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Abstract. New applications in fields such as augmented or virtualized
reality have created a demand for dense, accurate real-time stereo recon-
struction. Our goal is to reconstruct a user and her office environment
for networked tele-immersion, which requires accurate depth values in a
relatively large workspace. In order to cope with the combinatorics of
stereo correspondence we can exploit the temporal coherence of image
sequences by using coarse optical flow estimates to bound disparity se-
arch ranges at the next iteration. We use a simple flood fill segmentation
method to cluster similar disparity values into overlapping windows and
predict their motion over time using a single optical flow calculation per
window. We assume that a contiguous region of disparity represents a
single smooth surface which allows us to restrict our search to a narrow
disparity range. The values in the range may vary over time as objects
move nearer or farther away in Z, but we can limit the number of dispa-
rities to a feasible search size per window. Further, the disparity search
and optical flow calculation are independent for each window, and allow
natural distribution over a multi-processor architecture.

We have examined the relative complexity of stereo correspondence on
full images versus our proposed window system and found that, depen-
ding on the number of frames in time used to estimate optical flow,
the window-based system requires about half the time of standard cor-
relation stereo. Experimental comparison to full image correspondence
search shows our window-based reconstructions compare favourably to
those generated by the full algorithm, even after several frames of pro-
pagation via estimated optical flow. The result is a system twice as fast
as conventional dense correspondence without significant degradation of
extracted depth values.

1 Introduction

The difficulty of creating and rendering the geometry of virtual worlds by hand
has led to considerable work on using images of the real world to construct rea-
listic virtual environments [ISJISITIT0]. As a result the ability to reconstruct or
virtualize environments in real-time has become an important consideration in
work on stereo reconstruction. Unfortunately, to accurately reconstruct reasona-
bly large volumes, we must search large ranges of disparity for correspondences.
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To achieve both large, accurate reconstructions and real-time performance we
have to exploit every option to reduce the amount of calculation required, while
maintaining the the best accuracy possible to allow interaction with live users.

One possible avenue to improve the temporal performance of reconstruction
on an image sequence is to take advantage of temporal coherence. Since the same
objects tend to be visible from frame to frame we can use knowledge from earlier
frames when processing new ones. There is however a very real and complicated
tradeoff between added calculation for exploiting temporal coherence, and its
advantages in simplifying the stereo correspondence problem.

In this paper we propose a segmentation of the image based on an initial
calculation of the full disparity map. We use a simple flood fill method to extract
windows containing points in a narrow disparity range, and then use a local linear
differential technique to calculate a single optical flow value for each window.
The flow value allows us to predict the location of the disparity windows in a
future frame, where we need only consider the updated disparity range for each
window. Essentially we are making the assumption that a contiguous region
with similar disparity will belong to a single surface and will thus exhibit similar
motion (generated flow), to simplify our calculations and speed up our algorithm.

Several real-time stereo systems have become available in recent years in-
cluding the Triclops vision system by Point Grey Research (www.ptgrey.com).
Triclops uses three strongly calibrated cameras and rectification, Pentium/MMX
processors and Matrox Meteor II/MC frame grabbers. Its reported performance
is about 5 dense disparity frames per second (fps) for a 320 x 240 image and
32 disparities. The system’s performance degrades however when additional ac-
curacy options such as subpixel interpolation of disparities are required. The
SRI Small Vision System achieves 12 fps on Pentium II, for similar image size
and disparity range, apparently by careful use of system cache while performing
correlation operations [9]. The CMU Video Rate Stereo Machine [§] uses special
purpose hardware including a parallel array of convolvers and a network of 8 TI
C40’s to achieve rates of 15 fps on 200 x 200 pixel images for 30 disparities. In
the image pipeline however, calculations are performed on 4-5 bit integers, and
the authors offer no specific analysis of how this affects the accuracy and reso-
lution of matching available. Neither Triclops nor the CMU machine yet exploit
temporal coherence in the loop to improve the efficiency of their calculations or
the accuracy of their results.

Sarnoff’s Visual Front End (VFE) [12] is also a special purpose parallel hard-
ware pipeline for image processing, specifically designed for autonomous vehicles.
It can perform some low level functions such as image pyramid construction,
image registration and correlation at frame rates or better. The VFE-200 is
reported to perform optical flow and stereo calculations at 30 fps. The tasks
described are horopter-based stereo [5] obstacle detection applications, which
use knowledge of task and environment to reduce complexity. Registration to a
ground plane horopter allows the correspondence search to be limited to a band
around this plane.
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The complimentary nature of optical flow and stereo calculations is well
known. Stereo correspondence suffers from the combinatorics of searching across
a range of disparities, and from occlusion and surface discontinuities. Structure
from motion calculations are generally second order and sensitive to noise, as
well as being unable to resolve a scale factor. Exploiting the temporal coherence
of depth and flow measurements can take two forms: it can be used to improve
the quality or accuracy of computed values of depth and 3D motion [141232] or,
as in our case, can be used as means of optimizing computations to achieve real-
time performance. Obviously approaches which compute accurate 3D models,
using iterative approaches such as linear programming are unlikely to be useful
for real-time applications such as ours. Other proposed methods for autonomous
robots, restrict or otherwise depend on relative motion [3}20] which cannot be
controlled for a freely moving human subject. Tucakov and Lowe [22] proposed
exploiting uncertain odometry knowledge of the camera’s motion in a static
environment to reduce the disparity range at each pixel. Knowledge of the full
(though inaccurate) 3D motion is a stronger constraint than the coarse optical
flow values for unknown rapid motion we use.

Remote/Virtual
Office #1

Remote/Virtual
Office #2

., 3D Display #2 .~

. Viewer

Workspace |

Fig. 1. Tele-cubicle Camera configuration

Our interest in real-time reconstruction stems from the goal of generating
an immersive office collaboration environment. Tele-immersion is a form of net-
worked virtual or augmented reality which is intended to push the bandwidth of
Internet2. It entails stereo reconstruction of people and objects at remote sites,
Internet transmission, and rendering of the resulting 3-D representations. When
projected on special 3D displays these models will generate an immersive expe-



Predicting Disparity Windows 223

rience in the local office environment. The goal is to seem to be sitting across
the desk from collaborators who may be half a world away.

For our stereo algorithm this proscribes a
number of strong performance requirements.
The reconstructions must be dense in order
to allow for meshing and rendering, and they
must offer fine resolution in depth to be able
to distinguish features on the human face
and hands. The method must operate in real-
time on a sufficiently large image (320 x 240)
to provide this level of density and resolu-
tion. Resolution in depth naturally depends
on resolution in disparities. Figure (2] illust-
rates a camera pair from the tele-cubicle in
Figure [l For a workspace depth w = 1 m,
the disparity ranges from d = —185 pixels at
point A, 35cm from the cameras to d = 50
pixels at B, 135cm from the cameras. Clearly
a disparity range of 50— (—185) = 235 is pro-
hibitive for an exhaustive correspondence se-
arch. Finally the human subject is of course non-rigid and non-planar, and can
move at high velocity inside the workspace.

The current tele-cubicle configuration includes a pair of strongly calibrated
monochrome cameras and a colour camera for texture mapping. A correlation
stereo algorithm running on a Pentium II determines disparities, from which a
depth map can be calculated for triangulation and rendering. Finally this trian-
gulation is transmitted via TCP/IP to a 3D display server. The next generation
of the tele-cubicle, illustrated in plan view in Figure[dl, will have a semi-circular
array of 7 colour cameras attached by threes to 5 quad processor Pentium III’s.
Despite this increase in processing power, we need to exploit any method which
will improve our real-time response while not sacrificing the accuracy or work-
volume of the tele-cubicle.

In the following sections we will describe the disparity window prediction
techniques we propose to enhance the real-time capability of our stereo recon-
structor. We describe a number of experiments which look at using only the
previous disparity and flow to predict disparities in the next frame, as well as
using predicted window locations to search shorter disparity ranges in the next
image in a sequence. We examine the accuracy of the methods relative to our exi-
sting full image algorithm as well as the quality of window based reconstructions
over several frames.

Fig. 2. Verged Stereo pair configu-
ration for work volume w.

2 Predicting Disparity Windows

Our method for integrating disparity segmentation and optical flow can be sum-
marized in the following steps:
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Step 1: Bootstrap by calculating a full disparity map for the first stereo
pair of the sequence.

Step 2: Use flood-fill to segment the disparity map into rectangular win-
dows containing a narrow range of disparities.

Step 3: Calculate optical flow per window for left and right smoothed,
rectified image sequences of intervening frames.

Step 4: Adjust disparity window positions, and disparity ranges accor-
ding to estimated flow.

Step 5: Search windows for correspondence using assigned disparity ran-
ge, selecting 'best’ correlation value over all windows and disparities

associated with each pixel location.
Step 6: Goto Step 2.

In the following sections we will discuss in some detail our existing full frame
correlation stereo algorithm, our flood fill segmentation technique, optical flow
approximation, window update and regional correspondence techniques.

Fig. 3. Frames 10, 12 and 18 from the left image sequence. The subject translates and
rotates from right to left in the image.

Correlation Stereo. In order to use stereo depth maps for tele-immersion or other
interactive virtual worlds, they must be accurate and they must be updated
quickly, as people or objects move about the environment. To date our work has
focused on the accuracy of our reconstructions.

The stereo algorithm we use is a classic area-based correlation approach.
These methods compute dense 3-D information, which allows extraction of higher
order surface descriptions. In general our stereo system operates on a static set
of cameras which are fixed and strongly calibrated. Originally the system was
created to generate highly precise surface reconstructions.

Our full image implementation of the reconstruction algorithm begins by
grabbing images from 2 strongly calibrated monochrome cameras. The system
rectifies the images so that their epipolar lines lie along the horizontal image
rows [1] to reduce the search space for correspondences and so that corresponding
points lie on the same image lines. Computing depth values from stereo images
of course requires finding correspondences, and our system measures the degree
of correspondence by a modified normalized cross-correlation (MNCC),

2 cov(Ip,IR)
o2(I) + o2(Ig)’

c(Ir,Ir) = (1)
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where I;, and Ir are the left and right rectified images over the selected corre-
lation windows. For each pixel (u,v) in the left image, the matching produces
a correlation profile ¢(u,v,d) where disparity d ranges over acceptable integer
values.

All peaks in the correlation profile satisfying a relative neighbourhood thres-
hold, are collected in a disparity volume structure. Peaks designated as matches
are selected using visibility, ordering and disparity gradient constraints. A sim-
ple interpolation is applied to the values in the resulting integer disparity map
to obtain subpixel disparities. From the image location, disparity and camera
calibration parameters we can now compute a dense map of 3-D depth points
based on our matches. We can also easily colour these depth points with the
greyscale (or colour) values at the same locations in the left rectified image.

a. b.
Fig. 4. Disparity map (a) and extracted windows of similar disparity (b) (frame 12).

Flood-fill Segmentation. It is more common to use flow fields to provide coarse
segmentation than to use similar disparity [7l13], but our existing stereo system
provides dense disparity maps, whereas most fast optical flow techniques provide
relatively sparse flow values. Restricting the change in disparity per window
essentially divides the underlying surfaces into patches where depth is nearly
constant. The image of a curved surface for example will be broken into a number
adjacent windows, as will a flat surface angled steeply away from the cameras.
Essentially these windows are small quasi-frontal planar patches on the surface.
Rather than apply a fixed bound to the range of disparities as we do, one could
use a more natural constraint such as a disparity gradient limit [6]. This tends
to create windows with large disparity ranges when smooth slanted surfaces are
present in the scene however, which is what we are trying to avoid.

Any efficient region growing method could be applied to cluster the dispa-
rities into regions. Since our constraint is a threshold, and we allow regions to
overlap we have chosen to use flood fill or seed fill [T7, pp. 137-141], a simple poly-
gon filling algorithm from computer graphics. We have implemented a scan-line
version which pops a seed pixel location inside a polygon to be filled, then finds
the right and left connected boundary pixels on the current scan line, ‘filling’
those pixels between. Pixels in the same x-range in the lines above and below
are then examined. The rightmost pixel in any unfilled, non-boundary span on
these lines in this range is pushed on the seed stack and the loop is repeated.
When the stack is empty the polygon is filled.
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We have modified this process slightly so that boundary is defined by whether
the current pixel/disparity value falls within a threshold (+/ — 5) of the first
seeded pixel. We start with a mask of valid disparity locations in the disparity
image. For our purposes filling is marking locations in the mask which have been
included in some disparity region, and updating the upper left and lower right
pixel coordinates of the current window bounding box. When there are no more
pixels adjacent to the current region which fall within the disparity range of the
original seed, the next unfilled pixel from the mask is used to seed a new window.
Once all of the pixel locations in the mask are set the segmentation is complete.

The disparity map for pair 12 of our test image sequence (Figure B) is illu-
strated in Figure[d], along with the disparity windows extracted by the flood-fill
segmentation. Twenty-nine regions were extracted, with mean disparity range
width of 14 pixels. We maintain only rectangular image windows rather than
a convex hull or more complicated structure, because it is generally faster to
apply operations to a larger rectangular window than to manage a more com-
plicated region structure. A window can cover pixels which are not connected
to the current region being filled (for example a rectangular bounding box for
an ‘L’-shaped region will cover many pixels that are not explicitly in the dispa-
rity range) and therefore the windows extracted overlap. This is an advantage
when change in disparity signals a depth discontinuity, because if a previously
occluded region becomes visible from behind another surface, the region will be
tested for both disparity ranges.

As a final step small regions (< MIN-REG pixels) are attributed to noise and
deleted. Nearby or overlapping windows are merged when the corner locations
bounding window W; expanded by a threshold NEAR-WIN, fall within window
W;, and the difference between the region mean disparities satisfies:

Yr Io(rny)  2g, Io(@w, yi)

NEAR-DISP
N; N; < ’

where R; and R; are the set of pixels in two disparity regions, with N; and
N; elements respectively. In section we examine the sensitivity of window
properties (number, size and disparity range) to variation in the NEAR-WIN
and NEAR-DISP thresholds.

Flow per Window Optical flow calculations approximate the motion field of
objects moving relative to the cameras, based on the familiar image brightness
constancy equation: I v, + I,vy + Iy = 0, where I is the image brightness and
I, I, and I; are the partial derivatives of I with respect to z, y and ¢, and
v = [vg,vy] is the image velocity. We use a standard local weighted least square
algorithm [LII21] to calculate values for v based on minimizing

e = Z(vaw + Iyu, + I,)?
Wi

for the pixels in the current window W;. We do not apply an affine flow assump-
tion because of the increased complexity of solving for 6 parameters rather than
just two components of image velocity [4].
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Fig. 5. Flow fields computed for (a) full image and (b) segmented windows (left frames
10-16), (c) histogram of absolute angular flow differences (degrees).

For each disparity window we assume the motion field is constant across
the region W;, and calculate a single value for the centre pixel. We use weights
w(z,y) to reduce the contribution of pixels farthest from this centre location.

[<

1 (@) (%)) -t s
w(gj’y) = Wje : : Z(T) ( )
2 2

&

where N; = ng; X ny; are the current window dimensions.
We construct our linear system for I,v, + I,v, = —1I; as follows:

w1, y1) L (z1,y1) w(z1, Y1)y (r1,91)
A — . .

w(meyNi)If(‘eryNi) w(‘eryNi)Iy(meyNi)
w(z1, y1) (21, y1)
b=— :

where locations (x1,y1)...(xn,,yn;) are the pixels contained in window W;. We
can then calculate the least squares solution Av — b = 0 using one of several
forms of factorization [16].

Only one optical flow value is estimated per window. Figure [ shows the
comparison between flow estimates for 5 x 5 windows across the full image and
values computed for our segmented windows (depicted by the same vector at
each window location) for the left image sequence frames 10-16. The figure also
includes a histogram of the absolute angle between the flow vectors at each
point where a valid flow exists for both the full frame and window flows. The
angle difference is clustered around zero degrees so that the dominant flow in the
region is on average reasonably represented. A better estimate might be achieved
by maintaining the centroid and standard deviation in x and y of the pixels
included in a region by the segmentation. Computing optical flow on a window
Wii = (Cpi — 02, Cyi — 0yi, Cai + 0424, Cys + 0y3) would focus the calculation on
the region nominally extracted.
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Window Flow Adjustment. For each window represented by its upper left and
lower right corner locations W (t) = [(@ur, Yut)s (Zir, Yir)], we must now adjust
its location according to our estimated flow for the right and left images v; =
[va1, vyi] and v, = [Ugy, Vyr].

The window corner adjustment for d¢, the time %
since the last disparity, basically takes W(t)’s upper

Flow

left and lower right window coordinates and adds v;dt B | e
and v,dt to each in turn. The upper left corner is riganal | Window
updated to the minimum z and y coordinates from | v

W (t), Wui(t) + vidt and Wy (t) + v.-dt. Similarly the
lower right coordinate is updated to the maximum
x and y coordinates from Wp,.(t), Wi,.(t) + vidt and
Wi, (t) + vedt. This process is illustrated in Figure
Basically we force the window to expand rather than
actually moving it, if the left coordinate of the win-  Fig. 6. Update expands
dow is predicted to move up or left by the right or window in flow direc-
left flow, then the window is enlarged to the left. If tions.
the right coordinate is predicted to move down or right the window is enlarged
accordingly. Checks are also made to ensure the window falls within the image
bounds (1, maxc), (1, maxr).

Since the windows have moved as a consequence of objects moving in depth,
we must also adjust the disparity range D(t) = [dmin, dmaz] for each window:

D(t+dt) = [min (dpmin + Vz1dt — Vyrdt, dmin), max (dmaz + Vz1dt — Vgrdt, dmaz )]

Windowed Correspondence. Window based correspondence proceeds much as
described for the full image, except for the necessary manipulation of win-
dows. Calculation of MNCC using Equation [I] allows overall calculation of the
terms o2(I1), 0?(Ig), and u(Ir) and u(Ir) on a once per image pair basis.
For cov(Ip,Ir) = p(ILIr) — p(Ip)u(Ig) however, u(IrIr) and the product
w(Ip)pu(Ir) must be recalculated for each disparity tested. In the case of our
disparity windows, each window can be of arbitrary size, but will have relatively
few disparities to check. Because our images are rectified to align the epipolar
lines with the scanlines, the windows will have the same y coordinates in the
right and left images. Given the disparity range we can extract the desired win-
dow from the right image given x, = x; — d. Correlation matching and assigning
valid matches to the disparity volume proceeds as described for the full image
method.

The general method of extracting and tracking disparity windows using op-
tical flow does not depend on the specific correlation methods described above.
Most real-time stereo algorithms do use some form of dense correlation mat-
ching [9], and these will benefit as long as the expense of propagating the win-
dows via optical flow calculations is less than the resulting savings over the full
image/full disparity match calculation.
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3 Results

3.1 Complexity Issues

The first question we need to ask is whether the calculation of window based cor-
relation and optical flow, is actually less expensive in practice than the full image
correlation search over (dmin, dmaz). For images of size (ng X n,) let us consider
the operation of convolving with a mask g of size ny. We currently do the same
per pair calculations o2(Iz), 0?(Ir), u(Ir) and u(Ig) for the full and regional
matching, so we will discount these in our comparison. The term u(Iz)u(Ig)
over (dmag — dmin) disparities requires ngnyng(dmaez — dmin) multiplications for
the full image case and ) "y, Nzinying(dmaz; — dmin, ) multiplications for the set
of extracted windows W, where W, has dimensions (ng;, ny;). Similarly calcu-
lating p(IrIg) will require nanyng(dmaez — dmin) Versus Yy Naifying(dmaz, —
dmin,; ) multiplications. We have to weigh this saving in the covariance calculation
against the smoothing and least squares calculation per window of the optical
flow prediction process.

For temporal estimates over n; images in a sequence we have to smooth and
calculate derivatives for the images in the sequence in z, y and t. We currently
do this calculation over the entire rectified image which requires (2 x 3)ngngznyn,
multiplications for each of 2 (right and left) image sequences. To solve Av = b,
using for example QR decomposition and back substitution requires approxima-
tely (12)(nginy:) flops per window.

Finally for the flood-fill segmentation each pixel may be visited up to 4 times
(once when considering each of its neighbours), but probably much fewer. The
only calculations performed are comparisons to update the window corners and
disparity range as well as a running sum of the pixel values in each region. The
cost is small compared to full image correlations, so we will disregard it here.

The window based correspondence will be faster if the following comparison
is true:

(2)n$nyng (dmax - dmin) >
(2 X 2% 3)ngnmnynt + (2) ZW [nminying(dmazi - dmim)] (2)
+ 2w [(12) (naing:)] -

For the examples demonstrated in this paper the the ratio of window based
calculations to full image calculations is about 0.55, which is a significant saving.
This saving is largely dependent on the number of frames in time n; which are
used to estimate derivatives for the optical flow calculation.

3.2 Experiments

Segmentation Thresholds. Having established this complexity relationship we
can see that the number and size of window regions and their disparity ranges is
critical to the amount of speedup achieved. These properties are to some extent
controlled by the thresholds in the flood fill segmentation which determine when
nearby windows can be merged based on their disparity range and proximity.
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Segmentation Threshold Effects on Number of Windows Segmentation Threshold Effects on Disparity Range

B 10 B 10
'NEAR-DISP Threshold (pi) NEAR-DISP Threshald (pix)

b. Window Size

B 10
NEAR-DISP Threshold (pix)

a. Number of Windows c. Disparity Range

Fig. 7. Variation in window properties as a result of varying the NEAR-DISP and
NEAR-WIN thresholds in the segmentation algorithm. The = axis represents values
(in pixels) of the NEAR-DISP threshold, the 4 curves represent values of NEAR-WIN
(0,5,10, and 15 pixels)

For the purpose of demonstration we will consider the sequence of images
in Figure Bl The full disparity calculation was performed for frame 12, and
the resulting disparity map is illustrated in Figure d, along with the windows
extracted by the flood fill algorithm. The plots in Figure [1 illustrate the effect
on the number of windows (a), their size in pixels (b) and the length of disparity
range (c) associated with varying the thresholds for window merging. Initially
the number of windows increases as small windows, which would otherwise be
discarded, are merged such that together they are large enough to be retained.
Eventually the number of windows levels off and slowly decreases, until in the
limit one would have only one large window. The plots for threshold values versus
window size in pixels and length of disparity range indicate that larger thresholds
result in larger windows and larger disparity ranges, as we would expect.

Another interesting question is just how
small we can make the disparity range, since
decreasing the correspondence search space
was our aim when we started this work. Ge-
nerally there will be a tradeoff between the 2
size of the disparity range and the number of ~ f»
windows we have to search in. The size and  :
number of the windows will also be affected
by the NEAR-WIN threshold as illustrated
by the two curves in Figure[8 These plot re-
gion based complexity as a proportion of the

Complexity interaction NEAR-WIN and Disparity Range

full frame correspondence calculation, with
respect to disparity bounds ranging from 1
to 15 pixels. When no neighbour merging
is done, the smaller the disparity range the

Fig.8. Window algorithm calcu-
lation as a proportion of the
full frame complexity for NEAR-
WIN=0 and NEAR-WIN=10, for

lower the complexity. For NEAR-WIN=1(0 disparity bounds from 1 to 15.
merging many relatively distant small windows with similar very narrow (1-4
pixel) disparity range increases window overlap, and steeply increases comple-

xity. However, this calculation is a little simplistic because it suggests that a
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Fig. 10. Triangulations of depth points for predicted, region-based and full correspon-
dence (frame 18).

window with disparity range of 1 can simply be propagated forward in time
using our window flow value. As we will see below, pure prediction is a very
poor way of determining disparities for the next frame, and search is always
necessary to compensate for errors in our model.

Accuracy of Disparity Estimates. A critical issue when introducing a compromise
such as our windowing technique is how accurate the results will be. We have
tested two methods for estimating disparities for the current time step: a pure
prediction approach simply using the flow and disparity value for each window
location to calculate the new disparity according to:

d(t +1) = d(t) + Atvy, — Atwy,.

Second is the approach which actually calculates the new disparity via cor-
relation on the predicted window location. The windows extracted for frame 12
are shown in Figure [4} the calculated disparity maps for the prediction, region
and full image methods for frame 18 in the sequence are illustrated in Figure @]
(brighter pixels indicate higher disparity values). Eliminating small windows in
the segmentation obviously acts as a filter, eliminating the background noise seen
in the full correlation. We can also examine the histograms of error in disparity
in Figure[IIl These take the full image calculation as correct and compare the
prediction and region-based correlation to it (dfuy — dest). Of course even the
full image calculation may have correspondence errors, but in the absence of
ground truth we will accept it as the best available estimate.
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The pure prediction fares poorly with a mean error of 3.5 pixels, and a
standard deviation of 17.9. The region-based correlation however has a mean of
-0.4 pixels and a standard deviation of only 5.0 pixels. We can also examine the
rendered versions of the data in Figure These views are extracted from our
3D viewer and show the triangulated reconstructions rotated by 30° in X and
—30° in Y. The pure prediction reconstruction is clearly wrong. It is assigning
depth values to regions that are essentially empty in the new image, apparently
because of an underestimate of the optical flow for some windows, or because
the flow values do not accurately reflect rotation in depth.

Histogram of Disparity Error

The region-based method performs
much better. It misses some points mat- |
ched by the full correspondence, also pro- '
bably because of an underestimate of flow
values. However it fills in some holes visi-
ble in the full reconstruction, probably be- 0
cause the full image method finds a stron-
ger (but erroneous) correlation, outside the
disparity range of the windows which fall
on this region. The triangulation method S ‘
used to render the reconstructions deletes
triangles with long legs, hence the holes left
in the full frame triangulation.

05 1 Window based method
1

04

-20 0 20 40 60
Disparity Error (d—d_)

Fig. 11. Histogram of disparity error
versus full correspondence.

Table 1. Sequence performance statistics for regional correspondence.

frame|% full calc|% unmatched|mean err in d|o err in d
5 53.3 0.16 -0.49 3.50
9 67.7 0.18 -0.14 4.36
13 54.0 0.24 -0.58 3.62
17 54.1 0.28 -0.57 4.38

Ezxtended Sequence. Our final experiment is to observe the effect of processing
only extracted windows over several frames as proposed by our algorithm. Can
the system actually ‘lock-on’ to objects defined by the segmentation over time,
or will it lose them? We ran the algorithm on frames 1-17 (561 ms) of the image
sequence. The full disparity map was calculated for the first frame as a starting
point, and windows were extracted. Optical flow per window was computed over
4 frame sequences (2-5, 6-9, 10-13, and 14-17), and the region-based disparities
were calculated for frames 5, 9, 13 and 17. The images and their corresponding
regional disparity maps are illustrated in Figures and [[3 Table [ further
breaks down the performance over time. The mean and standard deviation of
(d i1 — dest) do not increase significantly, but the percentage of points for which
the full calculation finds a match but the regional method does not steadily
increases (although relatively small at 0.28%). This is what one would expect,
since only motion increases the window size over time, and once a portion of
an object is ‘lost’ there is no guarantee it will eventually fall in a window with
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Fig. 14. Triangulations of depth points region-based correspondence (frames 5, 9, 13
and 17), views are rotated by 30° in X and —30° in Y.

appropriate disparity range again. The percentage of the full image calculation
based on Equation[2], is about 55%.

4 Conclusions and Future Work

Providing dense accurate 3D reconstructions for virtual or augmented reality
systems, in real-time is a challenge for conventional correlation stereo. One way
to meet this challenge and to deal with the combinatorics of the long disparity
ranges required, is to exploit temporal coherence in binocular image sequences.
This requires a tradeoff between the benefit from motion calculations integrated
into the stereo system, and the added cost of making these calculations.

In this paper we have proposed a simple method for decreasing the cost
of dense stereo correspondence with the goal of reconstructing a person in an
office environment in real-time for use in an augmented reality tele-immersion
system. We start by segmenting an initial dense disparity map into overlapping
rectangular windows using a flood fill algorithm which bounds regions by limiting
the range of disparities they contain. We predict the new window locations and
disparity ranges in an image sequence via a single optical flow estimate per
window. Future reconstructions are based on correspondence in the predicted
windows over the predicted disparities.
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We have examined the relative complexity of stereo correspondence on full
images versus our proposed window system and found that depending on the
number of frames in time used to estimate optical flow the window-based system
requires about half the time of standard correlation stereo. We have demonstra-
ted experimentally that our window-based reconstructions compare favourably
to those generated by the full algorithm even after several frames of propagation
via estimated optical flow. The observed mean differences in computed dispari-
ties were less than 1 pixel and the maximum standard deviation was 4.4 pixels.

Obviously there is much more we can exploit in the stereo-flow relationship.
We plan to examine probabilistic fusion over time, which will allow us to associate
window regions with similar motions and treat them as a single object. This 3D
segmentation can then guide our meshing and rendering as well as improve the
predictions for position and disparity range for our algorithm. In order to catch
any new objects entering the scene we have to track changes on the boundary,
the simplest way to achieve this is to maintain image differences to detect any
new motion, and expand existing windows or generate new ones with a large
disparity range.

For our specific application in tele-immersion we plan to expand our methods
to a polynocular stereo configuration as illustrated in Figure . The problem
of combining and verifying correspondence from multiple camera pairs can be
restricted in a similar way by projecting window volumes in (z,y,d) from a
master pair into the images of other pairs. These windows could be tracked in
the auxiliary pairs in much the same way we have proposed here, providing
additional constraint and evidence for our reconstructed models.
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