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Abstract. The ability to learn from user interaction is an important as-
set for content-based image retrieval (CBIR) systems. Over short times
scales, it enables the integration of information from successive queries
assuring faster convergence to the desired target images. Over long time
scales (retrieval sessions) it allows the retrieval system to tailor itself
to the preferences of particular users. We address the issue of learning
by formulating retrieval as a problem of Bayesian inference. The new
formulation is shown to have various advantages over previous approa-
ches: it leads to the minimization of the probability of retrieval error,
enables region-based queries without prior image segmentation, and sug-
gests elegant procedures for combining multiple user specifications. As
a consequence of all this, it enables the design of short and long-term
learning mechanisms that are simple, intuitive, and extremely efficient
in terms of computational and storage requirements. We introduce two
such algorithms and present experimental evidence illustrating the clear
advantages of learning for CBIR.

1 Introduction

Due to the large amounts of imagery that can now be accessed and managed via
computers, the problem of CBIR has recently attracted significant interest from
the vision community. As an application domain, CBIR poses new challenges
for machine vision: since very few assumptions about the scenes to be analyzed
are allowable, the only valid representations are those of a generic nature (and
typically of low-level) and image understanding becomes even more complex
than when stricter assumptions hold. Furthermore, large quantities of imagery
must be processed, both off-line for database indexing and on-line for similarity
evaluation, limiting the amount of processing per image that can be devoted to
each stage.

On the other hand, CBIR systems have access to feedback from human users
that can be exploited to simplify the task of finding the desired images. This is a
major departure from most previous vision applications and makes it feasible to
build effective systems without having to solve the complete Al problem. In fact,
a retrieval system is nothing more than an interface between an intelligent high-
level system (the user’s brain) that can perform amazing feats in terms of visual
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interpretation but is limited in speed, and a low-level system (the computer)
that has very limited visual abilities but can perform low-level operations very
efficiently. Therefore, the more successful retrieval systems will be those that
make the user-machine interaction easier.

The goal is to exploit as much as possible the strengths of the two players:
the user can provide detailed feedback to guide the search when presented with a
small set of meaningful images, the machine can rely on that feedback to quickly
find the next best set of such images. To enable convergence to the desired target
image, the low-level retrieval system cannot be completely dumb, but must know
how to integrate all the information provided to it by the user over the entire
course of interaction. If this were not the case it would simply keep oscillating
between the image sets that best satisfied the latest indication from above, and
convergence to the right solution would be difficult.

This ability to learn by integrating information, must occur over various
time scales. Some components maybe hard-coded into the low-level system from
the start, e.g. the system may contain a specialized face-recognition module
and therefore know how to recognize faces. Hard-coded modules are justifiable
only for visual concepts that are likely to be of interest to most users. Most
components should instead be learned over time, as different users will need to
rely on retrieval systems that are suited for their tastes and personalities. While
for some users, e.g. bird lovers, it maybe important to know how to recognize
parrots, others could not care less about them. Fortunately, users interested in
particular visual concepts will tend to search for those concepts quite often and
there will be plenty of examples to learn from. Hence, the retrieval system can
build internal concept representations and become progressively more apt at
recognizing them as time progresses. We refer to such mechanisms as long-term
learning or learning between retrieval sessions, i.e. learning that does not have
to occur on-line, or even in the presence of the user.

Information must also be integrated over short-time scales, e.g. during a
particular retrieval session. In the absence of short-term or in-session learning,
the user would have to keep repeating the information provided to the retrieval
system from iteration to iteration. This would be cumbersome and extremely
inefficient, since a significant portion of the computation performed by the latter
would simply replicate what had been done in previous iterations. Unlike long-
term learning, short-term learning must happen on-line and therefore has to be
fast.

In this paper we address the issue of learning in image databases by formu-
lating image retrieval as a problem of Bayesian inference. This new formulation
is shown to have various interesting properties. First, it provides the optimal
solution to a meaningful and objective criteria for performance evaluation, the
minimization of the retrieval error. Second, the complexity of a given query is
a function only of the number of attributes specified in that query and not of
the total number of attributes known by the system, which can therefore be
virtually unlimited. Third, when combined with generative probabilistic repre-
sentations for visual information it enables region-based queries without prior
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image segmentation. Fourth, information from multiple user-specifications can
be naturally integrated through belief propagation according to the laws of pro-
bability. This not only allows the retrieval operation to take into account mul-
tiple content modalities (e.g. text, audio, video, etc) but is shown to lead to
optimal integration algorithms that are extremely simple, intuitive, and easy
to implement. In result, it becomes relatively easy to design solutions for both
short and long-term learning. We introduce two such mechanisms, and present
experimental evidence that illustrates the clear benefits of learning for CBIR.

2 Prior Work

Even though the learning ability of a retrieval system is determined to a signifi-
cant extent by its image representation, the overwhelming majority of the work
in CBIR has been devoted to the design of the latter without much consideration
about its impact on the former. In fact, a small subset of CBIR papers addresses
the learning issue altogether [1I2[4[6][7] and even these are usually devoted to the
issue of short-term learning (also known as relevance feedback).

Two of the most interesting proposals for learning in CBIR, the “Four eyes”
M] and “PicHunter” [2] systems, are Bayesian in spirit. “Four eyes” pre-segments
all the images in the database, and groups all the resulting regions. Learning
consists of finding the groupings that maximize the product of the number of
examples provided by the user with a prior grouping weight. “PicHunter” defines
a set of actions that a user may take and, given the images retrieved at a given
point, tries to estimate the probabilities of the actions the user will take next.
Upon observation of these actions, Bayes rule gives the probability of each image
in the database being the target.

Because, in both of these systems, the underlying image representations and
similarity criteria are not conducive to learning per se, they lead to solutions
that are not completely satisfying. For example, because there is no easy way to
define priors for region groupings, in [4] this is done through a greedy algorithm
based on heuristics that are not always easy to justify or guaranteed to lead to
an interesting solution. On the other hand, because user modeling is a difficult
task, [2] relies on several simplifying assumptions and heuristics to estimate
action probabilities. These estimates can only be obtained through an ad-hoc
function of image similarity which is hard to believe valid for all or even most
of the users the system will encounter. Indeed it is not even clear that such a
function can be derived when the action set becomes more complicated than
that supported by the simple interface of “PicHunter”.

All these problems are eliminated by our formulation, where all inferences
are drawn directly from the observation of the image regions selected by the
user. We show that by combining a probabilistic criteria for image similarity
with a generative model for image representation there is no need for heuristic
algorithms to learn priors or heuristic functions relating image similarity and
the belief that a given image is the target. Under the new formulation, 1) the
similarity function is, by definition, that belief and 2) prior learning follows na-
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turally from belief propagation according to the laws of probability [5]. Since all
the necessary beliefs are an automatic outcome of the similarity evaluation and
all previous interaction can be summarized in a small set of prior probabilities,
this belief propagation is very simple, intuitive, and extremely efficient from the
points of view of computation and storage.

3 Retrieval as Bayesian Inference

The retrieval problem is naturally formulated as one of statistical classification.
Given a representation space F for the entries in the database, the design of a
retrieval system consists of finding a map

g: F—->M={1,...,K}
X—=y

from F to the set M of classes identified as useful for the retrieval operation.

In our work, we set as goal of content-based retrieval to minimize the proba-
bility of retrieval error, i.e. the probability P(g(X) # y) that if the user provides
the retrieval system with a query X drawn from class y the system will return
images from a class g(X) different than y. Once the problem is formulated in
this way, it is well known that the optimal map is the Bayes classifier [3]

9" (X) = argmax Py = i|X) (1)
= argmax{P(X]y = 9)P(y = i)}, (2)

where P(X|y = i) is the likelihood function for the i*" class and P(y = i) the
prior probability for this class. In the absence of prior information about which
class is most suited for the query, an uninformative prior can be used and the
optimal decision is the maximum likelihood (ML) criteria

9" (X) = argmax P(X|y = 7). (3)

3.1 Probabilistic Model

To define a probabilistic model for the observed data, we assume that each ob-
servation X is composed by A attributes X = {X®) ... X} which, although
marginally dependent, are independent given the knowledge of which class ge-
nerated the query, i.e.

P(Xly=i) = [[ PXPly =1). (4)
k

Each attribute is simply a unit of information that contributes to the characte-
rization of the content source. Possible examples include image features, audio
samples, or text annotations. For a given retrieval operation, the user instantia-
tes a subset of the A attributes. While text can be instantiated by the simple
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specification of a few keywords, pictorial attributes are usually instantiated by
example.

Borrowing the terminology from the Bayesian network literature, we define,
for a given query, a set of observed attributes O = {X*)|X*) = Q*¥)} and a set
of hidden attributes H = {X*)|X*) is not instantiated by the user}, where Q
is the query provided by the user. The likelihood of this query is then given by

P(Qly=i) =) P(O,HJy =), (5)

H

where the summation is over all possible configurations of the hidden attributed].
Using (@) and the fact that >y P(X|y =1) =1,

PQy=i)=POly=i)Y_ ] PXPy=1i

H kX" ecH

=POly=14i) [[ > PX®y=1i)

kX (F) €H X (k)
= P(Oly = i), (6)

i.e. the likelihood of the query is simply the likelihood of the instantiated attribu-
tes. In addition to intuitively correct, this result also has considerable practical
significance. It means that retrieval complexity grows with the number of attri-
butes specified by the user and not with the number of attributes known to the
system, which can therefore be arbitrarily large.

In domains, such as image databases, where it is difficult to replicate human
judgments of similarity it is impossible to assure that the first response to a query
will always include the intended database entries. It is therefore important to
design retrieval systems that can take into account user feedback and tune their
performance to best satisfy user demands.

4 Bayesian Relevance Feedback

We start by supposing that, instead of a single query X, we have a sequence
of t queries X! = {Xy,...,X;}, where t is a time stamp. From (&), by simple
application of Bayes rule, the optimal map becomes
g*(X%) = argmax P(y = i|Xy, ..., X;)
= argmzax{P(Xﬂy =4,X1,...,Xeo1)Ply =4Xyq, ..., Xe1)}
:argmiax{P(Xﬂy =i)Py =14Xq,...,X¢-1)} (7)

Comparing ([7)) with (@) it is clear that the term P(y = i|Xy,...,X;_1) is simply
a prior belief on the ability of the i*" image class to explain the query. However,

! The formulation is also valid in the case of continuous variables with summation
replaced by integration.
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unlike the straightforward application of the Bayesian criteria, this is not a static
prior determined by some arbitrarily selected prior density. Instead, it is learned
from the previous interaction between user and retrieval system and summarizes
all the information in this interaction that is relevant for the decisions to be made
in the future.

Equation (@) is, therefore, a simple but intuitive mechanism to integrate
information over time. It states that the system’s beliefs about the user’s interests
at time ¢ — 1 simply become the prior beliefs for iteration ¢. New data provided
by the user at time ¢ is then used to update these beliefs, which in turn become
the priors for iteration t + 1. I.e. prior beliefs are continuously updated from the
observation of the interaction between user and retrieval system.

We call this type of behavior short-term learning or in-session learning. Star-
ting from a given dataset (for example an image) and a few iterations of user
feedback, the retrieval system tries to learn what classes in the database best
satisfy the desires of the user. From a computational standpoint the procedure
is very efficient since the only quantity that has to be computed at each time
step is the likelihood of the data in the corresponding query. Notice that this is
exactly what appears in ([B)) and would have to be computed even in the absence
of any learning. In terms of memory requirements, the efficiency is even higher
since the entire interaction history is reduced to a number per image class. It
is an interesting fact that this number alone enables decisions that are optimal
with respect to the entire interaction.

By taking logarithms and solving for the recursion, (7) can also be written
as

t—1
9"(X3) = arg max {Zlogmxtuy = i) +log P(y = i)} e
k=0

This exposes a limitation of the belief propagation mechanism: for large ¢ the
contribution, to the right-hand side of the equation, of the new data provided by
the user is very small, and the posterior probabilities tend to remain constant.
This can be avoided by penalizing older terms with a decay factor a;_y,

t—1
g (X}) = arg max {Zat_k log P(X;_kly = 1) + aplog P(y = z)} )
k=0

where «; is a monotonically decreasing sequence. In particular, if oy = (1 —
a)® a € (0,1] we have

g*(X'i) = argmlax{ozlog PXiy=1i)+(1—a)logP(y =1iX1,...,Xe-1)} (9)

5 Combining Different Content Modalities

So far we have not discussed in any detail what types of data can be modeled

by the the attributes X,Ek) of equation (). Because there is no constraint for
these attributes to be of the same type, the Bayesian framework can naturally
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integrate many different modalities. In this work we restrict our attention to the
integration of visual attributes with text annotations.

Assuming a query X} = {T%, Vi}, composed of both text (T%) and visual
attributes (V1), and using (@), and (@)

g"(X}) =arg max{alog AV |y=i)+alog AT|y=i)+(1—a)log Ay =i|X7")}
(10)
Disregarding the decay factor «, the comparison of this equation with (2
reveals an alternative interpretation for Bayesian integration: the optimal class
is the one which would best satisfy the visual query alone but with a prior con-
sisting of the combination of the second and third terms in the equation. I.e.
by instantiating text attributes, the user establishes a context for the evaluation
of visual similarity that changes the system’s prior beliefs about which class is
most likely to satisfy the visual query. Or, in other words, the text attributes
provide a means to constrain the visual search. Similarly, the second term in the
equation can be considered the likelihood function, with the combination of the
first and the third forming the prior. In this interpretation, the visual attributes
constrain what would be predominantly a text-based search. Both interpreta-
tions illustrate the power of the Bayesian framework to take into account any
available contextual information and naturally integrate information from diffe-
rent sources. We next concentrate on the issue of finding good representations
for text and visual attributes.

6 Visual Representations

We have recently introduced an image representation based on embedded mul-
tiresolution mixture models that has several nice properties for the retrieval
problem. Because the representation has been presented in detail elsewhere [§],
here we provide only a high-level description.

Images are characterized as groups of visual concepts (e.g. a picture of a
snowy mountain under blue sky, is a grouping of the concepts “mountain”,
“snow” and “sky”). Each image class in the database defines a probability den-
sity over the universe of visual concepts and each concept defines a probability
density over the space of image measurements (e.g. the space of image colors).
Each image in the database is seen as a sample of independent and identically
distributed feature vectors drawn from the density of one of the image classes

P(Vily=i)=>_ P(vijle(ve;) = k,y = i) Ple(ve ;) = kly = i), (11)
.k
where v, ; are the feature vectors in V; and ¢(v; ;) = k indicates that v, ; is a
sample of concept k. The density associated with each concept can be either a
Gaussian or a mixture of Gaussians, leading to a mixture of Gaussians for the
overall density

P(V|y =1) Z Z e~ 5 (V=) TET (Ve —pe) (12)
3
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This model is 1) able to approximate arbitrary densities and 2) computationally
tractable on high dimensions (complexity only quadratic in the dimension of the
feature space), avoiding the limitations of the Gaussian and histogram models
traditionally used for image retrieval.

When combined with a multi-resolution feature space, it defines a family
of embedded densities across image resolutions that has been shown to provide
precise control over the trade-off between retrieval accuracy, invariance, and com-
plexity. We have shown that relying on the coefficients of the 8 x 8 discrete cosine
transform (DCT) as features leads to 1) good performance across a large range
of imagery (including texture, object, and generic image databases) and 2) per-
ceptually more relevant similarity judgments than those achieved with previous
approaches (including histograms, correlograms, several texture retrieval appro-
aches and even weighted combinations of texture and color-representations) [§].

Finally, because the features v, ; in ([Z) can be any subset of a given query
image, the retrieval criteria is valid for both region-based and image-based que-
ries. I.e., the combination of the probabilistic retrieval criteria and a generative
model for feature representation enables region-based queries without requiring
image segmentation.

7 Text Representation

Given a set of text attributes X = {X® ..., X} known to the retrieval
system, the instantiation of a particular attribute by the user is modeled as a
Bernoulli random variable. Defining

P(XYV =1ly = i) = p; (13)

and assuming that different attributes are independently distributed, this leads
to
log P(Tyly =1) = ZL;(X(J‘):U log p; ; (14)
J

where I,—; = 1 if x = k and zero otherwise, and we have used (@).

7.1 Parameter Estimation

There are several ways to estimate the parameters p; ;. The most straightforward
is to use manual labeling, relying on the fact that many databases already include
some form of textual annotations. For example, an animal database may be
labeled for cats, dogs, horses, and so forth. In this case it suffices to associate
the term “cats” with X, the term “dogs” with X, etc and make pin =1
for pictures with the cats label and p;; = 0 otherwise, p; 2 = 1 for pictures
with the dogs label and p; » = 0 otherwise and so forth. In response to a query
instantiating the “cats” attribute, (I4) will return 0 for the images containing
cats and —oo for those that do not. In terms of (I0) (and associated discussion
in section B) this is a hard constraint: the specification of the textual attributes
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eliminates from further consideration all the images that do not comply with
them.

Hard constraints are usually not desirable, both because there may be an-
notation errors and because annotations are inherently subjective. For example
while the annotator may place leopards outside the cats class, a given user may
use the term “cats” when searching for leopards. A better solution is to rely on
soft constraints where the p; ; are not restricted to be binary. In this case, the
“cats” label could be assigned to leopard images, even though the probability
associated with the assignment would be small. In this context p; ; should be
thought of as the answer to the question “what is the probability that the user
will instantiate attribute X ) given that he/she is interested in images from class
¢?7”. In practice, it is usually too time consuming to define all the p; ; manually
and not clear how to decide on the probability assignments. A better alternative
is to rely on learning.

7.2 Long Term Learning

Unlike the learning algorithms discussed in section[d] here we are talking about
long-term learning or learning across retrieval sessions. The basic idea is to let
the user attach a label to each of the regions that are provided as queries during
the course of the normal interaction with the retrieval system. E.g., if in order
to find a picture of a snowy mountain the user selects a region of sky, he/she has
the option of labeling that region with the word “sky” establishing the “sky”
attribute.

Given K example regions {e; 1,...ej x} of a given attribute XG) | whenever,
in a subsequent retrieval session, the user instantiates that attribute, its proba-
bility is simply the probability of the associated examples. Le. (4] becomes

log P(Tyly =1) = ZI(;(X(j))Zl log P(ej1,...ekly =1). (15)
J

The assumption here is that when the user instantiates an attribute, he/she
is looking for images that contain patterns similar to the examples previously
provided. Since, assuming independence between examples,

log P(ej1,...e5k|ly=1) = Zlog P(ejrly =1) (16)
k

only the running sum of log P(e; x|y = ¢) must be saved from session to session,
there is no need to keep the examples themselves. Hence, the complexity is
proportional to the number of classes in the database times the number of known
attributes and, therefore, manageable.

Grounding the annotation model directly in visual examples also guarantees
that the beliefs of (T are of the same scale as those of ([2)), making the applica-
tion of (I0) straightforward. If different representations were used for annotations
and visual attributes, one would have to define weighting factors to compensate
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for the different scales of the corresponding beliefs. Determining such weights is
usually not a simple task.

There is, however, one problem with the example-based solution of (IH).
While the complete set of examples of a given concept may be very diverse, indi-
vidual image class models may not be able to account for all this diversity. In the
case of “sky” discussed above, while there may be examples of sunsets, sunrises,
and skies shot on cloudy, rainy or sunny days in the sky example set, particular
image classes will probably not encompass all this variation. For example, ima-
ges of “New York at sunset” will only explain well the sunset examples. Thus,
while this class should receive a high rank with respect to “skyness”, there is no
guarantee that this will happen, since it assigns low probability to a significant
number of examples.

The fact is that most image classes will only overlap partially with broad
concept classes like sky. The problem can be solved by requiring the image
classes to explain well only a subset of the examples. One solution is to rank the
examples according to their probability and apply (IH) only to the top ones,

log P(Ty|y = 4) ZI5<X<7)) . ZlogP =), (17)
where e( ") is the example region of rank r and R a small number (10 in our
1mp1ementat10n)

8 Experimental Evaluation

We performed experiments to evaluate the effectiveness of both short and long
term learning. Because short term learning involves the selection, at each itera-
tion, of the image regions to provide as next query it involves the segmentation
of the query image. While this is not a problem for human users, it is difficult
to simulate in an automated set up. To avoid this difficulty we relied on a pair
of database for which segmentation ground truth is available.

Fig. 1. Example mosaics from Brodatz (left) and Columbia (right).

These databases were created from the well know Brodatz (texture) and
Columbia (object) databases, by randomly selecting 4 images at a time and
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making a 2 X 2 mosaic out of them. Each of the mosaic databases contains 2,000
images, two of which are shown in Figure [[l Since the individual images are of
quite distinct classes (texture vs objects), testing on both Brodatz and Columbia
assures us that the results here presented should hold for databases of generic
imagery. All experiments were based on the DCT of a 8 x 8 window sliding
by two-pixel increments. Mixtures of 8 (16) Gaussians were used for Brodatz
(Columbia). Only the first 16 DCT coefficients were used for retrieval.

The goal of the short-term learning experiments was to determine if it is
possible to reach a desired target image by starting from a weakly related one and
providing feedback to the retrieval system. This is an iterative process where each
iteration consists of selecting image regions, using them as queries for retrieval
and examining the top V retrieved images. From these, the one with most sub-
images in common with the target is selected to be the next query. One 8 x 8
image neighborhood from each sub-image in the query was then used as an
example if the texture or object depicted in that sub-image was also present
in the target. Performance was averaged over 100 runs with randomly selected
target images.

5
|
/
ce)

Hterations (convergen
-

Fig. 2. Plots of the convergence rate (left), and average number of iterations for con-
vergence (right), for the Brodatz mosaic database.

Figure Bl presents plots of the convergence rate and mean number of itera-
tions until convergence as a function of the decay factor o and the number of
matches V', for the Brodatz mosaic database (the results for Columbia are si-
milar). In both cases the inclusion of learning (o < 1) always increases the rate
of convergence. This increase can be very significant (as high as 15%) when V
is small. Since users are typically not willing to go through various screens of
images in order to pick the next query, these results show that learning leads
to visible convergence improvements. In general, a precise selection of « is not
crucial to achieve good convergence rates. In terms of the number of iterations,
when convergence occurs it is usually very fast (from 4 to 8 iterations).

Figure B illustrates the challenges faced by learning. It depicts a search for an
image containing a plastic bottle, a container of adhesive tape, a clay cup, and a
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white mug. The initial query is the clay cup. Since there are various objects made
of wood in Columbia and these have surface properties similar to those of clay,
precision is low for this particular query: only 4 of the 15 top matches are correct
(top left picture). This makes the subset of the database that is considered to
satisfy the query relatively large and the likelihood that other objects in the
target will appear among the top matches is low. Consequently the feedback
process must be carried for three iterations before a target object, other than
that in the query, appears among the top matches. When this happens, the new
object does not appear in the same image as the query object.

Fig. 3. Four iterations of relevance feedback (shown in raster-scan order). For each
iteration, the target image is shown at the top left and the query image immediately
below. Shown above each retrieved image is the number of target objects it contains.

In this situation, the most sensible option is to base the new query on the
newly found target object (tape container). However, in the absence of learning,
it is unlikely that the resulting matches will contain any instances of the query
object used on the previous iterations (clay cup) or the objects that are confoun-
ded with it. As illustrated by the bottom right picture, the role of learning is to
favor images containing these objects. In particular, 7 of the 15 images returned
in response to a query based on the tape container include the clay cup or similar
objects (in addition to the tape container itself). This enables new queries based
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on both target objects that considerably narrow down the number of candidates
and, therefore, have a significantly higher chance of success. In this particular
example it turns out that one of the returned images is the target itself but,
even when this is not so, convergence takes only a few iterations.

8.1 Long Term Learning

The performance of a long-term learning algorithm will not be the same for all
concepts to be learned. In fact, the learnability of a concept is a function of
two main properties: visual diversity, and distinctiveness on the basis of local
visual appearance. Diversity is responsible for misses, i.e. instances of the concept
that cannot be detected because the learner has never seen anything like them.
Distinctiveness is responsible for false positives, i.e. instances of other concepts
that are confused with the desired one. Since the two properties are functions
of the image representation, it is important to evaluate the learning of concepts
from various points in the diversity/distinctiveness space.

We relied on a subset of the Corel database (1,700 images from 17 classes)
to evaluate long-term learning and identified 5 such concepts: a logo, tigers, sky,
snow and vegetation. Since common variations on a given logo tend to be restric-
ted to geometric transformations, logos are at the bottom of the diversity scale.
Tigers (like most animals) are next: while no two tigers are exactly alike, they
exhibit significant uniformity in visual appearance. However, they are usually
subject to much stronger imaging transformations than logos (e.g. partial occlu-
sion, lighting, perspective). Snow and sky are representative of the next level in
visual diversity. Even though relatively simple concepts, their appearance varies
a lot with factors like imaging conditions (e.g. shiny vs cloudy day) or the time
of the day (e.g. sky at noon vs sky at sunset). Finally, vegetation encompasses a
large amount of diversity. In terms of distinctiveness, logos rank at the top (at
least for Corel where most images contain scenes from the real world), followed
by tigers (few things look like a tiger), vegetation, sky and snow. Snow is clearly
the less distinctive concept since large smooth white surfaces are common in
many scenes (e.g. clouds, white walls, objects like tables or paper).

To train the retrieval system, we annotated all the images in the database
according to the presence or not of each of the 5 concepts. We then randomly
selected a number of example images for each concept and manually segmen-
ted the regions where concepts appeared. These regions were used as examples
for the learner. Concept probabilities were estimated for each image outside the
training set using (7)) and, for each concept, the images were ranked according
to these probabilities. Figure Bl a) presents the resulting precision/recall (PR)
curves for the 5 concepts. Retrieval accuracy seems to be directly related to
concept distinctiveness: a single training example is sufficient for perfect reco-
gnition of the logo and with 20 examples the systems does very well on tigers,
reasonably well on vegetation and sky, and poorly on snow. These are very good
results, considering the reduced number of training examples and the fact that
the degradation in performance is natural for difficult concepts.
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Performance can usually be improved by including more examples in the
training set, as this reduces the concept diversity problem. This is illustrated in
Figure[b) and ¢) where we show the evolution of PR as a function of the number
of training examples for sky and tigers. In both cases, there is a clear improve-
ment over the one-example scenario. This is particularly significant, since this
scenario is equivalent to the standard query-by-example (where users retrieve
images of a concept by providing the system with one concept example). As the
figures clearly demonstrate, one example is usually not enough, and long-term
learning does improve performance by a substantial amount. In the particular
case of sky it is clear that performance can be made substantially better than in
Figure @ a) by considering more examples. On the other hand, figure @l d) shows
that more examples make a difference only when performance is limited by a
poor representation of concept diversity, not distinctiveness. For snow, where
the latter is the real bottleneck, more examples do not make a difference.
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Fig. 4. Long-term learning. a) PR curves for the 5 concepts. b), c¢), and d) PR as a
function of the training set size for sky [b)], tigers [c)], and snow [d)].

Figure@lshows the top 25 matches for the tiger and sky concepts. It illustrates
well how the new long term learning mechanism is robust with respect to concept
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diversity, either in terms of different camera viewpoints, shading, occlusions, etc
(tiger) and variations in visual appearance of the concept itself (sky).
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Fig. 5. Top 25 matches for the tiger (left) and sky (right) concepts.
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