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Abstract. This paper considers projective reconstruction with a
hierarchical computational structure of trifocal tensors that integrates
feature tracking and geometrical validation of the feature tracks. The
algorithm was embedded into a system aimed at completely automatic
Euclidean reconstruction from uncalibrated handheld amateur video
sequences. The algorithm was tested as part of this system on a number
of sequences grabbed directly from a low-end video camera without
editing. The proposed approach can be considered a generalisation of a
scheme of [Fitzgibbon and Zisserman, ECCV ‘98]. The proposed
scheme tries to adapt itself to the motion and frame rate in the sequence
by finding good triplets of views from which accurate and unique trifocal
tensors can be calculated. This is in contrast to the assumption that three
consecutive views in the video sequence are a good choice. Using
trifocal tensors with a wider span suppresses error accumulation and
makes the scheme less reliant on bundle adjustment. The proposed
computational structure may also be used with fundamental matrices as
the basic building block.

1 Introduction

Recovery of the shape of objects observed in several views is a branch of computer
vision that has traditionally been called Structure from Motion (SfM). This is currently
a very active research area [1-32]. Applications include synthesis of novel views,
camera calibration, navigation, recognition, virtual reality, augmented reality and
more. Recently, much interest has been devoted to approaches that do not assume any
a priori knowledge of the camera motion nor calibration [1-4,6,9,13,20,31]. Thus, both
the cameras and the structure are recovered. It is therefore relevant to speak of
Structure and Motion (SaM). These approaches are very promising, especially as part
of a potential system that extracts graphical models completely automatically from
video sequences.

A very brief outline of one of many possible such systems is as follows. Features
are extracted in all views independently [33,34]. Features are then matched by
correlation into pairs and triplets from which multiple view entities such as
fundamental matrices [6,11,29,32,35,36] or trifocal tensors [21,23,25,26] are
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calculated. Camera matrices are then instantiated in a projective frame according to
the calculated multiple view entities. The obtained pairs or triplets of camera matrices
are transformed into a coherent projective frame [1] and optimised via bundle
adjustment [9]. This yields a projective reconstruction that can be specialised to
Euclidean by the use of autocalibration [10,16,20,30]. The views are now calibrated
and a dense graphical model suitable for graphical rendering can be produced with any
scheme developed for calibrated cameras. Examples of such schemes are space
carving [15] and rectification [20] followed by conventional stereo algorithms.

This paper will concentrate on the stage where multiple view entities are calculated
and registered into a coherent projective frame. Factorisation approaches are available
that avoid the registration problems by obtaining all the camera matrices at once
[19,27,28]. There are, however, compelling reasons for using an iterative approach
and to build up the camera trajectory in steps. Direct estimation typically expects all
features to be observed in all views, an assumption that in practice is heavily violated
for long sequences. With an iterative approach, it is easier to deal with mismatches,
another key to success in practice. Last but not least, an iterative approach makes it
possible to use bundle adjustment in several steps and thereby build the reconstruction
gradually with reprojection error as the criterion.

The contribution of this paper is a hierarchical computational structure that
integrates feature tracking and geometrical validation of the feature tracks into an
iterative process. The algorithm was tested as part of a system that automatically goes
from frames of a video sequence to a sparse Euclidean reconstruction consisting of
camera views, points and lines. The rest of the paper is organised as follows. Section 2
gives a motivation for the approach and the overall idea. The approach relies heavily
on an algorithm to derive trifocal tensors and feature triples geometrically consistent
with them. This estimation essentially follows [3,25], but is briefly sketched in Section
3 due to its importance. The proposed computational structure is given in more detail
in Section 4. Section 5 describes how the trifocal tensors of the structure are carried on
to a projective reconstruction. Results and conclusions are given in Sections 6 and 7.

2 Motivation and Method

The task of matching e.g. corners or lines between widely separated views by
correlation is notoriously difficult. Rotation, scaling, differing background, lighting or
other factors typically distort the texture of the region around a feature. Feature
tracking makes it possible to establish matches with larger disparities. However,
feature tracks are eventually lost and features move out of view in favour of new ones
as the sequence goes on. Therefore, the number of feature correspondences between
widely separated views is not always sufficient to allow a reliable estimation of a
fundamental matrix or trifocal tensor.

On the other hand, a certain amount of parallax is necessary for a unique
determination of the camera matrices (up to an overall homography) and the disparity
between views is the clue to the actual depth of the features. A wider baseline is
preferable, since it typically increases the amount of parallax and disparity.

To summarise the discussion, the loss of feature correspondences over time and the
necessity of a reasonable baseline create a trade off. This means that in practice there
is a sweet spot in terms of view separation, where calculation of the multiple view
entities is best performed.
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Many test sequences used in the vision community are well conditioned in the sense
that consecutive views are reasonably separated. A typical sequence taken by a non-
professional photographer using an ordinary handheld camera does not possess this
quality. The number of views needed to build up a reasonable separation will typically
vary over the sequence and depends on the frame rate and the speed and type of
camera motion.

A too low frame rate in relation to the motion is of course difficult to remedy. It is
therefore reasonable to use a high frame rate when acquiring the sequence and to
develop algorithms that can adapt to the sequence and find the sweet spot in separation
automatically. It is proposed here to achieve this by a two-step scheme. The first step
is a preprocessor that can cope with a potentially excessive number of frames. The
preprocessor is based on a rough global motion estimation between views and discards
redundant views based on correlation after the motion estimation. The details are
described in [18]. The second step, which is the topic of this paper, is a hierarchical
computational structure of trifocal tensors. This structure integrates feature tracking
and geometrical validation of feature tracks into an iterative process. It can be
considered a generalisation of [1]. There, projective frames with triplets of camera
views and corresponding features are hierarchically registered together into longer
subsequences. The three views of one such triplet are always adjacent in the sequence,
unless a preprocessor performs tracking.

In the scheme proposed here, the trifocal tensor algorithm is first used on triplets of
consecutive views. This produces trifocal tensors together with a number of feature
triplets consistent with every tensor. The consistent feature triplets from adjacent
tensors are connected to form longer feature tracks. The longer tracks are then used
together with new feature triplets, provided by raw matching, as input to new trifocal
tensor calculations. The new tensors are between views twice as far apart in the
sequence. This is repeated in an iterative fashion to produce a tree of trifocal tensors.
From the tree of trifocal tensors, a number of tensors are now chosen that together
span the sequence. The choice is based on a quality measure for trifocal tensors and
associated feature triples. The goal of the quality measure is to indicate the sweet spot
in view separation discussed earlier. The measure should therefore favour many
consistent features and large amounts of parallax. The resulting tensors will be
referred to as wide tensors and can stretch over anything from three up to hundreds of
views, depending entirely on the sequence.

In this manner, frame instantiation and triangulation are postponed until disparity
and parallax have been built up. The registration of intermediate views can then
proceed to provide a denser sequence. In some cases it is desirable to include all
views, while no intermediate views at all are required in others. The interpolative type
of registration can sometimes be more accurate than its extrapolative counterpart. By
taking long steps in the extrapolative registration, error accumulation is suppressed.
This in turn makes the algorithm less reliant on the bundle adjustment process.

The success of the algorithm relies on two properties. The first one is that the
algorithm for the trifocal tensor performs reasonably well at determining the
consistent triples also when the baseline is insufficient to accurately determine the
depth of the features or to give a unique solution for the camera matrices. The second
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one is that when presented with too widely separated views, the trifocal tensor
algorithm yields a result with very few matches and as a consequence, unreliable
tensors can be detected.

It is also in place to point out that an almost identical approach as the one described
here may be taken with view pairs and fundamental matrices. The advantages of
using three views as the basic building block are that lines can also be used and that
the more complete geometric constraint removes almost all the false matches. These
advantages come at a cost of speed.

3 Tensor Algorithm

The way to obtain new features essentially follows [2,3] and is sketched in Figure 1.
Harris corners [34] are matched by correlation to give pairs upon which a fundamental
matrix estimation is performed. The estimation is done by RANSAC [37], followed by
optimisation of a robust support function.

‘ Corner extraction ‘ Line extraction
¥ v

Correlation matching l l
to pass guided

Correlation matching
to pass guided

‘ Enforce best match ‘

| Unguided threshold |

| Priority threshold |

Calculate F

Enforce epipolar constraint

¥ Corner pairs Line pairs

Figure 1. A sketch of how feature pairs are derived

The result is a fundamental matrix and a number of geometrically consistent corner
pairs. Lines derived from Canny edges [33] are matched by correlation, guided by the
extracted fundamental matrix, as described in [38]. The feature pairs are then
connected into correspondences over three views. Given a set of feature triples,
another RANSAC process [25] is conducted to estimate the trifocal tensor. Minimal
sets consisting of six point triples are used to find tentative solutions for 7T using the
method of [21]. The support for the tentative solutions is measured using both points
and lines. Following [25], a robust support function based on maximum likelihood
error of points and lines is used. The best tentative solution from the RANSAC
process is then optimised. For best accuracy, the parameterization used in the
optimisation should be consistent meaning that all possible choices of values for the
parameters should yield a theoretically possible tensor.
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4 Computational Structure

The proposed computational structure is applicable to any number of views, but as it
simplifies this description, it is assumed that the sequence length is N =2" +1 for
some n NN . First, basic tensors {T(1,2,3),T(3,4,5),. .. ,T(N 2,N 1, N)} are
calculated for triplets of adjacent views. Then the next layer

{T(1,3,5) (5 7 9) (N 4N 2,N )} of tensors with double baseline (in

an abstract sense) is found.
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Figure 2. One iterative step of the trifocal tensor computation

The result of the first layer is passed on to this new layer. More specifically the
calculation of the trifocal tensor T(i,i +27 i+27 ), where i, ] N is fed with

corner and line triples obtained from tensors T(i,i+2j Vi+2) ) and

T(i +27 i +27 427 j4 20 ) The calculation of the narrower tensors provides
a number of consistent corner and line triples. These triples are then connected at
frame i+2’ to provide longer triples by simply dropping the nodes at frames
i+2'" and i+2/ +2/". The longer triples are fed into the wider tensor
calculation together with new triples extracted by the basic algorithm sketched above

in Section 3. One iterative step as just described is illustrated in Figure 2. The
recursion then proceeds until a complete tree of tensors has been built up (see Figure

3). In this way the total number of tensor calculations becomes 2" 1=N 2.
Intertwining the connection of feature triples with the geometric pruning provided by
the tensor calculation means that geometric constraints and tracking are integrated.
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Although straightforward connection of feature triples was used in the current
implementation, more sophisticated schemes could be used, for example by taking
smoothness of motion into account.

Figure 3. The hierarchical structure of trifocal tensors. The frames of the sequence are
shown as rectangles at the bottom of the figure

For a long sequence, the number of consistent features has generally dropped under
an unacceptable level before the top of the tree with a wide tensor spanning the whole
sequence can be reached. As mentioned above, there is a sweet spot to be found in the
width of the tensors. To determine the best width, a quality measure is defined for the
tensors. A tensor is ruled unacceptable and the quality measure set to zero if the
number of consistent features is below a threshold. A rather conservative threshold of
50 was used in the experiments. Otherwise the quality measure is defined as

O=b p. (1)

Here b is an abstract baseline. It is defined as the distance between the first and
the last frame of the tensor, but simply measured in frame numbers. The parameter
is a constant determining how greedy the algorithm is for wider tensors. A reasonable
choice was found to be 0.5 1. The parameter p indicates whether there is
support in the data for a 3-dimensional geometric relationship rather than a 2-
dimensional. With the use of this parameter, the algorithm tries to avoid degeneracies.
The parameter p is related to the more sophisticated criterion described in [24]. If
there is no translation between two camera views, or if all features seen by the views
are located in a common plane, corresponding points X and X in the first and second
view are related by a homography H as x  Hx where H is represented by a 3x3

matrix defined up to scale. Likewise [ [H ' for two corresponding lines  and [ .
Two homographies are fitted to the feature triples consistent with the trifocal tensor
(again using RANSAC). The parameter p is then defined as the number of features

triples that are consistent with the trifocal tensor but inconsistent with any of the
homographies.

The consideration of tensors begins at the top of the tensor tree. If a tensor is ruled
unacceptable or its children of narrower tensors both have a higher quality, the choice
is recursively dropped to the next level of the tree. If the basic tensors at the bottom of
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the tree are also ruled unacceptable, the sequence is split into subsequences at the
views in question. The result is now subsequences of wide tensors. A small example

can be seen in Figure 4.

Figure 4. A small example of a choice of wide tensors

S Building the Projective Reconstruction

The wide tensors are registered into a common projective frame following [1]. Before,
or after this is done, the wide tensors can (optionally) be complemented with some of
the intermediate views. In the current implementation of the algorithm, this is done
first. A wide tensor typically has two child tensors in the tensor tree. Each of these
children provides an extra view and also some additional features. The extra views are
inserted recursively, deeper and deeper in the tensor tree. One way to accomplish the
insertion is to register the child tensors into the frame of the parent. However, all
features and views spanned by a wide tensor can in fact be instantiated directly in a
common frame. This avoids inconsistency problems and is done in a similar fashion as
for sequential approaches [2,9]. The differences are that the process is now
interpolative rather than extrapolative plus that reliable correspondences are already
extracted.

A tensor that provides the extra view to be filled in consists of the extra view plus
two views that are already instantiated. The additional view is positioned between the
old ones. Furthermore, all the new features that are provided have been found
consistent with the trifocal tensor. Therefore all the new features have two
observations in the already instantiated views. Thus they can be triangulated directly
[12]. Once this is done, the new view can be determined from the features seen in it
through another RANSAC process followed by optimisation.

It should be remarked that once trifocal tensors spanning the video sequence are
known, the camera matrices are in theory determined without further consideration of
the features. However, the consistent use of reprojection error has been found crucial
in practice. Furthermore, error accumulation is suppressed by bundle adjustment after
every merge.

In the process of intermediate view insertion, a quality assurance mechanism can be
included that rejects the introduction of a new view and stops the recursion at the
current depth if there are indications of failure. Depending on the application, it can
also be desirable to limit the insertion to a certain number of steps. A wide tensor
spanning many views typically indicates that there is little motion between the views
of the original sequence. Thus, when it is desirable to homogenise the amount of
motion between views, this can be accomplished by limiting the depth of insertion.

Finally, the wide tensors with associated features are registered into a common
projective frame. Also here, it is beneficial to use some kind of heuristic as to whether
a merge should be accepted or not. In case of failure, it is better to discard the merge
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and produce several independent reconstructions, or to prompt for a manual merge. To
build reliable automatic reconstruction systems, work on quality monitoring of this
kind is essential.

6 Results

Experiments were performed on approximately 50 sequences. The projective
reconstructions are specialised to Euclidean with the use of autocalibration. A fixed
focal length, fixed principal point and zero skew are forced upon the model. The result
is then bundle adjusted in the Euclidean setting. Some results are shown in Table 1.

Table 1. Results from five sequences. The table is explained below

Sequence | Frames Views | Points | Lines P_error | L_error | Figure
Nissan 1-28 17 | 679 93 0.73 0.007 -
Micra 28-235 89 | 4931 170 1.11 0.039
(0.67) (0.017)
235-340 59 | 3022 226 0.79 0.024 6
Flower 1-115 61 | 3445 23 0.68 0.029 8
Pot 122-180 43 | 3853 1 0.65 0.000 -
180-267 83 | 10068 | O 0.67 - 9
Swedish | 1-64 41 | 3071 273 0.74 0.024 11
Breakfast 64-249 125 | 8841 739 0.75 0.019 -
249-297 29 | 749 240 0.68 0.025 -
Bikes 1-161 103 | 8055 369 0.73 0.018 13
David 1-19 11 | 688 38 0.52 0.020 15
Shoe & Co 19-39 21 | 942 55 0.67 0.032 17

All sequences in the table have the resolution 352 x 288 pixels. The column
‘Frames’ shows the frame span in the original sequence. Due to preprocessing all
frames are not used. The number of views, points and lines in the reconstruction are
displayed in the columns ‘Views’, ’Points’ and ‘Lines’. ‘P_error’ is the root mean
square point reprojection error in number of pixels. ‘L_error’ is the root mean square
line reprojection error. The line reprojection error is measured as the length of the
vector [ [, where [ and [ are the observed and reprojected line, represented as
homogenous line vectors normalised to hit the unit cube. The column ‘Figure’
indicates in which figure the reconstruction is displayed graphically. Observe that the
reprojection error of the second sub-sequence of ‘Nissan Micra’ is higher than the
other results. This is due to a failure of the autocalibration. The camera trajectory is
torn into two separate parts. The reprojection error in the projective frame is therefore
shown in parenthesis.

The sequence ‘David’ was taken by the person in the sequence, stretching out an
arm with the camera and moving it in an arc. The sequence ‘Shoe & Co’ is a ‘home
made’ turntable sequence. It was taken in front of a refrigerator with the camera in a
kitchen cupboard. The turntable is a revolving chair that was turned by hand with the
camera
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Figure 6. Three views of a reconstruction from Nissan Micra
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Figure 9. View of a reconstruction from the sequence Flower Pot
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Figure 11. View of a reconstruction from Swedish Breakfast

running. The remaining sequences are handheld. Figures 5-17 display results
graphically. In some of the figures it is difficult to interpret the structure. What can be
seen in all of them however, is that the extracted camera trajectory is good. This is the
most important result. The algorithm is mainly intended for intrinsic and extrinsic
camera calibration. In a complete system, it should be used together with a dense
reconstruction algorithm that uses the calibration. It is not clear though, that the dense
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Figure 13. View of a reconstruction from the sequence Bikes

Figure 15. Two views of a reconstruction from the sequence David
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Figure 17. Two views of a reconstruction from the sequence Shoe & Co
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reconstruction algorithm should necessarily use the structure. Dense reconstruction is
part of the future work and out of the scope of this paper.

7 Conclusions

A hierarchical computational structure of trifocal tensors has been described. It is used
to solve for structure and motion in uncalibrated video sequences acquired with a
handheld amateur camera. In agreement with this purpose, the algorithm was tested
mainly on video material with different amounts of motion per frame, frames out of
focus and relatively low resolution. With the presented computational structure, the
instantiation of camera matrices and feature triangulation are held until disparity and
parallax have been built up. The structure also integrates feature tracking and
geometrical constraints into an iterative process. Experimental results have been
shown in terms of sparse Euclidean reconstructions consisting of views, points and
lines. The presented results are taken from experiments on approximately 50
sequences. Future work includes more sophisticated ways to monitor the quality of the
results, work on the autocalibration stage of the reconstruction and also the use of a
method to derive a dense reconstruction.
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