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Abstract. The Singular Value Decomposition (SVD) of a matrix is a
linear algebra tool that has been successfully applied to a wide variety
of domains. The present paper is concerned with the problem of estima-
ting the Jacobian of the SVD components of a matrix with respect to
the matrix itself. An exact analytic technique is developed that facili-
tates the estimation of the Jacobian using calculations based on simple
linear algebra. Knowledge of the Jacobian of the SVD is very useful in
certain applications involving multivariate regression or the computation
of the uncertainty related to estimates obtained through the SVD. The
usefulness and generality of the proposed technique is demonstrated by
applying it to the estimation of the uncertainty for three different vision
problems, namely self-calibration, epipole computation and rigid motion
estimation.

1 Introduction and Motivation

The SVD is a general linear algebra technique that is of utmost importance
for several computations involving matrices. For example, some of the uses of
SVD include its application to solving ordinary and generalized least squares
problems, computing the pseudo-inverse of a matrix, assessing the sensitivity
of linear systems, determining the numerical rank of a matrix, carrying out
multivariate analysis and performing operations such as rotation, intersection,
and distance determination on linear subspaces [10]. Owing to its power and
flexibility, the SVD has been successfully applied to a wide variety of domains,
from which a few sample applications are briefly described next. Zhang et al [42],
for example, employ the SVD to develop a fast image correlation scheme. The
problem of establishing correspondences is also addressed by Jones and Malik
[14], who compare feature vectors defined by the responses of several spatial
filters and use the SVD to determine the degree to which the chosen filters
are independent of each other. Structure from motion is another application
area that has greately benefited from the SVD. Longuet-Higgins [19] and later
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Hartley [12] extract the translational and rotational components of rigid 3D
motion using the SVD of the essential matrix. Tsai et al [36] also use the SVD
to recover the rigid motion of a 3D planar patch. Kanade and co-workers [35,
28,27] assume special image formation models and use the SVD to factorize
image displacements to structure and motion components. Using an SVD based
method, Sturm and Triggs [34] recover projective structure and motion from
uncalibrated images and thus extend the work of [35,28] to the case of perspective
projection. The SVD of the fundamental matrix yields a simplified form of the
Kruppa equations, on which self-calibration is based [11,20,21]. Additionally,
the SVD is used to deal with important image processing problems such as
noise estimation [15], image coding [40] and image watermarking [18]. Several
parametric fitting problems involving linear least squares estimation, can also be
effectively resolved with the aid of the SVD [2,37,16]. Finally, the latter has also
proven useful in signal processing applications [31,26] and pattern recognition
techniques such as neural networks computing [7,39] and principal components
analysis [4].

This paper deals with the problem of computing the Jacobian of the SVD
components of a matrix with respect to the elements of this matrix. Knowledge
of this Jacobian is important as it is a key ingredient in tasks such as non-linear
optimization and error propagation:

– Several optimization methods require that the Jacobian of the criterion that
is to be optimized is known. This is especially true in the case of complicated
criteria. When these criteria involve the SVD, the method proposed in this
paper is invaluable for providing analytical estimates of their Jacobians. As
will be further explained latter, numerical computation of such Jacobians
using finite differences is not as straightforward as it might seem at a first
glance.

– Computation of the covariance matrix corresponding to some estimated
quantity requires knowledge of the Jacobians of all functions involved in the
estimation of the quantity in question. Considering that the SVD is quite
common in many estimation problems in vision, the method proposed in
this work can be used in these cases for computing the covariance matrices
associated with the estimated objects.

Paradoxically, the numerical analysis litterature provides little help on this
topic. Indeed, a lot of studies have been made on the sensitivity of singular
values and singular vectors to perturbations in the original matrix [33,10,6,38,
3], but these globally consider the question of perturbing the input matrix and
derive bounds for the singular elements but do not deal with perturbations due
to individual elements.

Thus, the method proposed here fills in an important gap, since, to the best
of our knowledge, no similar method for SVD differentiation appears in the
literature. The rest of this paper is organized as follows. Section 2 gives an ana-
lytical derivation for the computation of the Jacobian of the SVD and discusses
practical issues related to its implementation in degenerate cases. Section 3 il-
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lustrates the use of the proposed technique with three examples of covariance
matrix estimation. The paper concludes with a brief discussion in section 4.

2 The Proposed Method

2.1 Notation and Background

In the rest of the paper, bold letters will be used for denoting vector and matrices.
The transpose of matrix M is denoted by MT and mij refers to the (i, j) element
of M. The i-th non-zero element of a diagonal matrix D is referred to by di,
while Mi designates the i-th column of matrix M.

A basic theorem of linear algebra states that any real M ×N matrix A with
M ≥ N can be written as the product of an M × N column orthogonal matrix
U, an N ×N diagonal matrix D with non-negative diagonal elements (known as
the singular values), and the transpose of an N × N orthogonal matrix V [10].
In other words,

A = UDVT =
N∑

i=1

diUiVT
i . (1)

The singular values are the square roots of the eigenvalues of the matrix
AAT (or AT A since these matrices share the same non-zero eigenvalues) while
the columns of U and V (the singular vectors) correspond to the eigenvectors of
AAT and AT A respectively [17]. As defined in Eq.(1), the SVD is not unique
since

– it is invariant to arbitrary permutations of the singular values and their
corresponding left and right singular vectors. Sorting the singular values
(usually by decreasing magnitude order) solves this problem unless there
exist equal singular values.

– simultaneous changes in the signs of the vectors Ui and Vi do not have any
impact on the leftmost part of Eq.(1). In practice, this has no impact on
most numerical computations involving the SVD.

2.2 Computing the Jacobian of the SVD

Employing the definitions of section 2.1, we are interested in computing ∂U
∂aij

,
∂V
∂aij

and ∂D
∂aij

for every element aij of the M × N matrix A.
Taking the derivative of Eq. (1) with respect to aij yields the following equation

∂A
∂aij

=
∂U
∂aij

DVT + U
∂D
∂aij

VT + UD
∂V
∂aij

T

(2)

Clearly, ∀ (k, l) 6= (i, j), ∂akl

∂aij
= 0, while ∂aij

∂aij
= 1. Since U is an orthogonal

matrix, we have the following:

UT U = I =⇒ ∂U
∂aij

T

U + UT ∂U
∂aij

= Ωij
U

T
+ Ωij

U = 0, (3)
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where Ωij
U is given by

Ωij
U = UT ∂U

∂aij
. (4)

From Eq. (3) it is clear that Ωij
U is an antisymmetric matrix. Similarly, an anti-

symmetric matrix Ωij
V can be defined for V as

Ωij
V =

∂V
∂aij

T

V . (5)

Notice that Ωij
U and Ωij

V are specific to each differentiation ∂
∂aij

.
By multiplying Eq. (2) by UT and V from the left and right respectively,

and using Eqs. (4) and (5), the following relation is obtained:

UT ∂A
∂aij

V = Ωij
UD +

∂D
∂aij

+ DΩij
V. (6)

Since Ωij
U and Ωij

V are antisymmetric matrices, all their diagonal elements
are equal to zero. Recalling that D is a diagonal matrix, it is easy to see that
the diagonal elements of Ωij

UD and DΩij
V are also zero. Thus, Eq. (6) yields the

derivatives of the singular values as
∂dk

∂aij
= uik vjk . (7)

Taking into account the antisymmetry property, the elements of the matrices
Ωij

U and Ωij
V can be computed by solving a set of 2× 2 linear systems, which are

derived from the off-diagonal elements of the matrices in Eq. (6):{
dl Ωij

Ukl + dk Ωij
Vkl = uik vjl

dk Ωij
Ukl + dl Ωij

Vkl = − uil vjk ,
(8)

where the index ranges are k = 1 . . . N and l = i + 1 . . . N . Note that, since
the dk are positive numbers, this system has a unique solution provided that
dk 6= dl. Assuming for the moment that ∀ (k, l), dk 6= dl, the N(N−1)

2 parameters
defining the non-zero elements of Ωij

U and Ωij
V can be easily recovered by solving

the N(N−1)
2 corresponding 2 × 2 linear systems.

Once Ωij
U and Ωij

V have been computed, ∂U
∂aij

and ∂V
∂aij

follow as:

∂U
∂aij

= UΩij
U ,

∂V
∂aij

= −VΩij
V . (9)

In summary, the desired derivatives are supplied by Eqs. (7) and (9).

2.3 Implementation and Practical Issues

In this section, a few implementation issues related to a practical application of
the proposed method are considered.
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Degenerate SVDs. Until now, the case where the SVD yields at least two
identical singular values has been set aside. However, such cases occur often in
practice, for example when dealing with the essential matrix (see section 3.3
ahead) or when fitting a line in 3D. Therefore, let us now assume that dk = dl

for some k and l. It is easy to see that these two singular values contribute to
Eq. (1) with the term dl

(
UkVT

k + UlVT
l

)
. The same contribution to A can

be obtained by using any other orthonormal bases of the subspaces spanned by
(Uk,Ul) and (Vk,Vl) respectively. Therefore, letting

U′
k = cosα Uk + sinα Ul

U′
l = −sinα Uk + cosα Ul

V′
k = cosα Vk + sinα Vl

V′
l = −sinα Vk + cosα Vl ,

for any real number α, we have UkVT
k +UlVT

l = U′
kV

′
k

T +U′
lV

′
l
T . This implies

that in this case, there exists a one dimensional family of SVDs. Consequently,
the 2× 2 system of Eqs. (8) must be solved in a least squares fashion in order to
get only the component of the Jacobian that is “orthogonal” to this family. Of
course, when more than two singular values are equal, all the 2×2 corresponding
systems have to be solved simultaneously. The correct algorithm for all cases is
thus:

– Group together all the 2× 2 systems corresponding to equal singular values.
– Solve these systems using least squares.

This will give the exact Jacobian in non-degenerate cases and the “minimum
norm” Jacobian when one or more singular values are equal.

Computational complexity. Assuming that the matrix A is N ×N and non-
degenerate for simplicity, it is easy to compute the complexity of the procedure
for computing the Jacobian: For each pair (i, j), i = 1 . . . N, j = i + 1 . . . N , a
total of N(N−1)

2 2×2 linear systems have to be solved. In essence, the complexity
of the method is O(N4) once the initial SVD has been carried out.

Computing the Jacobian using finite differences. The proposed method
has been compared with a finite difference approximation of the Jacobian and
same results have been obtained in the non-degenerate case (degenerate cases
are more difficult to compare due to the non-uniqueness of the SVD). Although
the ease of implementation makes the finite difference approximation more ap-
pealing for computing the Jacobian, the following points should also be taken
into account:

– The finite difference method is more costly in terms of computational com-
plexity. Considering again the case of an N × N non-degenerate matrix as
in the previous paragraph, it is simple to see that such an approach requires
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N2 SVD computations to be performed (i.e. one for each perturbation of
each element of the matrix). Since the complexity of the SVD operation is
O(N3), the overall complexity of the approach is O(N5) which is an order of
magnitude higher compared to that corresponding to the proposed method.

– Actually, the implementation of a finite difference approximation to a Jaco-
bian is not as simple as it might appear. This is because even state of the
art algorithms for SVD computation (eg Lapack’s dgesvd family of routi-
nes [1]) are “unstable” with respect to small perturbations of the input. By
unstable, we mean that the signs associated with the columns Ui and Vi

can change arbitrarily even with the slightest perturbation. In general, this
is not important but it has strong effects in our case since the original and
perturbed SVD do not return the same objects. Consequently, care has to be
taken to compensate for this effect when the Jacobian is computed through
finite differences.

3 Applications

In this section, the usefulness and generality of the proposed SVD differentiation
method are demonstrated by applying it to three important vision problems.
Before proceeding to the description of each of these problems, we briefly state
a theorem related to error propagation that is essential for the developments in
the subsections that follow. More specifically, let x0 ∈ RN be a measurement
vector, from which a vector y0 ∈ RM is computed through a function f , i.e.
y0 = f(x0). Here, we are interested in determining the uncertainty of y0, given
the uncertainty of x0. Let x ∈ RN be a random vector with mean x0 and
covariance Λx = E[(x − x0)(x − x0)T ]. The vector y = f(x) is also random and
its covariance Λy up to first order is equal to

Λy =
∂f(x0)
∂x0

Λx
∂f(x0)
∂x0

T

, (10)

where ∂f(x0)
∂x0

is the derivative of f at x0. For more details and proof, the reader
is referred to [8]. In the following, Eq. (10) will be used for computing the uncer-
tainty pertaining to various entities that are estimated from images. Since image
measurements are always corrupted by noise, the estimation of the uncertainty
related to these entities is essential for effectively and correctly employing the
latter in subsequent computations.

3.1 Self-Calibration Using the SVD of the Fundamental Matrix

The first application that we deal with is that of self-calibration, that is the
estimation of the camera intrinsic parameters without relying upon the existence
of a calibration object. Instead, self-calibration employs constraints known as
the Kruppa equations, which are derived by tracking image features through an
image sequence. More details regarding self-calibration can be found in [25,41,23,
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20]. Here, we restrict our attention to a self-calibration method that is based on a
simplification of the Kruppa equations derived from the SVD of the fundamental
matrix. In the following paragraph, a brief description of the method is given;
more details can be found in [20,22].

Let SF be the vector formed by the parameters of the SVD of the fundamental
matrix F. The Kruppa equations in this case reduce to three linearly dependent
constraints, two of which are linearly independent. Let πi(SF,K), i = 1 . . . 3
denote those three equations as functions of the fundamental matrix F and the
matrix K = AAT , where A is the 3 × 3 intrinsic calibration parameters matrix
having the following well-known form [8]:

A =


αu − αu cot θ u0

0 αv/ sin θ v0
0 0 1


 (11)

The parameters αu and αv correspond to the focal distances in pixels along the
axes of the image, θ is the angle between the two image axes and (u0, v0) are the
coordinates of the image principal point. In practice, θ is very close to π

2 for real
cameras. The matrix K is parameterized with the unknown intrinsic parameters
from Eq.(11) and is computed from the solution of a non-linear least squares
problem, namely

K = argminK̃

N∑
i=1

π2
1(SFi

, K̃)
σ2

π1
(SFi

, K̃)
+

π2
2(SFi

, K̃)
σ2

π2
(SFi

, K̃)
+

π2
3(SFi

, K̃)
σ2

π3
(SFi

, K̃)
(12)

In the above equation, N is the number of the available fundamental matrices and
σ2

πi
(SFi

,K) are the variances of constraints πi(SF,K), i = 1 . . . 3, respectively,
used to automatically weight the constraints according to their uncertainty. It is
to the estimation of these variances that the proposed differentiation method is
applied. More specifically, applying Eq.(10) to the case of the simplified Kruppa
equations, it is straightforward to show that the variance of the latter is appro-
ximated by

σ2
πi

(SF, K) =
∂πi(SF,K)

∂SF

∂SF

∂F
ΛF

∂SF

∂F

T ∂πi(SF,K)
∂SF

T

In the above equation, ∂πi(SF,K)
∂SF

is the derivative of πi(SF,K) at SF, ∂SF
∂F is the

Jacobian of SF at F and ΛF is the covariance of the fundamental matrix, supplied
as a by-product of the procedure for estimating F [5]. The derivative ∂πi(SF,K)

∂SF
is

computed directly from the analytic expression for πi(SF,K), while ∂SF
∂F is esti-

mated using the proposed method for SVD differentiation. To quantitatively as-
sess the improvement on the accuracy of the recovered intrinsic parameters that
is gained by employing the covariances, a set of simulations has been conducted.
More specifically, three rigid displacements of a virtual camera were simulated
and a set of randomly chosen 3D points were projected on the simulated retinas.
Following this, the resulting retinal points were contaminated by zero mean ad-
ditive Gaussian noise. The noise standard deviation was increased from 0 to 4
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Fig. 1. The error in the recovered focal lengths in the presence of noise, with and
without employing the covariance. Mean values are shown in the top row, standard
deviations in the bottom.

pixels in steps of 0.1. A non-linear method [43] was then employed to estimate
from the noisy retinal points the fundamental matrices corresponding to the si-
mulated displacements. The estimates of the fundamental matrices serve as the
input to self-calibration. To ensure that the recovered intrinsic calibration para-
meters are independent of the exact location of the 3D points used to form 2D
correspondences, 100 experiments were run for each noise level, each time using
a different random set of 3D points. More details regarding the simulation can
be found in [20]. Figures 3.1 and 3.1 illustrate the mean and standard deviation
of the relative error for the intrinsic parameters versus the standard deviation of
the noise added to image points, with and without employing the covariances.
When the covariances are not employed, the weights σ2

πi
(SF, K̃) in Eq.(12) are

all assumed to be equal to one. Throughout all experiments, zero skew has been
assumed, i.e. θ = π/2 and K̃ in Eq. (12) was parameterized using 4 unknowns.
As is evident from the plots, especially those referring to the standard deviation
of the relative error, the inclusion of covariances yields more accurate and more
stable estimates of the intrinsic calibration parameters. Additional experimental
results can be found in [20]. At this point, it is also worth mentioning that in
the case of self-calibration, the derivatives ∂SF

∂F were also computed analytically
by using Maple to compute closed-form expressions for the SVD components
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with respect to the elements of F. Using the computed expressions for the SVD,
the derivative of the latter with respect to F was then computed analytically. As
expected, the arithmetic values of the derivatives obtained in this manner were
identical to those computed by the differentiation method proposed here.
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Fig. 2. The error in the recovered principal points in the presence of noise, with and
without employing the covariance. Mean values are shown in the top row, standard
deviations in the bottom.

3.2 Estimation of the Epipoles’ Uncertainty

The epipoles of an image pair are the two image points defined by the projection
of each camera’s optical center on the retinal plane of the other. The epipoles
encode information related to the relative position of the two cameras and have
been employed in applications such as stereo rectification [30], self-calibration
[25,41,23], projective invariants estimation [13,32] and point features matching
[9]. Although it is generally known that the epipoles are hard to estimate ac-
curately1 [24], the uncertainty pertaining to their estimates is rarely quantified.

1 This is particularly true when the epipoles lie outside the images.
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Here, a simple method is presented that permits the estimation of the epipo-
les’ covariance matrices based on the covariance of the underlying fundamental
matrix.

Let e and e′ denote the epipoles in the first and second images of a stereo
pair respectively. The epipoles can be directly estimated from the SVD of the
fundamental matrix F as follows. Assuming that F is decomposed as F = UDVT

and recalling that FT e′ = Fe = 0, it is easy to see that e corresponds to the
third column of V, while e′ is given by the third column of U. The epipoles are
thus given by two very simple functions fe and fe′ of the vector SF defined by the
SVD of F. More precisely, fe(SF) = V3 and fe′(SF) = U3, where V3 and U3

are the third columns of matrices V and U respectively. A direct application of
Eq. (10) can be used for propagating the uncertainty corresponding to F to the
estimates of the epipoles. Since this derivation is analogous to that in section 3.1,
exact details are omitted and a study of the quality of the estimated covariances
is presented instead.

First, a synthetic set of corresponding pairs of 2D image points was generated.
The simulated images were 640×480 pixels and the epipoles e and e′ were within
them, namely at pixel coordinates (458.123, 384.11) and (526, 402) respectively.
The set of generated points was contaminated by different amounts of noise and
then the covariances of the epipoles estimated analytically using Eq. (10) were
compared to those computed using a statistical method which approximates
the covariances by exploiting the laws of large numbers. In simpler terms, the
mean of a random vector y can be approximated by the discrete mean of a
sufficiently large number N of samples, defined by ED[y] = 1

N

∑N
i=1 yi and the

corresponding covariance by

N

N − 1
ED[(yi − ED[y])(yi − ED[y])T ]. (13)

Assuming additive Gaussian noise whose standard deviation increased from 0.1
to 2.0 in increments of 0.1 pixels, the analytically computed covariance estimates
were compared against those produced by the statistical method. In particular,
for each level of noise σ, 1000 noise-corrupted samples of the original correspon-
ding pairs set were obtained by adding zero mean Gaussian noise with standard
deviation σ to the original set of corresponding pairs. Then, 1000 epipole pairs
were computed through the estimation of the 1000 fundamental matrices pertai-
ning to the 1000 noise corrupted samples. Following this, the statistical estimates
of the two epipole covariances were computed using Eq.(13) for N = 1000. To
estimate the epipole covariances with the analytical method, the latter is applied
to the fundamental matrix corresponding to a randomly selected sample of noisy
pairs.

In order to facilitate both the comparison and the graphical visualization of
the estimated covariances, the concept of the hyper-ellipsoid of uncertainty is
introduced next. Assuming that a M × 1 random vector y follows a Gaussian
distribution with mean E[y] and covariance Λy, it is easy to see that the random
vector χ defined by χ = Λy

−1/2(y−E[y]) follows a Gaussian distribution of mean
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zero and of covariance equal to the M × M identity matrix I. This implies that
the random variable δy defined as

δy = χT χ = (y − E[y])T Λy
−1(y − E[y])

follows a χ2 (chi-square) distribution with r degrees of freedom, r being the rank
of Λy [17,5]. Therefore, the probability that y lies within the k-hyper-ellipsoid
defined by the equation

(y − E[y])T Λy
−1(y − E[y]) = k2, (14)

is given by the χ2 cumulative probability function Pχ2(k, r)2 [29].
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Fig. 3. The fraction of 1000 estimates of the two epipoles that lie within the uncertainty
ellipses defined by the corresponding covariances computed with the analytical and
statistical method. According to the χ2 criterion, this fraction is ideally equal to 75%.

In the following, it is assumed that the epipoles are represented using points
in the two dimensional Euclidean space R2 rather than in the embedding pro-
jective space P2. This is simply accomplished by normalizing the estimates of
the epipoles obtained from the SVD of the fundamental matrix so that their
2 The norm defined by the left hand side of Eq.(14) is sometimes referred to as the

Mahalanobis distance.
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third element is equal to one. Choosing the probability Pχ2(k, r) of an epipole
estimate being within the ellipsoid defined by the covariance to be equal to 0.75,
yields k = 1.665 for r = 2. Figure 2 shows the fractions of the epipole estima-
tes that lie within the uncertainty ellipses defined by the covariances computed
with the analytical and statistical method, as a function of the noise standard
deviation. Clearly, the fractions of points within the ellipses corresponding to
the covariances computed with the statistical method are very close to the theo-
retical 0.75. On the other hand, the estimates of the covariances computed with
the analytical method are satisfactory, with the corresponding fractions being
over 0.65 when the noise does not exceed 1.5 pixels.

The difference between the covariances estimated by the analytical and sta-
tistical methods are shown graphically in Fig.2 for three levels of noise, namely
0.1, 1.0 and 2.0 pixels. Since the analytical method always underestimates the
covariance, the corresponding ellipses are contained in the ellipses computed by
the statistical method. Nevertheless, the shape and orientation of the ellipses
computed with the analytical method are similar to these of the statistically
computed ellipses.

3.3 Estimation of the Covariance of Rigid 3D Motion

The third application of the proposed SVD differentiation technique concerns its
use for estimating the covariance of rigid 3D motion estimates. It is well known
that the object encoding the translation and rotation comprising the 3D motion
is the essential matrix E. Matrix E is defined by E = [T]×R, where T and R
represent respectively the translation vector and the rotation matrix defining
a rigid displacement and [T]× is the antisymmetric matrix associated with the
cross product:

[T]× =


 0 −T3 T2

T3 0 −T1
−T2 T1 0




There exist several methods for extracting estimates of the translation and ro-
tation from estimates of the essential matrix. Here, we focus our attention to
a simple linear method based on the SVD of E, described in [19,12]. Assuming
that the SVD of E is E = UDVT , there exist two possible solutions for the
rotation R, namely R = UWVT and R = UWT VT , where W is given by

W =


 0 1 0

−1 0 0
0 0 1




The translation is given by the third column of matrix V, that is T = V(0, 0, 1)T

with |T| = 1. The two possible choices for R combined with the two possible
signs of T yield four possible translation-rotation pairs, from which the correct
solution for the rigid motion can be chosen based on the requirement that the
visible 3D points appear in the front of both camera viewpoints [19]. In the
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Fig. 4. The ellipses defined by Eq. (14) using k = 0.75 and the covariances of the two
epipoles computed by the statistical and analytical method. The left column corre-
sponds to e, the right to e′. The standard deviation of the image noise is 0.1 pixels
for the first row, 1.0 and 2.0 pixels for the middle and bottom rows respectively. Both
axes in all plots represent pixel coordinates while points in the plots marked with grey
dots correspond to estimates of the epipoles obtained during the statistical estimation
process.
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following, the covariance corresponding only to the first of the two solutions for
rotation will be computed; the covariance of the second solution can be computed
in a similar manner.

Supposing that the problem of camera calibration has been solved, the es-
sential matrix can be recovered from the fundamental matrix using

E = AT FA,

where A is the intrinsic calibration parameters matrix. Using Eq.(10), the cova-
riance of E can be computed as

ΛE =
∂(AT FA)

∂F
ΛF

∂(AT FA)
∂F

T

,

where ∂(AT FA)
∂F is the derivative of AT FA at F and ΛF is the covariance of F

[5]. The derivative of AT FA with respect to the element fij of F is equal to

∂(AT FA)
∂fij

= AT ∂F
∂fij

A

Matrix ∂F
∂fij

is such that all its elements are zero, except from that in row i and
column j which is equal to one. Given the covariance of E, the covariance of R
is then computed from

ΛR =
∂(UWVT )

∂E
ΛE

∂(UWVT )
∂E

T

The derivative of UWVT with respect to the element eij of E is given by

∂(UWVT )
∂eij

=
∂U
∂eij

WVT + UW
∂VT

∂eij

The derivatives ∂U
∂eij

and ∂VT

∂eij
in the above expression are computed with the

aid of the proposed differentiation method.
Regarding the covariance of T, let V3 denote the vector corresponding to

the third column of V. The covariance of translation is then simply

ΛT =
∂V3

∂E
ΛE

∂V3

∂E

T

,

with ∂V3
∂E being again computed using the proposed method.

4 Conclusions

The Singular Value Decomposition is a linear algebra technique that has been
successfully applied to a wide variety of domains that involve matrix computa-
tions. In this paper, a novel technique for computing the Jacobian of the SVD
components of a matrix with respect to the matrix itself has been described.
The usefulness of the proposed technique has been demonstrated by applying it
to the estimation of the uncertainty in three different practical vision problems,
namely self-calibration, epipole estimation and rigid 3D motion estimation.
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