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Abstract. This paper presents a theoretically very simple yet efficient approach
for gray scale and rotation invariant texture classification based on local binary
patterns and nonparametric discrimination of sample and prototype distribu-
tions. The proposed approach is very robust in terms of gray scale variations,
since the operators are by definition invariant against any monotonic transforma-
tion of the gray scale. Another advantage is computational simplicity, as the
operators can be realized with a few operations in a small neighborhood and a
lookup table. Excellent experimental results obtained in two true problems of
rotation invariance, where the classifier is trained at one particular rotation angle
and tested with samples from other rotation angles, demonstrate that good dis-
crimination can be achieved with the statistics of simple rotation invariant local
binary patterns. These operators characterize the spatial configuration of local
image texture and the performance can be further improved by combining them
with rotation invariant variance measures that characterize the contrast of local
image texture. The joint distributions of these orthogonal measures are shown to
be very powerful tools for rotation invariant texture analysis.

1 Introduction

Real world textures can occur at arbitrary rotations and they may be subjected to vary-
ing illumination conditions. This has inspired few studies on gray scale and rotation
invariant texture analysis, which presented methods for incorporating both types of
invariance [2,14]. A larger number of papers have been published on plain rotation
invariant analysis, among others [4,5,6,7,8,12], while [3] proposed an approach to
encompass invariance with respect to another important property, spatial scale, in con-
junction with rotation invariance.

Both Chen and Kundu [2] and Wu and Wei [14] approached gray scale invariance
by assuming that the gray scale transformation is a linear function. This is a somewhat
strong simplification, which may limit the usefulness of the proposed methods. Chen
and Kundu realized gray scale invariance by global normalization of the input image
using histogram equalization. This is not a general solution, however, as global histo-
gram equalization can not correct intraimage (local) gray scale variations. Another
problem of many approaches to rotation invariant texture analysis is their computa-
tional complexity (e.g. [3]), which may render them impractical.

In this study we propose a theoretically and computationally simple approach
which is robust in terms of gray scale variations and which is shown to discriminate
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rotated textures efficiently. Extending our earlier work [9,10,11], we present a truly
gray scale and rotation invariant texture operator based on local binary patterns. Start-
ing from the joint distribution of gray values of a circularly symmetric neighbor set of
eight pixels in a 3x3 neighborhood, we derive an operator that is by definition invariant
against any monotonic transformation of the gray scale. Rotation invariance is
achieved by recognizing that this gray scale invariant operator incorporates a fixed set
of rotation invariant patterns.

The novel contribution of this work is to use only a limited subset of ‘uniform’ pat-
terns instead of all rotation invariant patterns, which improves the rotation invariance

considerably. We call this operator LBP8
riu2. The use of only ‘uniform’ patterns is

motivated by the reasoning that they tolerate rotation better because they contain fewer
spatial transitions exposed to unwanted changes upon rotation. This approximation is
also supported by the fact that these ‘uniform’ patterns tend to dominate in determinis-
tic textures, which is demonstrated using a sample image data. Further, we propose

operator called LBP16
riu2, which enhances the angular resolution of LBP8

riu2 by con-
sidering a circularly symmetric set of 16 pixels in a 5x5 neighborhood.

These operators are excellent measures of the spatial structure of local image tex-
ture, but they by definition discard the other important property of local image texture,
contrast, since it depends on the gray scale. We characterize contrast with rotation
invariant variance measures named VAR8 and VAR16, corresponding to the circularly
symmetric neighbor set where they are computed. We present the joint distributions of
these complementary measures as powerful tools for rotation invariant texture classifi-
cation. As the classification rule we employ nonparametric discrimination of sample
and prototype distributions based on a log-likelihood measure of the (dis)similarity of
histograms.

The performance of the proposed approach is demonstrated with two problems
used in recent studies on rotation invariant texture classification [4,12]. In addition to
the original experimental setups we also consider more challenging cases, where the
texture classifier is trained at one particular rotation angle and then tested with samples
from other rotation angles. Excellent experimental results demonstrate that the texture
representation obtained at a specific rotation angle generalizes to other rotation angles.
The proposed operators are also computationally attractive, as they can be realized
with a few operations in a small neighborhood and a lookup table.

The paper is organized as follows. The derivation of the operators and the classifi-
cation principle are described in Section 2. Experimental results are presented in Sec-
tion 3 and Section 4 concludes the paper.

2 Gray Scale and Rotation Invariant Local Binary Patterns

We start the derivation of our gray scale and rotation invariant texture operator by
defining texture T in a local 3x3 neighborhood of a monochrome texture image as the
joint distribution of the gray levels of the nine image pixels:

T p g0 g1 g2 g3 g4 g5 g6 g7 g8, , , , , , , ,( )= (1)
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where gi (i=0,...,8), correspond to the gray values of the pixels in the 3x3 neighborhood
according to the spatial layout illustrated in Fig. 1. The gray values of diagonal pixels
(g2, g4, g6, and g8) are determined by interpolation.

2.1 Achieving Gray Scale Invariance

As the first step towards gray scale invariance we subtract, without losing information,
the gray value of the center pixel (g0) from the gray values of the eight surrounding
pixels of the circularly symmetric neighborhood (gi, i=1,...,8) giving:

Next, we assume that differences gi-g0 are independent of g0, which allows us to
factorize Eq.(2):

 In practice an exact independence is not warranted, hence the factorized distribu-
tion is only an approximation of the joint distribution. However, we are willing to
accept the possible small loss in information, as it allows us to achieve invariance with
respect to shifts in gray scale. Namely, the distribution p(g0) in Eq.(3) describes the
overall luminance of the image, which is unrelated to local image texture, and conse-
quently does not provide useful information for texture analysis. Hence, much of the
information in the original joint gray level distribution (Eq.(1)) about the textural char-
acteristics is conveyed by the joint difference distribution [10]:

Signed differences gi-g0 are not affected by changes in mean luminance, hence the
joint difference distribution is invariant against gray scale shifts. We achieve invariance
with respect to the scaling of the gray scale by considering just the signs of the differ-
ences instead of their exact values:

g0 g1

g2g4
g3

g7
g8g6

g5

Fig. 1. The circularly symmetric neighbor set of eight pixels in a 3x3 neighborhood.

T p g0 g1 g0– g2 g0– g3 g0– g4 g0– g5 g0– g6 g0– g7 g0– g8 g0–, , , , , , , ,( )= (2)

T p g0( ) p g1 g0– g2 g0– g3 g0– g4 g0– g5 g0– g6 g0– g7 g0– g8 g0–, , , , , , ,( )» (3)

T p g1 g0– g2 g0– g3 g0– g4 g0– g5 g0– g6 g0– g7 g0– g8 g0–, , , , , , ,( )» (4)

T p s g1 g0–( ) s g2 g0–( ) s g3 g0–( ) s g4 g0–( ) ... s g8 g0–( ), , , ,,( )» (5)
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where

If we formulate Eq.(5) slightly differently, we obtain an expression similar to the
LBP (Local Binary Pattern) operator we proposed in [9]:

The two differences between LBP8 and the LBP operator of [9] are: 1) the pixels in
the neighbor set are indexed so that they form a circular chain, and 2) the gray values
of the diagonal pixels are determined by interpolation. Both modifications are neces-
sary to obtain the circularly symmetric neighbor set, which allows for deriving a rota-
tion invariant version of LBP8. For notational reasons we augment LBP with subscript
8 to denote that the LBP8 operator is determined from the 8 pixels in a 3x3 neighbor-
hood. The name ‘Local Binary Pattern’ reflects the nature of the operator, i.e. a local
neighborhood is thresholded at the gray value of the center pixel into a binary pattern.
LBP8 operator is by definition invariant against any monotonic transformation of the
gray scale, i.e. as long as the order of the gray values stays the same, the output of the
LBP8 operator remains constant.

2.2 Achieving Rotation Invariance

The LBP8 operator produces 256 (28) different output values, corresponding to the 256
different binary patterns that can be formed by the eight pixels in the neighbor set.
When the image is rotated, the gray values gi will correspondingly move along the
perimeter of the circle around g0. Since we always assign g1 to be the gray value of
element (0,1), to the right of g0, rotating a particular binary pattern naturally results in
a different LBP8 value. This does not apply to patterns 000000002 and 111111112

which remain constant at all rotation angles. To remove the effect of rotation, i.e. to
assign a unique identifier to each rotation invariant local binary pattern we define:

where ROR(x,i) performs a circular bit-wise right shift on the 8-bit number x i times. In
terms of image pixels Eq.(8) simply corresponds to rotating the neighbor set clockwise
so many times that a maximal number of the most significant bits, starting from g8, are

0. We observe that LBP8
ri36 can have 36 different values, corresponding to the 36

unique rotation invariant local binary patterns illustrated in Fig. 2, hence the super-

script ri36. LBP8
ri36 quantifies the occurrence statistics of these patterns corresponding

s x( )
1 x 0‡,
0 x 0<,î

í
ì

= (6)

LBP8 s gi g0–( )2
i 1–

i 1=

8

å= (7)

LBP8
ri36

min ROR LBP8 i,( ) i 0,1,...,7={ }= (8)
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to certain microfeatures in the image, hence the patterns can be considered as feature
detectors. For example, pattern #0 detects bright spots, #8 dark spots and flat areas, and
#4 edges. Hence, we have obtained the gray scale and rotation invariant operator

LBP8
ri36 that we designated as LBPROT in [11].

2.3 Improved Rotation Invariance with ‘Uniform’ Patterns

However, our practical experience has showed that LBP8
ri36 as such does not provide a

very good discrimination, as we also concluded in [11]. There are two reasons:
1) the performance of the 36 individual patterns in discrimination of rotated tex-

tures varies greatly: while some patterns sustain rotation quite well, other patterns do
not and only confuse the analysis. Consequently, using all 36 patterns leads to a subop-
timal result (addressed in this section).

2) crude quantization of the angular space at 45o intervals (addressed in Section
2.4).

The varying performance of individual patterns attributes to the spatial structure of
the patterns. To quantify this we define an uniformity measure U(‘pattern’), which cor-
responds to the number of spatial transitions (bitwise 0/1 changes) in the ‘pattern’. For
example, patterns 000000002 and 111111112 have U value of 0, while the other seven
patterns in the first row of Fig. 2 have U value of 2, as there are exactly two 0/1 transi-
tions in the pattern. Similarly, other 27 patterns have U value of at least 4.

We argue that the larger the uniformity value U of a pattern is, i.e. the larger num-
ber of spatial transitions occurs in the pattern, the more likely the pattern is to change
to a different pattern upon rotation in digital domain. Based on this argument we desig-
nate patterns that have U value of at most 2 as ‘uniform’ and propose the following

0 1 2 3 4 5 6 7 8

Fig. 2. The 36 unique rotation invariant binary patterns that can occur in the eight pixel circu-
larly symmetric neighbor set. Black and white circles correspond to bit values of 0 and 1 in the
8-bit output of the LBP8 operator. The first row contains the nine ‘uniform’ patterns, and the

numbers inside them correspond to their unique LBP8
riu2 values.

408 T. Ojala, M. Pietikäinen, and T. Mäenpää



operator for gray scale and rotation invariant texture description instead of LBP8
ri36:

Eq.(9) corresponds to giving an unique label to the nine ‘uniform’ patterns illus-
trated in the first row of Fig. 2 (label corresponds to the number of ‘1’ bits in the pat-
tern), the 27 other patterns being grouped under the ‘miscellaneous’ label (9).

Superscript riu2 corresponds to the use of rotation invariant ‘uniform’ patterns that
have U value of at most 2.

The selection of ‘uniform’ patterns with the simultaneous compression of ‘nonuni-
form’ patterns is also supported by the fact that the former tend to dominate in deter-
ministic textures. This is studied in more detail in Section 3 using the image data of the

experiments. In practice the mapping from LBP8 to LBP8
riu2, which has 10 distinct

output values, is best implemented with a lookup table of 256 elements.

2.4 Improved Angular Resolution with a 16 Pixel Neighborhood

We noted earlier that the rotation invariance of LBP8
riu2 is hampered by the crude 45o

quantization of the angular space provided by the neighbor set of eight pixels. To
address this we present a modification, where the angular space is quantized at a finer

resolution of 22.5o intervals. This is accomplished with the circularly symmetric
neighbor set of 16 pixels illustrated in Fig. 3. Again, the gray values of neighbors
which do not fall exactly in the center of pixels are estimated by interpolation. Note
that we increase the size of the local neighborhood to 5x5 pixels, as the eight added
neighbors would not provide too much new information if inserted into the 3x3 neigh-
borhood. An additional advantage is the different spatial resolution, if we should want
to perform multiresolution analysis.

Following the derivation of LBP8, we first define the 16-bit version of the rotation
variant LBP:

LBP8
riu2 s gi g0–( )

i 1=

8

å if U LBP8( ) 2£

9 otherwiseî
ï
í
ï
ì

= (9)

h0 h1

h2

h4
h3h7

h8

h6
h5

Fig. 3. The circularly symmetric neighbor set of 16 pixels in a 5x5 neighborhood.

h9

h10

h11
h12 h13

h14

h15

h16
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The LBP16 operator has 65536 (216) different output values and 243 different rota-
tion invariant patterns can occur in the circularly symmetric set of 16 pixels. Choosing
again the ‘uniform’ rotation invariant patterns that have at most two 0/1 transitions, we

define LBP16
riu2, the 16-bit version of LBP8

riu2:

Thus, the LBP16
riu2 operator has 18 distinct output values, of which values from 0

(pattern 00000000000000002) to 16 (pattern 11111111111111112) correspond to the
number of 1 bits in the 17 unique ‘uniform’ rotation invariant patterns, and value 17
denotes the ‘miscellaneous’ class of all ‘nonuniform’ patterns. In practice the mapping

from LBP16 to LBP16
riu2 is implemented with a lookup table of 216 elements.

2.5 Rotation Invariant Variance Measures of the Contrast of Local Image Texture

Generally, image texture is regarded as a two dimensional phenomenon that can be
characterized with two orthogonal properties, spatial structure (pattern) and contrast
(the ‘amount’ of local image texture). In terms of gray scale and rotation invariant tex-
ture description these two are an interesting pair: whereas spatial pattern is affected by
rotation, contrast is not, and vice versa, whereas contrast is affected by the gray scale,
spatial pattern is not. Consequently, as long as we want to restrict ourselves to pure
gray scale invariant texture analysis, contrast is of no interest, as it depends on the gray
scale.

The LBP8
riu2 and LBP16

riu2 operators are true gray scale invariant measures, i.e.
their output is not affected by any monotonic transformation of the gray scale. They
are excellent measures of the spatial pattern, but by definition discard contrast. If we
under stable lighting conditions wanted to incorporate the contrast of local image tex-
ture as well, we can measure it with rotation invariant measures of local variance:

LBP16 s hi h0–( )2
i 1–

i 1=

16

å= (10)

LBP16
riu2 s hi h0–( )

i 1=

16

å if U LBP16( ) 2£

17 otherwiseî
ï
í
ï
ì

= (11)

VAR8
1
8
--- gi m8–( )2

i 1=

8

å= , where m8
1
8
--- gi

i 1=

8

å= (12)

VAR16
1
16
------ hi m16–( )2

i 1=

16

å= , where m16
1
16
------ hi

i 1=

16

å= (13)
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VAR8 and VAR16 are by definition invariant against shifts in gray scale. Since LBP

and VAR are complementary, their joint distributions LBP8
riu2/VAR8 and LBP16

riu2/
VAR16 are very powerful rotation invariant measures of local image texture.

2.6 Nonparametric Classification Principle

In the classification phase a test sample S was assigned to the class of the model M that
maximized the log-likelihood measure:

where B is the number of bins, and Sb and Mb correspond to the sample and model
probabilities at bin b, respectively. This nonparametric (pseudo-)metric measures like-
lihoods that samples are from alternative texture classes, based on exact probabilities
of feature values of pre-classified texture prototypes. In the case of the joint distribu-

tions LBP8
riu2/VAR8 and LBP16

riu2/VAR16, the log-likelihood measure (Eq.(14)) was
extended in a straightforward manner to scan through the two-dimensional histograms.

Sample and model distributions were obtained by scanning the texture samples and
prototypes with the chosen operator, and dividing the distributions of operator outputs

into histograms having a fixed number of B bins. Since LBP8
riu2 and LBP16

riu2 have a
completely defined set of discrete output values, they do not require any additional bin-
ning procedure, but the operator outputs are directly accumulated into a histogram of

10 (LBP8
riu2) or 18 (LBP16

riu2) bins.
Variance measures VAR8 and VAR16 have a continuous-valued output, hence quan-

tization of their feature space is required. This was done by adding together feature
distributions for every single model image in a total distribution, which was divided
into B bins having an equal number of entries. Hence, the cut values of the bins of the
histograms corresponded to the (100/B) percentile of the combined data. Deriving the
cut values from the total distribution and allocating every bin the same amount of the
combined data guarantees that the highest resolution of quantization is used where the
number of entries is largest and vice versa. The number of bins used in the quantiza-
tion of the feature space is of some importance, as histograms with a too modest num-
ber of bins fail to provide enough discriminative information about the distributions.
On the other hand, since the distributions have a finite number of entries, a too large
number of bins may lead to sparse and unstable histograms. As a rule of thumb, statis-
tics literature often proposes that an average number of 10 entries per bin should be
sufficient. In the experiments we set the value of B so that this condition was satisfied.

3 Experiments

We demonstrate the performance of our operators with two different texture image
data that have been used in recent studies on rotation invariant texture classification
[4,12]. In both cases we first replicate the original experimental setup as carefully as

L S M,( ) Sb Mblog
b 1=

B

å= (14)

411Gray Scale and Rotation Invariant Texture Classification



possible, to get comparable results. Since the training data included samples from sev-
eral rotation angles, we also present results for a more challenging setup, where the
samples of just one particular rotation angle are used for training the texture classifier,
which is then tested with the samples of the other rotation angles.

However, we first report classification results for the problem that we used in our
recent study on rotation invariant texture analysis [11]. There we achieved an error rate

of 39.2% with the LBP8
ri36 (LBPROT) operator when using 64x64 samples, while

LBP8
riu2 and LBP16

riu2 operators provide error rates of 25.5% and 8.0%, respectively.
These improvements underline the benefits of using ‘uniform’ patterns and finer quan-
tization of the angular space.

Before going into the experiments we use the image data to take a quick look at the

statistical foundation of LBP8
riu2 and LBP16

riu2. In the case of LBP8
riu2 we choose

nine ‘uniform’ patterns out of the 36 possible patterns, merging the remaining 27

under the ‘miscellaneous’ label. Similarly, in the case of LBP16
riu2 we consider only

7% (17 out of 243) of the possible rotation invariant patterns. Taking into account a
minority of the possible patterns, and merging a majority of them, could imply that we
are throwing away most of the pattern information. However, this is not the case, as the
‘uniform’ patterns tend to be the dominant structure.

For example, in the case of the image data of Experiment #2, the nine ‘uniform’

patterns of LBP8
riu2 contribute from 88% up to 94% of the total pattern data, averaging

90.9%. The most frequent individual pattern is symmetric edge detector 000011112

with about 25% share, followed by 000001112 and 000111112 with about 15% each.

As expected, in the case of LBP16
riu2 the 17 ‘uniform’ patterns contribute a smaller

proportion of the image data, from 70% up to 84% of the total pattern data, averaging
76.3%. The most frequent pattern is again symmetric edge detector
00000000111111112 with about 9.3% share.

3.1 Experiment #1

In their comprehensive study Porter and Canagarajah [12] presented three feature
extraction schemes for rotation invariant texture classification, employing the wavelet
transform, a circularly symmetric Gabor filter and a Gaussian Markov Random Field
with a circularly symmetric neighbor set. They concluded that the wavelet-based
approach was the most accurate and exhibited the best noise performance, having also
the lowest computational complexity.

Image Data and Experimental Setup. Image data included 16 texture classes from
the Brodatz album [1] shown in Fig. 4. For each texture class there were eight 256x256
images, of which the first was used for training the classifier, while the other seven
images were used to test the classifier. Rotated textures were created from these source
images using a proprietary interpolation program that produced images of 180x180

pixels in size. If the rotation angle was a multiple of 90 degrees (0o or 90o in the case
of present ten rotation angles), a small amount of artificial blur was added to the origi-
nal images to simulate the effect of blurring on rotation at other angles.
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In the original experimental setup the texture classifier was trained with several
16x16 subimages extracted from the training image. This fairly small size of training
samples increases the difficulty of the problem nicely. The training set comprised rota-

tion angles 0o, 30o, 45o, and 60o, while the textures for classification were presented at

rotation angles 20o, 70o, 90o, 120o, 135o, and 150o. Consequently, the test data
included 672 samples, 42 (6 angles x 7 images) for each of the 16 texture classes.
Using a Mahalanobis distance classifier Porter and Canagarajah reported 95.8% accu-
racy for the rotation invariant wavelet-based features as the best result.

Experimental Results. We started replicating the original experimental setup by

dividing the 180x180 images of the four training angles (0o, 30o, 45o, and 60o) into

WOOL 0o

CANVAS 0o CLOTH 20o

MATTING 70oLEATHER 60o

RAFFIA 135o RATTAN 150o REPTILE 0o

PIGSKIN 120o

SAND 20o

COTTON 30o

PAPER 90o

GRASS 45o

WOOL 70oWOOD 60oSTRAW 30o WEAVE 45o

Fig. 4. Texture images of Experiment #1 printed at particular orientations. Textures were pre-

sented at ten different angles: 0o, 20o, 30o, 45o, 60o, 70o, 90o, 120o, 135o, and 150o. Images are
180x180 pixels in size.
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121 disjoint 16x16 subimages. In other words we had 7744 training samples, 484 (4
angles x 121 samples) in each of the 16 texture classes. We first computed the histo-
gram of the chosen operator for each of the 16x16 samples. We then added the histo-
grams of all samples belonging to a particular class into one big model histogram for
this class, since the histograms of single 16x16 samples would be too sparse to be reli-
able models. Also, using 7744 different models would result in computational over-
head, for in the classification phase the sample histograms are compared to every
model histogram. Consequently, we obtained 16 reliable model histograms containing

108900 (LBP8
riu2 and VAR8 with a 1 pixel border produce 152 entries for a 16x16

sample) or 94864 (LBP16
riu2 and VAR16 have a 2 pixel border) entries.

The performance of the operators was evaluated with the 672 testing images. The
sample histogram contained 32041/31684 entries, hence we did not have to worry
about their stability. Classification results (the percentage of misclassified samples
from all classified samples) for the four individual operators and the two joint distribu-
tions are given in Table 1.

As expected, LBP16
riu2 clearly outperforms its 8-bit version LBP8

riu2. LBP8
riu2 has

difficulties in discriminating strongly oriented textures straw (66.7% error, 28 samples
misclassified as grass), rattan (64.3%, 27 samples misclassified as wood) and wood
(33.3% error, 14 samples misclassified as rattan), which contribute 69 of the 79 mis-
classified samples. Interestingly, in all 79 cases the model of the true class ranks sec-
ond right after the nearest model of a false class that leads to misclassification. The
distribution of rotation angles among the misclassified samples is surprisingly even, as
all six testing angles contribute from 10 to 16 misclassified samples (16, 16, 14, 10, 13,

10). LBP16
riu2 does much better, classifying all samples correctly except ten grass

samples that are assigned to leather. Again, in all ten cases the model of the true class
grass ranks second.

We see that combining the LBP operators with the VAR measures, which do not do
too badly by themselves, improves the performance considerably. In the case of

LBP8
riu2/VAR8 the 1.64% error is caused by 11 straw samples erroneously assigned to

class grass. In ten of the 11 misclassifications the model of the straw class ranks sec-

ond, once third. LBP16
riu2/VAR16 falls one sample short of a faultless result, as a straw

sample at 90o angle is labeled as grass.

Table 1: Error rates (%) for the original experimental setup, where training is done

with rotations 0o, 30o, 45o, and 60o.

OPERATOR BINS ERROR OPERATOR BINS ERROR

LBP8
riu2 10 11.76 VAR8 128 4.46

LBP16
riu2 18 1.49 VAR16 128 11.61

LBP8
riu2/VAR8

10/16 1.64 LBP16
riu2/VAR16

18/16 0.15
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Note that we voluntarily discarded the knowledge that training samples come from
four different rotation angles, merging all sample histograms into a single model for
each texture class. Hence the final texture model is an ‘average’ of the models of the
four training angles, which actually decreases the performance to a certain extent. If

we had used four separate models, one for each training angle, for example LBP16
riu2/

VAR16 would have provided a perfect classification result, and the error rate of

LBP16
riu2 would have decreased by 50% to 0.74%.

Even though a direct comparison to the results of Porter and Canagarajah may not
be meaningful due to the different classification principle, the excellent results for

LBP16
riu2 and LBP16

riu2/VAR16 demonstrate their suitability for rotation invariant tex-
ture classification.

Table 2 presents results for a more challenging experimental setup, where the clas-
sifier is trained with samples of just one rotation angle and tested with samples of other
nine rotation angles. We trained the classifier with the 121 16x16 samples extracted
from the designated training image, again merging the histograms of the 16x16 sam-
ples of a particular texture class into one model histogram. The classifier was tested
with the samples obtained from the other nine rotation angles of the seven source
images reserved for testing purposes, totaling 1008 samples, 63 in each of the 16 tex-
ture classes. Note that in each texture class the seven testing images are physically dif-
ferent from the one designated training image, hence this setup is a true test for the
texture operators’ ability to produce a rotation invariant representation of local image
texture that also generalizes to physically different samples.

Training with just one rotation angle allows a more conclusive analysis of the rota-

tion invariance of our operators. For example, it is hardly surprising that LBP8
riu2 pro-

vides highest error rates when the training angle is a multiple of 45o. Due to the crude

quantization of the angular space the presentations learned at 0o, 45o, 90o, or 135o do
not generalize that well to other angles.

Table 2: Error rates (%) when training is done at just one rotation angle, and the
average error rate over the ten angles.

OPERATOR BINS
TRAINING ANGLE

AVERAGE
0o 20o 30o 45o 60o 70o 90o 120o 135o 150o

LBP8
riu2 10 31.5 13.7 15.3 23.7 15.1 15.6 30.6 15.8 23.7 15.1 20.00

LBP16
riu2 18 3.8 1.0 1.4 0.9 1.6 0.9 2.4 1.4 1.2 2.3 1.68

VAR8 128 7.5 3.4 5.4 6.0 4.4 3.1 6.1 5.8 5.4 4.4 5.12

VAR16 128 10.1 15.5 13.8 9.5 12.7 14.3 9.0 10.4 9.3 11.5 11.62

LBP8
riu2/VAR8

10/16 0.9 5.8 4.3 2.7 4.8 5.6 0.7 4.0 2.7 4.4 3.56

LBP16
riu2/VAR16

18/16 0.0 0.5 0.6 0.6 0.6 0.4 0.0 0.5 0.5 0.3 0.40
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LBP16
riu2 provides a solid performance with an average error rate of 1.68%. If we

look at the ranks of the true class in the 169 misclassifications, we see that in every
case the model of the true class ranks second. There is a strong suspicion that the sub-

par results for training angles 0o and 90o are due to the artificial blur added to the orig-

inal images at angles 0o and 90o. The effect of the blur can also be seen in the results of

the joint distributions LBP8
riu2/VAR8 and LBP16

riu2/VAR16, which achieve best per-

formance when the training angle is either 0o or 90o, the 16-bit operator pair providing
in fact a perfect classification in these cases. Namely, when training is done with some

other rotation angle, test angles 0o and 90o contribute most of the misclassified sam-

ples, actually all of them in the case of LBP16
riu2/VAR16. Nevertheless, the results for

LBP16
riu2 and LBP16

riu2/VAR16 are quite excellent.

3.2 Experiment #2

Haley and Manjunath [4] proposed a method based on a complete space-frequency
model for rotation-invariant texture classification. They developed a polar analytic
form of a two-dimensional Gabor wavelet, and used a multiresolution family of these
wavelets to compute texture microfeatures. Rotation invariance was achieved by trans-
forming Gabor features into rotation invariant features using autocorrelation and DFT
magnitudes and by utilizing rotation invariant statistics of rotation dependent features.
Classification results were presented for two groups of textures, of which we use the
set of textures available in the WWW [13].

Image Data and Experimental Setup. The image data comprised of the 13 textures
from the Brodatz album shown in Fig. 5. For each texture 512x512 images digitized at

six different rotation angles (0o, 30o, 60o, 90o, 120o, and 150o) were included. The
images were divided into 16 disjoint 128x128 subimages, totaling 1248 samples, 96 in
each of the 13 classes. Half of the subimages, separated in a checkerboard pattern,
were used to estimate the model parameters, while the other half was used for testing.
Using a multivariate Gaussian discriminant, Haley and Manjunath reported 96.8%
classification accuracy.

Experimental Results. We first replicated the original experiment by computing the
histograms of the training half of the 128x128 samples, which served as our model his-
tograms. Since a 128x128 sample produces a sufficient number of entries (16129/
15876) for its histogram to be stable, we did not combine individual histograms. Con-
sequently, we had 624 model histograms in total, 48 (6 angles x 8 images) models for
each of the 13 texture classes.

Since the training data includes all rotation angles, this problem is not particularly
interesting in terms of rotation invariant texture classification and we restrict ourselves
to merely reporting the error rates in Table 3. Both halves of the mosaic partitioning
served as the training data in turn, the other being used as test samples, and as the final
result we provide the average of the error rates of these two cases. We see that the
results obtained with the joint distributions compare favorably to the 3.2% error rate
reported by Haley and Manjunath.
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Table 3: Error rates (%) for the original experimental setup, where training data
includes all rotation angles.

OPERATOR BINS ERROR OPERATOR BINS ERROR

LBP8
riu2 10 5.05 (5.61 & 4.49) VAR8 128 2.48 (2.56 & 2.40)

LBP16
riu2 18 3.12 (3.04 & 3.21) VAR16 128 3.21 (2.56 & 3.85)

LBP8
riu2/VAR8

10/16 0.40 (0.16 & 0.64) LBP16
riu2/VAR16

18/16 0.48 (0.16 & 0.64)

BARK 0o BRICK 30o

PIGSKIN 150oLEATHER 120o

STRAW 60o WATER 90o WEAVE 120o

SAND 30o

WOOD 150o

BUBBLES 60o

RAFFIA 0o

GRASS 90o

WOOL 0o

Fig. 5. Texture images of Experiment #2 printed at particular rotation angles. Each texture was

digitized at six angles: 0o, 30o, 60o, 90o, 120o, and 150o. Images are 512x512 pixels in size.
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Again, we constructed a true test of rotation invariant texture classification, where
the classifier is trained with the samples of just one rotation angle and tested with the
samples of other five rotation angles. We trained the classifier with the 128x128 sam-
ples extracted from the 512x512 images of a particular rotation angle, obtaining 208
models in total, 16 for each of the 13 texture classes. The classifier was then evaluated
with the 128x128 samples extracted from the 512x512 images of the other five rotation
angles, totaling 1040 test samples.

From the error rates in Table 4 we observe that using just one rotation angle for
training indeed increases the difficulty of the problem quite nicely. If we take a closer

look at the confusion matrices of LBP16
riu2 (8.4% average error rate), we see that

about half (246/528) of the misclassifications are due to the samples of the strongly
oriented texture wood being erroneously assigned to straw. The training angle does not
seem to affect the classification accuracy too much, as roughly an equal result is
obtained in all six cases.

The complementary nature of LBP and VAR operators shows in the excellent

results for their joint distributions. LBP16
riu2/VAR16 achieves a very low average error

rate of 0.69%, which corresponds to just about 7 misclassifications out of 1040 sam-
ples. Of the 43 misclassifications in total, false assignments of wool samples to pigskin
contribute 16 and of grass samples to leather 11. It is worth noting that the perfor-
mance is not sensitive to the quantization of the VAR feature space, as following aver-

age error rates are obtained by LBP16
riu2/VAR16 with different numbers of bins: 1.31%

(18/2), 0.71% (18/4), 0.64% (18/8), 0.69% (18/16), 0.71% (18/32), and 0.74% (18/64).

4 Discussion

We presented a theoretically and computationally simple but efficient approach for
gray scale and rotation invariant texture classification based on local binary patterns
and nonparametric discrimination of sample and prototype distributions. Excellent

Table 4: Error rates (%) when training is done at just one rotation angle and the
average error rate over the six rotation angles.

OPERATOR BINS
TRAINING ANGLE

AVERAGE
0o 30o 60o 90o 120o 150o

LBP8
riu2 10 20.2 13.7 13.7 17.7 17.0 8.8 15.18

LBP16
riu2 18 10.4 8.2 8.5 8.6 8.3 6.9 8.46

VAR8 128 7.9 6.2 4.2 5.2 3.9 3.5 5.14

VAR16 128 7.6 6.3 4.6 3.8 3.7 4.7 5.11

LBP8
riu2/VAR8

10/16 2.1 2.5 0.8 0.5 1.2 0.5 1.25

LBP16
riu2/VAR16

18/16 1.9 1.0 0.5 0.3 0.2 0.3 0.69
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experimental results obtained in two problems of true rotation invariance, where the
classifier was trained at one particular rotation angle and tested with samples from
other rotation angles, demonstrate that good discrimination can be achieved with the
occurrence statistics of simple rotation invariant local binary patterns. The proposed
approach is very robust in terms of gray scale variations, since the operators are by def-
inition invariant against any monotonic transformation of the gray scale. This should
make our operators very attractive in situations where varying illumination conditions
are a concern, e.g. in visual inspection. Computational simplicity is another advantage,
as the operators can be realized with a few comparisons in a small neighborhood and a
lookup table. This facilitates a very straightforward and efficient implementation,
which may be mandatory in time critical applications. If the stability of the gray scale
is not something to be worried about, performance can be further improved by combin-

ing the LBP8
riu2 and LBP16

riu2 operators with rotation invariant variance measures
VAR8 and VAR16 that characterize the contrast of local image texture. As we observed
in the experiments, the joint distributions of these orthogonal operators are very pow-
erful tools for rotation invariant texture analysis.

Regarding future work, in this study we reported results for two rotation invariant
LBP operators having different spatial configuration of the circularly symmetric neigh-

bor set, which determines the angular resolution. As expected, LBP16
riu2 with its more

precise quantization of the angular space provides clearly better classification accu-
racy. Nothing prevents us from using even larger circularly symmetric neighbor sets,
say 24 or 32 pixels with a suitable spatial predicate, which would offer even better
angular resolution. Practical implementation will not be as straightforward, though, at
least not for the 32-bit version. Another interesting and related detail is the spatial size
of the operators. Some may find our experimental results surprisingly good, consider-
ing how small the support of our operators is for example in comparison to much
larger Gabor filters that are often used in texture analysis. However, the built-in sup-
port of our operators is inherently larger than 3x3 or 5x5, as only a limited subset of
patterns can reside adjacent to a particular pattern. Still, our operators may not be suit-
able for discriminating textures where the dominant features appear at a very large
scale. This can be addressed by increasing the spatial predicate, as the operators can be
generalized to any neighborhood size. Further, operators with different spatial resolu-
tions can be combined for multiscale analysis, and ultimately, we would want to incor-
porate scale invariance, in addition to gray scale and rotation invariance. Another thing
deserving a closer look is the use of a problem or application specific subset of rotation
invariant patterns, which may in some cases provide better performance than ‘uniform’
patterns. Patterns or pattern combinations are evaluated with some criterion, e.g. clas-
sification accuracy on a training data, and the combination providing the best accuracy
is chosen. Since combinatorial explosion may prevent from an exhaustive search
through all possible subsets, suboptimal solutions such as stepwise or beam search
should be considered. We also reported that when there are classification errors, the
model of the true class very often ranks second. This suggests that classification could
be carried out in stages, by selecting features which best discriminate among remain-
ing alternatives.
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Note

Texture images used in this study, together with other imagery used in our published
work, can be downloaded from http://www.ee.oulu.fi/research/imag/texture.
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