Figure 1 displays
the results.

Fig. 1. The first and the second image cubic.

Fig. 2. The reprojected curve is overlayed on the second image cubic. A zoom shows
the very slight difference.
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5.3 3D Reconstruction

Given two images of the same curve of order 4 (figure 3) and the epipolar geo-
metry, we start by compute the plane and the homography matrix, using the
algebraic approach to reconstruction. There are three solutions, that are all very
robust. However to get further precision, one can refine it with the final system
on the plane parameters, obtained at the end of the geometric approach. To
demonstrate the accuracy of the algorithm, the reprojection of the curve in the
second image is showed in the figure 4. The 3D rendering of the correct solution
and the three solutions plotted together are showed in figure 5.

Fig. 3. The curves of order 4 as an input of the reconstruction algorithm.

Fig. 4. Reprojection of the curve onto the second image.
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Fig. 5. The curves of order 4 as an input of the reconstruction algorithm.
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Fig. 6. The original curve.

6 Conclusion and Future Work

We have presented simple closed-form solutions for recovery of homography ma-
trix from a single matching pair of curves of n ≥ 3 order arising from a planar
curve; two algorithms for reconstructing algebraic curves from their projections,
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again in closed-form; and revisited the problem of recovering the fundamental
matrix from matching pairs of conics and proposed an analytic proof to the
findings of [15] that four matching pairs are necessary for a unique solution.

Our experiments on real imagery demonstrate a sub-pixel performance level
— an evidence to the practical value of our algorithms. Future work will investi-
gate the same fundamental questions — calibration and reconstruction — from
general three-dimensional curves.
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7 Appendix

7.1 Tensor Representation of a Planar Algebraic Curve

As a conic admits a matrix representation, pT Cp = 0 iff p belongs to the conic, a
general algebraic curve of order n admits a tensor representation: Ti1...inpi1 ...pin

= 0 iff p belongs to the curve, where for each k, ik ∈ 1, 2, 3. In this tensor repre-
sentation, a short notation is used: a repeated index on low and high position
is summed over its domain definition. One has to link this tensor representation
with the regular polynomial representation: f(x, y, z) = 0.
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Lemma 1. Let f(x, y, z) = 0 be an homogeneous equation of order n. There
exists a tensor of order n, defined up to a scale factor, such as the equation can
be rewritten in the following form:

Ti1...in
pi1 ...pin = 0,

where for each k, ik ∈ 1, 2, 3, p = [x, y, z]T , and:
Ti1...in = Tiτ(1)...iτ(n) , for each τ which is a transposition of {1, 2, .., n}. 6

Proof: The proof is quite forward. It is just necessary to remark that for each n-
uplet i1, .., in such as: i1 ≥ i2 ≥ ... ≥ in, we have: Ti1...in = α 1

a!b!c!
∂a+b+c

∂xaybzc f(x, y,
z), where: a =

∑
ik=1 1, b =

∑
ik=2 1, c =

∑
ik=3 1 and α = a!b!c!

n! . The factor α

is due to the symmetry of the tensor. Finally Ti1...in
= 1

n!
∂a+b+c

∂xaybzc f(x, y, z).

6 A transposition of {1, 2, .., n} is defined by the choice of a pair {i, j} ⊂ {1, 2, ..n},
such as: i 6= j and τ(k) = k for each k ∈ {1, 2, ..n}\{i, j} and τ(i) = j and τ(j) = i.
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