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Abstract. The light reflected from a surface depends on the scene geometry, the
incident illumination and the surface material. One of the properties of the mate-
rial is its albedo ( ) and its variation with respect to wavelength. The albedo of
a surface is purely a physical property. Our perception of albedo is commonly
referred to as colour. This paper presents a novel methodology for extracting the
albedo of the various materials in the scene independent of incident light and
scene geometry. A scene is captured under different narrow-band colour filters
and the spectral derivatives of the scene are computed. The resulting spectral
derivatives form a spectral gradient at each pixel. This spectral gradient is a nor-
malized albedo descriptor which is invariant to scene geometry and incident illu-
mination for diffuse surfaces.

1 Introduction

The starting point of most computer vision techniques is the light intensity reflected
from an imaged scene. The reflected light is directly related to the geometry of the
scene, the reflectance properties of the materials in the scene and the lighting condi-
tions under which the scene was captured. One of the complications which have trou-
bled computer vision algorithms is the variability of an object’s appearance as
illumination and scene geometry change. Slight variations in viewing conditions often
cause large changes in an object’s appearance. Consider, for example a yellow car seen
in a sunny day, at night, or in dense fog.

Many areas of computer vision are affected by variations in an object’s appearance.
Among the most well-known problems is colour constancy, the task of consistently
identifying colours, despite changes in illumination conditions. Maloney and Wan-
dell[18] were the first to develop a tractable colour constancy algorithm by modeling
both the surface reflectance and the incident illumination as a finite dimensional linear
model. This idea was further explored by Forsyth[6], Ho et al.[14], Finlayson et al.[5,
7, 4, 1] and Healey and Slater[11]. colour is a very important cue in object identifica-
tion. Swain and Ballard[23] showed that objects can be recognized by using colour
information alone. Combining colour cues with colour constancy[11, 21, 7, 4] gener-
ated even more powerful colour-guided object recognition systems.

Extracting reflectance information is an under-constrained problem. All the afore-
mentioned methodologies had to introduce some additional constraints that may limit
their applicability. For example, most colour techniques assume that the spectral
reflectance functions have the same degrees of freedom as the number of photorecep-
tor classes (typically three.) Thus, none of these methods can be used in greyscale
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images for extracting illumination invariant colour information. Furthermore, a consid-
erable body of work on colour assumes that the incident illumination has two or three
degrees of freedom. However, Slater and Healey[22] showed that for outdoor scenes,
the illumination functions have seven degrees of freedom.

We propose a new technique for extracting colour information that is invariant to
geometry and incident illumination. We examine the rate of change in reflected inten-
sity with respect to wavelength over the visible part of the electromagnetic spectrum.
For diffuse surfaces, independent of the particular model of reflectance, the only factor
that contributes to variations over the wavelength is the albedo of the surface. Thus,
what we end up extracting is the reflectivity profile of the surface. The only assumption
that we make is that incident illumination remains stable over small intervals in the
visible spectrum. It will be demonstrated that this is a reasonable assumption.

We take a greyscale image of a scene under eight different colour filters and com-
pute the spectral derivatives of the scene. Unlike many colour constancy methods, we
employ multiple colour filters with narrow bandwidth (eight 10nm wide filters as
opposed to the typical three 75nm filters). The use of narrow filters increases the dis-
criminatory power of our method. The advantage of the traditional RGB systems is
that they resemble the human visual sensor. Unfortunately, as Hal land Greenberg[10]
have shown, the employment of only 3 bands of wavelengths introduces significant
colour distortions. An additional advantage of our technique over the more traditional
band-ratios is that spectral derivatives are used on a per pixel basis. They do not
depend on neighbouring regions, an assumption that is common in other photometric
methods, which use logarithms and/or narrow-band filters[7].

The collection of spectral derivatives evaluated at different wavelengths forms a
spectral gradient. This gradient is normalized albedo descriptor, invariant to scene
geometry and incident illumination for smooth diffuse surfaces. Experiments on sur-
faces of different colours and materials demonstrate the ability of spectral gradients to:
a) identify surfaces with the same albedo under variable viewing conditions; b) dis-
criminate between surfaces that have different albedo; and c) provide a measure of how
close the colours of the two surfaces are.

2 Spectral Derivative

The intensity images that we process in computer vision are formed when light from a
scene falls on a photosensitive sensor. The amount of light reflected from each point
p = (x,,z) in the scene depends on the light illuminating the scene, E and the sur-

face reflectance S of the surfaces in the scene:

I(p, ) = E(p, )S(p, ) (D

where , the wavelength, shows the dependence of incident and reflected light on
wavelength. The reflectance function S(p, ) depends on the surface material, the
scene geometry and the viewing and incidence angles.
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When the spectral distribution of the incident light does not vary with the direction of
the light, the geometric and spectral components of the incident illumination are sepa-
rable:

EC, » ) =e( )EC; ) @

where ( ,, ;) are the spherical coordinates of the unit-length light-direction vector

and e( ) is the illumination spectrum. Note that, the incident light intensity is
included in E( ; ;) and may vary as the position of the illumination source changes.

The scene brightness then becomes:

I(p, ) =e(p, )E(p, , )S(p, ) 3

Before we perform any analysis we simplify the scene brightness equation by tak-
ing its logarithm. The logarithmic brightness equation reduces the product of the inci-

dent illumination E(p, ) and the surface reflectance S(p, ) into a sum:

L(p, ) = Ine(p, )+InE(p, ;, ;)+InS(p, ) “4)

A colour descriptor which is invariant to viewpoint, scene geometry and incident
illumination is albedo. Albedo ( ) is the ratio of electromagnetic energy reflected by
a surface to the amount of electromagnetic energy incident upon the surface[20]. A
profile of albedo values over the entire visible spectrum is a physically based descrip-
tor of colour. Albedo is one of a multitude of factors that determine the surface reflec-
tance function S(p, ).

Extracting the absolute albedo values directly from the image brightness without
any a-priori knowledge of the materials of the scene or the imaging conditions, is an
under-constrained problem. However, an invariant physically based colour descriptor
can be computed by taking samples of the reflected light at different wavelengths and
measuring the change in scene brightness between wavelengths. One technique for
measuring such changes is by calculating the spectral derivative, which is the partial
derivative of the logarithmic image with respect to wavelength

e(p, ) S(p, )
. 5)
L) = 5 50

wheree (p, ) = e(p, )/ is the partial derivative of the spectrum of the incident

light with respect to wavelength and S (p, ) = S(p, )/ is the partial derivative

of the surface reflectance with respect to wavelength. Our work concentrates on the
visible part of the electromagnetic spectrum, i.e. from 400nm to 700nm. Ho, Funt and
Drew[14] have shown, that for natural objects the surface spectral reflectance curves,
i.e. the plots of S(p, ) versus , are usually reasonably smooth and continuous over
the visible spectrum.
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For diffuse objects, the spectral derivative is a measure of how albedo changes with
respect to wavelength. As such, it is invariant to incident illumination, scene geometry,
viewpoint, and material macrostructure.

3 Invariance to Incident Illumination

Although the spectral distribution of the most commonly used indoor-scene illumina-
tions sources (i.e., tungsten and fluorescent light) is not constant, one can assume that e
changes slowly over small increments of . This means that its derivative with respect
to wavelength is approximately zero.

e(p, ) O (6)

An exception to this assumption are the localized narrow spikes that are present in
the spectrum of fluorescent light (see fig. 1). The partial derivative with respect to
wavelength is undefined at these spikes.

Fig. 1. The emitance spectrum of fluorescent light.

Although different types of fluorescent light exhibit such spikes at different parts of
the spectrum, these spikes have always very narrow width. Thus, we can discard in our
analysis the wavelengths around which these spikes occur. By discarding these outli-
ers, the assumption of a slowly changing e is valid over most of the visible range. This
implies that one can safely assume that in general the partial derivative of the logarith-
mic image depends only on the surface reflectance:

S (p, )
L (p, ) TR )



Objective Colour from Multispectral Imaging 363

4 Invariance to Geometry and Viewpoint

4.1 Lambertian Model

A very simple model that is often used by both the computer vision community and the
graphics community is the Lambertian reflectance model. Lambert’s law describes the
behaviour of a perfectly diffuse surface, where the reflected light is independent of
viewpoint. For a homogeneous surface, the reflected light changes only when the angle

of incidence ;(p) between the surface normal at point p and the incident illumination

changes.

S(p, ) = cos (p) (p, ) ®)

where (p, ) is the albedo or diffuse reflection coefficient at point p.

Since, by definition, Lambertian reflectance is independent of viewpoint, the spec-
tral gradient is also independent of viewpoint. Furthermore, the scene geometry,
including the angle of incidence, is independent of wavelength. Therefore, when we
take the partial derivative with respect to wavelength, the geometry term vanishes:

S (p, ) (p, )
_ ©)
L) 575 = o)

where (p, ) = (p, )/ is the partial derivative of the surface albedo with

respect to wavelength.

One of the advantages of spectral derivatives is that since the dependence on the
angle of incidence gets cancelled out, there is no need for assuming an infinitely dis-
tant light source. The incident illumination can vary from one point to another, without
affecting the resulting spectral derivative.

4.2 Smooth Diffuse Reflectance Model

In reality there are very few objects that exhibit perfectly Lambertian reflectance. For
smooth diffuse objects, the reflected light varies with respect to viewpoint. Wolff[25]
introduced a new smooth diffuse reflectance model that incorporates the dependence
on viewpoint:

S(p, ) = cos J(p) (p, YA -F( (p),n(p))) (10)

sin _(p) 1

x 1-F sin! , ——
n(p) " n(p)
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where (p) and . (p) are the incidence and viewing angles respectively, F() is the

Fresnel reflection coefficient, and n(p) is the index of refraction. The index of refrac-
tion does indeed depend on wavelength. However, in dielectrics the refractive index
changes by a very small amount over the visible range[2, 3, 8]. Thus, for dielectrics n
is commonly treated as a material constant under visible light.

By taking the logarithm of the surface reflectance function, we simplify the under-
lying model, by altering multiplicative terms into additive terms:

InS(p, ) = Incos (p)+1In (p, )+In(1-F( ;(p),n(p)))
sin (p) | an

+In 1-F sin’! , ——
n(p) n(p)

The next step is to compute the partial derivative with respect to wavelength. Once
again, all the terms except the albedo are set to zero. The dependence on scene geome-
try including the viewing and incidence angles have been cancelled out. Again, since
the spectral derivative is independent of incident illumination, the direction of incident
light can vary from one point to the next, without affecting the spectral derivative. The
spectral derivative becomes:

S ) (p)
= (12)
L) 575 = o)

4.3 Generalized Lambertian Model

Of course, not all diffuse surfaces are smooth. Oren and Nayar[19] developed a gener-
alized Lambertian model which describes the diffuse reflectance of surfaces with sub-
stantial macroscopic surface roughness. The macrostructure of the surface is modelled
as a collection of long V-cavities. (Long in the sense that the area of each facet of the
cavity is much larger than the wavelength of the incident light.) The modelling of a
surface with V-cavities is a widely accepted surface description[24, 13].

The light measured at a single pixel of an optical sensor is an aggregate measure of
the brightness reflected from a single surface patch composed of numerous V-cavities.
Each cavity is composed of two planar Lambertian facets with opposing normals. All
the V-cavities within the same surface patch have the same albedo, . Different facets
can have different slopes and orientation. Oren and Nayar assume that the V-cavities
are uniformly distributed in azimuth angle orientation on the surface plane, while the
facet tilt follows a Gaussian distribution with zero mean and standard deviation . The

standard deviation can be viewed as a roughness parameter. When = 0, all the

facet normals align with the mean surface normal and produce a planar patch that
exhibits an approximately Lambertian reflectance. As increases, the V-cavities get
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deeper and the deviation from Lambert’s law increases. Ignoring interreflections from
the neighbouring facets, but accounting for the masking and shadowing effects that the
facets introduce, the Oren-Nayar model approximates the surface reflectance as:

S(p, 5 ) = 2 eos (p)ICy( )
+cos( . (p)— (P)Cy( : 5 ,— ; sp)tan (p) a3
#(1=feos( = NC3( 3 5 spytan ~ELE (2]

where ( ;(p), ;(p)) and ( .(p), ,(p)) are the spherical coordinates of the angles
of incidence and reflectance accordingly, (p) = max( (p), (p)) and

(p) = min( (p), (p)). C;0, Cx() and C3() are coefficients related to the surface

macrostructure. The first coefficient, C;() depends solely on the distribution of the

facet orientation, while the other two depend on the surface roughness, the angle of
incidence and the angle of reflectance:

2
C =1-05—— (14)
1) 24033
0.45 ’ i if 0
. —SSIn 1I COS - .
770,09 (p) ( (p)- {p) N
Cy( 55 ,— ;5 3p) = X > (3 15
. )/ .
0.45———— sin - —= otherwise
240.09 (P)
2 4 (p) (p)?
C I = 0.125 16
s P 240.09 2 (16

For clarity of presentation, we set:

Vip, ) = Ci( )+cos( (p)- (p)Cy( 55 ,— ;5 sp)tan (p)

17
(p)+ (p) an
2

+(1=Jcos( .= JDC3( 5 5 sp)tan

The term V(p, ) accounts for all the reflectance effects which are introduced by the
roughness of the surface. The angles of incidence and reflectance, as well as the distri-
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bution of the cavities affect the value of the function V(p, ) . The Oren-Nayar
reflectance model can then be written more compactly as:

S 5 ) = 2 Jeos (p)Vip, ) (18)

Once again, when we take the logarithm of the surface reflectance function, we sim-
plify the underlying model, by turning the product into a sum:

InS(p, ) =In (p, )-In +Incos ,(p)+InV(p, ) 19)

When we compute the partial derivative of this logarithm with respect to wave-
length, the only term that remains is the albedo. The angle of incidence ,(p) and the

constant , are independent of wavelength. None of the terms in the function V(p, ),
see equation (17), vary with the wavelength. More specifically, C{() is only a function
of , which is a surface property independent of wavelength. C,() and C3() are func-
tions of , the viewing and incidence angles, and of and , which in turn are also
functions of the viewing and incidence directions. None of these factors is affected by
wavelength. Thus, even for rough diffuse surfaces, the spectral derivative is:

S ) )
= 20
L) 5575 o) @0

5 Spectral Gradient

For diffuse surfaces, independent of the particulars of the reflectance behaviour, the
partial derivative with respect to wavelength of the logarithmic image L (p, ) is a

function of only the surface albedo. More specifically the spectral derivative approxi-
mates the normalized partial derivative of the albedo with respect to wavelength

(p, )/ (p, ).Bynormalized we mean that the derivative is divided by the mag-

nitude of the albedo itself.
Consider now a collection of spectral derivatives of a logarithmic image at various

spectral locations ,, k = 1,2,3,..., M. The resulting spectral gradient is an M-
dimensional vector (L 1,L Y v L M) which is invariant to illumination, surface

geometry and viewpoint. All it encodes is information at discrete spectral locations
about how fast the surface albedo changes as the spectrum changes. It is a profile of the
rate of change of albedo with respect to wavelength over a range of wavelengths. Thus,
the spectral gradient is a colour descriptor that depends purely on the surface albedo, a
physical material property. Although our perception of colour depends on the surface
albedo, a colour descriptor, such as the spectral gradient which is purely albedo-based
does not convey any perceptual meaning of colour. It remains unaltered by changes in
the environment (viewing position, illumination, geometry).
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6 Experiments

6.1 Experimental Setup

In order to compute the spectral derivatives we took images of each scene under eight
different narrow bandpass filters: a Corion S10-450-F, a Corion S10-480-F, a Corion
S10-510-F, a Corion S10-540-F, a Corion S10-570-F, a Corion S10-600-F, a Corion
S10-630-F and a Corion S10-660-F. Each of these filters has a bandwidth of approxi-
mately 10nm and a transmittance of about 50%. The central wavelengths are at 450nm,
480nm, 510nm, 540nm, 570nm, 600nm, 630nm and 660nm respectively. If one were
to assign colour names to these filters, he/she could label them as follows:
450nm=blue, 480nm=cyan, 510=green, 540=yellow, 570=amber, 600=red, 630=scar-
let red, 660=mauve.

The use of narrow bandpass filters allowed us to closely sample almost the entire
visible spectrum. The dense narrow sampling permitted us to avoid sampling (or
ignore samples) where the incident light may be discontinuous (see section 3) Hall and
Greenberg[10] have demonstrated that such a sampling density provides for the repro-
duction of a good approximation of the continuous reflectance spectrum. The images
were captured with a Sony XC-77 camera using a 25mm lens (fig. 2.)

Fig. 2. A picture of the experimental setup showing the analog greyscale camera and the filter
wheel mounted in front of it.

The only source of illumination was a single tungsten light bulb mounted in a
reflected scoop. For each scene we used four different illumination setups, generated
by the combination of two distinct light bulbs, a 150W bulb and a 200W bulb and two
different light positions. One illumination position was to the left of the camera and
about 5cm below the camera. Its direction vector formed approximately a 30 angle
with the optic axis. The other light-bulb position was to the right of the camera and
about 15cm above it. Its direction vector formed roughly a 45 angle with the optic
axis. Both locations were 40cm away from the scene.
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The imaged objects were positioned roughly 60cm from the camera/filter setup. We
tried four different types of materials: foam, paper, ceramic and a curved metallic sur-
face painted with flat (matte) paint. The foam and the paper sheets came in a variety of
colours. The foam which was a relatively smooth and diffuse surface came in white,
pink, magenta, green, yellow, orange and red samples (see fig. 3 top left). The paper
had a rougher texture and came in pink, fuchia, brown, orange, yellow, green, white,
blue, and violet colours (see fig. 3 top right). We also took images of a pink ceramic
plate. Its surface was extremely smooth and exhibited localized specularities and self-
shadowing at the rims (see fig. 3 bottom left). Finally we took images of single albedo
curved surfaces (a mug and a painted soda-can) to test the invariance to the viewing
and incidence angles (see fig. 3 bottom middle and right respectively).

Fig. 3. Pictures of the objects and materials used in the experiments. Top left: various colours of
foam; top right: various colours of paper; bottom left: a pink ceramic plate; bottom center: a
white ceramic mug; bottom right: a white spray-painted soda can.

Fig. 4 shows samples of the actual images that we captured. All the images in these
figure are taken using the Corion S10-600-F filter.The light illuminating the scene is a
200W tungsten bulb positioned at the lower left corner (as can be seen from the high-
lights). On the top left are the coloured samples of foam, while on the right are the
multiple coloured samples of paper. By comparing the stripes in fig. 4 with those in fig.
3, one can tell which colours reflect around 600nm (pink, orange, yellow and white in
the case of the paper)



Objective Colour from Multispectral Imaging 369

Fig. 4. Sample filtered images of the objects shown in fig. 3. All the images in this figure were
taken with the red Corion S10-600-F filter.

6.2 Computing the Spectral Gradient

Once a filtered image was captured, its logarithmic image was generated. In a logarith-
mic image the value stored at each pixel was the natural logarithm of the original
image intensity. For example:

L,=In(,) where w = 450, 480, 510, 540, 570, 600, 630, 660 (21)

where I, was the image of a scene taken with the S10-W-F filter and L, was its loga-

rithmic image. The last step involved the computation of the spectral derivatives of the
logarithmic images. Differentiation was approximated via finite-differencing. Thus,

each L , was computed over the wavelength interval = 30nm by subtracting two

logarithmic images taken under two different colour filters which were 30nm apart:

Lk=Lw+30_Lw (22)

where k = 1,2,...,7 and w = 450, 480, 510, 540, 570, 600, 630 accordingly. In
our setup the spectral gradient was a 7-vector:

(L L L L L L L )= (Lygy~Lyse Lsio~Lago -+ Lo~ Le3o) @)

This vector was expected to remain constant for diffuse surfaces with the same
albedo profile, independent of variations in viewing conditions. At the same time, the
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spectral gradient should differ between distinct colours. Furthermore, the more distant
the colours are, the bigger the difference between the respective spectral gradients
should be.

The following figures show the plots of the spectral gradient values for each colour
versus the wavelength. The horizontal axis is the wavelength, ranging from the

= 480 — 450 interval to the 7 = 660 — 630 interval. The vertical axis is the nor-

malized partial derivative of albedo over the corresponding wavelength interval. Fig. 5
shows the plots of different colours of paper fig. 5(a) and of different colours of foam
fig. 5(b). Within each group, the plots are quite unique and easily differentiable from
each other.

Spectral Gradient Plots Spectral Gradient Plots
T T T
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red H—
— \ green <—
2 i 2 / \ v 8
2 a 2 \
5} 5 \ .
=] 5 \
= o
s 3 &
< 7 =  ———
© - ° X\
] 2\
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ik
460 480 500 520 540 560 580 600 620 640 660 460 480 500 520 540 560 580 600 620 640 660
wavelength wavelength
(a) (b)

Fig. 5. Spectral gradients of different colours of (a) paper and (b) foam under the same viewing
conditions (same illumination, same geometry).

On the other hand, the spectral gradients of different surfaces of the same colour, gen-
erate plots that look almost identical. Fig. 6 shows the gradient plots for the white
paper, the white foam, the white mug, and the white painted soda can.

Spectral Gradient Plots
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mug
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-02 .

albedo derivative

04 | e
06 | e
08 | i

460 480 500 520 540 560 580 600 620 640 660
wavelength

Fig. 6. Spectral gradients of different white surfaces (foam, paper, ceramic mug, diffuse can)
under the same viewing conditions (same illumination, same geometry).
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In a similar manner, when we have similar but not identical colours, the spectral
gradient plots resemble each other, but are not as closely clustered. Fig. 7 shows the
spectral gradients of various shades of pink and magenta. The closer the two shades
are, the more closely the corresponding plots are clustered.

Spectral Gradient Plots

pink fm —+—
. pink pl 5—
1{.\%Ul1lel fm <—

albedo derivative

1 1 1

460

wavelength

480 500 520 540 560 580 600 620 640 660

Fig. 7. Spectral gradients of different shades of pink and different materials: pink foam, magenta
foam, pink paper, fuchia paper and pink ceramic plate. All images were taken under the same
viewing conditions (same illumination, same geometry).

The next couple of figures demonstrate that the spectral gradient remains constant
under variations in illumination and viewing. This is expected as spectral gradients are
purely a function of albedo. The plots in fig. 8 were produced by measuring the spec-
tral gradient for the same surface patch while altering the position and intensity of the
light sources.
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wavelength
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660

Fig. 8. Spectral gradients of the same colour (a) green and (b) pink under varying illumination.
Both the position and the intensity of illumination is altered, while the viewing position remains

the same.

In order to demonstrate the invariance to the viewing angle and the surface geome-
try, we show the plots of the spectral gradients produced by different patches of the
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same curved object (the painted soda can in this case). At least one patch has its tan-
gent roughly parallel to the image plane, while the other patches are at mildly to quite
oblique angles to the viewer and/or the incident light. As fig. 9 shows, the spectral gra-
dient plots still remain closely clustered.

Spectral Gradient Plots

left ~— |
far Ift 85—
right >—

02} .

albedo derivative

04 :
06 - :
-08 -

460 480 500 520 540 560 580 600 620 640 660
wavelength

Fig. 9. Spectral gradients of white colour at different angles of incidence and reflectance. The
spectral gradients at different surface patches of the white soda can are shown. The surface nor-
mals for these patches vary from almost parallel to the optic axis, to very oblique.

This last series of tests, showed also a limitation of our technique. For very oblique
angles of incidence, where ;>60 the spectral gradients do not remain constant.

Deviations at large angles of incidence are a known physical phenomenon[17]. Oren
and Nayar[19] also point out that in this special case, most of the light that is reflected
from a surface patch is due to interreflections from nearby facets. In fig. 10 we show
the spectral gradient plots obtained from patches of the painted can which are at large
angles of incidence. (The light is almost grazing the surface). For comparison purposes
we included also two plots produced from patches with smaller angles of incidence.

Spectral Gradient Plots
1 T T T T T T T T
0.8 - PA L E
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1 1 1 1 1 1 1 1 1 1

460 480 500 520 540 560 580 600 620 640 660
wavelength

albedo derivative
S

Fig. 10. Spectral gradients of white colour at large angles of incidence. The spectral gradients at
different surface patches of the white soda can are shown. For all these patches the incident light
is almost grazing the surface.
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As a last note, we would like to point out that although some of our test objects
exhibit specular highlights, we did not analyze any of the data from the specular areas.
Our methodology assumes diffuse reflectance and we limited our tests to the diffuse
parts of the images. There is currently ongoing investigation of how specularities and
interreflections affect the spectral gradient.

7 Conclusions and future work

We developed a technique for extracting surface albedo information which is invariant
to changes in illumination and scene geometry. The spectral information we extract is
purely a physical property. Hence the term objective colour. We made no assumptions
about the nature of incident light, other than that its spectrum does not change with its
position. We showed that spectral gradients can be used on a pixel basis and do not
depend on neighbouring regions. The effectiveness of spectral gradients as a colour
descriptor was demonstrated on various empirical data.

The invariant properties of spectral gradients together with their ease of implemen-
tation and the minimalism of assumptions, make this methodology a particularly
appealing tool in many diverse areas of computer vision. They can be used in material
classification, grey-scale colour constancy, or in tracking different regions under vari-
able illumination.

Spectral gradients and the underlying dense spectral sampling provide a rich
description of surface reflectance behaviour. We are already studying the phenomenon
of interreflections at large angles of incidence. We are also examining the behaviour of
highlights under this fine multispectral sampling. Another topic that we are working on
is the simultaneous employment of multiple illumination sources. Finally a topic that
we are also planning to address is the effect of changes in the spectrum of the incident
illumination.
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