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Abstract. A novel algorithm is proposed to learn pattern similarities
for texture image retrieval. Similar patterns in different texture classes
are grouped into a cluster in the feature space. Each cluster is isolated
from others by an enclosed boundary, which is represented by several
support vectors and their weights obtained from a statistical learning
algorithm called support vector machine (SVM). The signed distance of
a pattern to the boundary is used to measure its similarity. Furthermore,
the patterns of different classes within each cluster are separated by se-
veral sub-boundaries, which are also learned by the SVMs. The signed
distances of the similar patterns to a particular sub-boundary associated
with the query image are used for ranking these patterns. Experimental
results on the Brodatz texture database indicate that the new method
performs significantly better than the traditional Euclidean distance ba-
sed approach.

Keywords: Image indexing, learning pattern similarity, boundary di-
stance metric, support vector machines.

1 Introduction

Image content based retrieval is emerging as an important research area with
application to digital libraries and multimedia databases [9] [§] [10] [12]. Texture,
as a primitive visual cue, has been studied for over twenty years. Various techni-
ques have been developed for texture segmentation, classification, synthesis, and
so on. Recently, texture analysis has made a significant contribution to the area
of content based retrieval in large image and video databases. Using texture as
a visual feature, one can query a database to retrieve similar patterns based on
textural properties in the images.

In conventional approach, the Euclidean or Mahalanobis distances [§] bet-
ween the images in the database and the query image are calculated and used
for ranking. The smaller the distance, the more similar the pattern to the query.
But this kind of metric has some problems in practice. The similarity measure
based on the nearest neighbor criterion in the feature space is unsuitable in many
cases. This is particular true when the image features correspond to low level
image attributes such as texture, color, or shape. This problem can be illustrated
in Fig. 0 (a), where a number of 2-D features from three different image clusters
are shown. The retrieval results corresponding to query patterns “a” and “b” are
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Fig. 1. (a). Examples of 2-D features of three different clusters: the circles belong to
cluster 1, the balls belong to cluster 2, and the squares belong to cluster 3. Three
points a, b and ¢ are from cluster 1. (b). A nonlinear boundary separates the examples
of cluster 1 from cluster 2 and 3.

much different. In addition, using Fuclidean distance measures for the nearest
neighbor search might retrieve patterns without any perceptual relevance to the
original query pattern.

In fact, above problem is classical in pattern recognition, but not much effort
has been made to address these issues in the context of image database browsing.
Ma and Manjunath [7] present a learning based approach to retrieve the similar
image patterns. They use the Kohonen feature map to get a coarse labeling,
followed by a fine-tuning process using learning vector quantization. However,
the performance of their learning approach is not good when evaluated by the
average retrieval accuracy (see Fig. 6-2 on page 108 of [6]). In addition, there
are many parameters to be adjusted heuristically and carefully for applications.

Similarity measure is the key component for content-based retrieval. San-
tini and Jain [T5] develop a similarity measure based on fuzzy logic. Puzicha
et al. [T4] compare nine image dissimilarity measures empirically, showing that
no measure exhibits best overall performance and the selection of different mea-
sures rather depend on the sample distributions. In this paper, we propose a
new metric called boundary distance to measure pattern similarities, which is
insensitive to the sample distributions. The basic idea here is that a (non-linear)
boundary separates the samples belonging to a cluster of similar patterns with
the remaining. This non-linear boundary encloses all similar patterns inside. In
Fig.[ (b), a non-linear boundary separates all samples in cluster 1 with others
belonging to cluster 2 and 3. The signed distances of all samples to this nonlinear
boundary are calculated and used to decide the pattern similarities. This non-
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linear boundary can be learned from some training examples before we construct
an image database.

How to learn the boundary? We argue that an appropriate similarity lear-
ning algorithm for application in content based image retrieval should have two
properties: 1) good generalization; 2) simple computation. The first one is a com-
mon requirement for any learning strategy. While the second is very important
for large image database browsing.

A statistical learning algorithm called support vector machine (SVM) [16],
is used in our learning approach. The foundations of SVM have been developed
by Vapnik [16]. The formulation embodies the Structural Risk Minimization
(SRM) principle, which has been shown to be superior to traditional Empirical
Risk Minimization (ERM) principle employed by conventional artificial neural
networks [4]. SVMs were developed to solve the classification and regression
problems [16] [4], and has been used recently to solve the problems in computer
vision, such as 3D object recognition [13], face detection [11], and so on.

We adapt the SVMs to solve the image retrieval problem. The major dif-
ference from the conventional utilization of SVMs is that we use the SVMs to
learn the boundaries.

The paper is organized as follows. In Section 2, we describe the basic theory
of SVM and its use for discriminating between different clusters. In Section 3,
we present the techniques for learning image pattern similarity and ranking the
images. Section 4 evaluates the performance of the new method for similar image
retrieval. Finally, Section 5 gives the conclusions.

2 Cluster Discrimination by Support Vector Machines

2.1 Basic Theory of Support Vector Machines

Consider the problem of separating the set of training vectors belonging to two
separate classes, (x1,91), .., (X, 41), where x; € R", a feature vector of dimen-
sion n, and y; € {—1,+1} with a hyperplane of equation wx + b = 0. The set
of vectors is said to be optimally separated by the hyperplane if it is separated
without error and the margin is maximal. In Fig.[2] (a), there are many possible
linear classifiers that can separate the data, but there is only one (shown in Fig.
2l (b)) that maximizes the margin (the distance between the hyperplane and
the nearest data point of each class). This linear classifier is termed the opti-
mal separating hyperplane (OSH). Intuitively, we would expect this boundary
to generalize well as opposed to the other possible boundaries shown in Fig. 2]
(a).

A canonical hyperplane [16] has the constraint for parameters w and b:
miny, y;(w - x; +b) = 1.

A separating hyperplane in canonical form must satisfy the following con-
straints,

yilw-x;)+0b>1, i=1,...,1 (1)
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Fig. 2. Classification between two classes using hyperplanes: (a) arbitrary hyperplanes
1, m and n; (b) the optimal separating hyperplane with the largest margin identified

by the dashed lines, passing the two support vectors.
according to its definition. Hence the hyperplane that
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optimally separates the data is the one that minimizes
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The solution to the optimization problem of () under the constraints of ()

is given by the saddle point of the Lagrange functional,
®3)

l
Liwba) = 3 | w P = Y a {wsl(ow - x0)+ 8]~ 1)

where a; are the Lagrange multipliers. The Lagrangian has to be minimized
with respect to w, b and maximized with respect to a; > 0. Classical Lagrangian

duality enables the primal problem (@) to be transformed to its dual problem,
(4)

which is easier to solve. The dual problem is given by,
{min L(w,b,«)

max W (a) = max I }

(0%
The solution to the dual problem is given by,
1 1
o —argminYac— 2 303 s % )
i=1 i=1 j=1
t=1,...,1, and 22:1 a;y; = 0.

with constraints «; > 0,
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Solving Equation (B) with constraints determines the Lagrange multipliers,
and the OSH is given by,

l
_ _ - 1_
W= Z ayiXi, b= 5w [x, + xs] (6)
=1
where x,. and xg are support vectors, a,,as >0, y.=1, y,=—1.

For a new data point x, the classification is then,

1
f(x) = sign (W -x+b) = sign (Z ayi(x; - x) + b) (7)
i=1
To generalize the OSH to the non-separable case, slack variables &; are intro-
duced [2]. Hence the constraints of (1) are modified as

The generalized OSH is determined by minimizing,

l
o(w,€) =5 | wl?+0 D¢ ©

i=1

(where C' is a given value) subject to the constraints of (&).

This optimization problem can also be transformed to its dual problem, and
the solution is the same as (f)), but adding the constraints to the Lagrange
multipliers by 0 < o; < C, i=1,...,1L

2.2 Non-linear Mapping by Kernel Functions

In the case where a linear boundary is inappropriate, the SVM can map the
input vector, x, into a high dimensional feature space, z. The SVM constructs
an optimal separating hyperplane in this higher dimensional space. In Fig.[3, the
samples in the input space can not be separated by any linear hyperplane, but
can be linearly separated in the non-linear mapped feature space. Note that the
feature space in SVMs is different from our texture feature space. According to
the Mercer theorem [16], there is no need to compute this mapping explicitly, the
only requirement is to replace the inner product (x;-x;) in the input space with
a kernel function K (x;,x;) to perform the non-linear mapping. This provides a
way to address the curse of dimensionality [16].

There are three typical kernel functions [16]:
Polynomial

K(x,y)=(x-y+1))* (10)

where the parameter d is the degree of the polynomial.
Gaussian Radial Basis Function
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Fig. 3. The feature space is related to input space via a nonlinear map ®, causing
the decision surface to be nonlinear in the input space. By using a nonlinear kernel
function, there is no need to do the mapping explicitly.

K(xy) = e (- O ()

202

where the parameter ¢ is the width of the Gaussian function.
Multi-Layer Perception

K(x,y) = tanh (scale.(x - y) — of fset) (12)

where the scale and of fset are two given parameters.
For a given kernel function, the classifier is thus given by,

!
f(x) = sign (Z iy K (x5, %) + b) (13)

2.3 Discrimination between Multiple Clusters

Previous subsections describe the basic theory of SVM for two-class classifica-
tion. For image retrieval in a database of multiple image clusters, for instance,
c clusters, we can construct ¢ decision boundaries. Note that a cluster may con-
tain more than one image class. The perceptually similar images in different
classes are considered as one cluster. Each boundary is used to discriminate bet-
ween the images of one cluster and all the remaining belonging to other clusters.
The images belonging to cluster k are enclosed by the k** boundary. This is a
one-against-all strategy in the context of pattern recognition. To our knowledge,
only the recently proposed support vector machines can be used to obtain the
boundary optimally by quadratic programming.
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3 Similarity Measure and Ranking

The basic idea of learning similarity is to partition the original feature space into
clusters of visually similar patterns.
The pair (w,b) defines a separating hyperplane or boundary of equation

w-x+b=0 (14)

By kernel mapping, the boundary (w,b, K) is,

m
D ay K(x),x) +b" =0 (15)
j=1

where X7 (j =1,---,m) are support vectors, @; are the linear combination co-

efficients or weights, and b* is a constant. Usually, m < [, i.e., the number of
support vectors is less than that of the training examples.

Definition 1 (signed distance):

The signed distance D(x;;w,b) of a point x; from the boundary (w,b) is
given by
(16)

Definition 2 (signed distance with kernel):
The signed distance D(x;; w,b, K) of a point x; from the boundary (w, b, K)
with kernel function K(-,-) is given by

Y a5y K (%) +b°

D(Xi;wab7 K) = ™ % * (17)
[ Zj:l oYX [
Combining Definitions 1 and 2 with equation (), we have
1
yiD(xi;wvba K) Z m * (18)
l Zj:l A;Y;X; [
for each sample x;, and y; = £1, ¢ =1,---,l. Therefor, we have,
Corollary: The lower bound of the positive examples (y; = 1) to the bo-
undary (w,b, K) is Hm% the upper bound of the negative examples

=1 ajy;x;|l '
i = —1) is ———w————. The bounda ,b, K) is between these two bo-
(yi ) is DI undary (w ) i ween W

unds.

In our cluster-based similarity measure, the perceptually similar patterns
are grouped into one cluster and labeled as positive examples, while the other
patterns are treated as being dissimilar to this cluster. Thus we give,

Definition 3 (similarity measure):

The patterns x;, ¢ = 1,---, l/, are said with perceptual similarity if they are
considered as positive samples (y; = 1) and hence located inside the boundary
(w, b, K); the samples outside are said dissimilar to the patterns enclosed by the
boundary.
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In the case of ¢ clusters, we have ¢ boundaries.

Definition 4 (signed distance to the k" boundary):

If the boundary separating cluster k from others is (wyg, by, K), the signed
distance of a pattern x; to the k" boundary is

km  —x * Tk
Zj:l akjyij (ijaxi) + by,
D(Xi;Wk,bk7K) = [Z— N (19)
22521 @ umkix; |l

where xj;, (j = 1,---,ky,) are the support vectors, ay,; are the optimal

Lagrange multipliers for the k** boundary, and l_)z are some constants, k =
1’ PRI s C.

Equation (IJ) is used to calculate the signed distances of patterns to the k"
boundary. The pattern similarities (dissimilarities) are measured by Definition
3.

How to connect the ¢ boundaries to each pattern in a database? It is realized
as follows: when an image pattern x; is ingested into the database during its
construction, the signed distances of x; to the stored ¢ boundaries are calculated
firstly by equation ([3), and then the index k* is selected by,

k' = argmaxlgkch(Xi;kabkaK) (20)

The index k* is therefore connected to the image pattern x;. Basically, this
is a classification problem. Each pattern in the database will be associated with
a boundary index.

In retrieval, when a query image pattern is given, the boundary index k*
connected to the query pattern is first found. Then, we use equation (IJ) to
calculate the signed distances of all samples to the k*** boundary. According
to Definition 3, the images in the database with positive distances to the k**"
boundary are considered similar. Thus we obtain the similar image patterns to
the query.

How to rank these similar images? The similar images obtained above belong
to different texture classes. To rank these images, the class information should
be taken into consideration. Assume that cluster & (k = 1,---,c¢) contains g
texture classes, the feature space of cluster k is further divided into ¢ subspaces.
Each subspace is enclosed by a sub-boundary containing the patterns of the same
class. Thus, we partition the feature space in a hierarchical manner: in the higher
level, the database is divided into c clusters, with each contains the perceptually
similar patterns inside; in the lower level, each cluster k is further divided into
gr texture classes. The signed distances to the sub-boundary ¢ of all image
patterns enclosed by the boundary £* are used for ranking, if the query image
pattern is located inside the sub-boundary g; .

In summary, each (query) image is associated with two-level boundary inde-
xes. The images selected by the higher level boundary are ranked by their signed
distances to the lower level boundary.

The hierarchical approach to texture image retrieval has two advantages: one
is to retrieve the perceptually similar patterns in the top matches; the other is
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to speed up the retrieval process further. Note that there is no need to compute
the Euclidean distance between two points as in [{7].

4 Image Retrieval Performance

The Brodatz texture database [1] used in the experiments consists of 112 texture
classes. Each of the 512x 512 images is divided into 49 sub-images (with overlap),
which are 128 x 128 pixels, centered on a 7 x 7 grid over the original image. The
first 33 sub-images are used as the training set and the last 16 for retrieval [7].
Thus we create a database of 3696 texture images for learning, and a database
of 1792 texture images to evaluate the retrieval performance. A query image is
one of the 1792 images in the database.

In this paper we use a similar Gabor filter banks [3] as that derived in [§],
where four scales and six orientations are used. Applying these Gabor filters to
an image results in 24 filtered images. The mean and standard deviation of each
filtered image are calculated and taken as a feature vector

f = {100, o1, s 35, 000, -+ +, 035] (21)
where the subscripts represent the scale (s = 0,---,3) and orientation (o =
0,-+-,5). The dimension of the feature vector is thus 48.

The 112 texture image classes are grouped into 32 clusters, each containing
1 to 8 similar textures. This classification was done manually and Table 1 shows
the various clusters and their corresponding texture classes. Note that we use
all the 112 texture classes.

In the learning stage, we use the Gaussian RBF kernel function with the
parameter o = 0.3 and C = 200. Figure [ illustrates an evaluation based on the
average retrieval accuracy defined as the average percentage number of patterns
belonging to the same image class as the query pattern in the top 15 matches
[8]. The comparison is between our hierarchical approach to learning similarity
and ranking and that based on the Euclidean distance measure. Note that the
significant better result achieved by our method. This figure demonstrates that
our hierarchical retrieval can give better result than the traditional Euclidean
distance based approach. Note that the learning approach in [6] gives nearly the
same result as that based on Euclidean distance (Fig. 6-2 on page 108 of [6]).

Since the average retrieval accuracy does not consider the perceptual simila-
rity, another evaluation is done, based on the 32 clusters instead of just the top
15 matches [7]. Figure [l illustrates the second evaluation result. Here the diffe-
rences are quite striking. The performance without learning deteriorates rapidly
after the fist 10 ~ 15 top matches, however, the retrievals based on our learning
similarity perform very well consistently.

Figure [0l and [ show some retrieval examples, which clearly demonstrate the
superiority of our learning approach. Another important issue is the hierarchical
retrieval structure which speed up the search process.
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Fig. 4. The retrieval performance in terms of obtaining the 15 correct patterns from
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Table 1. Texture clusters used in learning similarity. The visual similarity within each
cluster are identified by the people in our research group.

Cluster Texture Class Cluster Texture Class
1 d001 d006 d014 d020 d049 17 d069 d071 d072 d093
2 d008 d056 d064 d065 18 d004 d029 d057 d092
3 d034 d052 d103 d104 19 d039 d040 d041 d042
4 d018 d046 d047 20 d003 d010 d022 d035 d036 d087
5 d011 d016 d017 21 d048 d090 d091 d100
6 d021 d055 d084 22 d043 d044 d045
7 d053 d077 4078 d079 23 d019 d082 d083 d085
8 d005 d033 d032 24 d066 d067 d074 d0O75
9 d023 d027 d028 d030 d054 d098 d031 d099 25 d101 d102
10 d007 d058 d060 26 d002 d073 d111 d112
11 d059 d061 d063 27 d08&6
12 d062 d088 d089 28 d037 d038
13 d024 d080 d081 d105 d106 29 d009 d109 d110
14 d050 d051 d068 d070 d0O76 30 d107 d108
15 d025 d026 d096 31 d012 d013
16 d094 d095 32 d015 d097
5 Conclusions

We have presented a new algorithm to learn pattern similarity for texture image
retrieval. The similar patterns are grouped into a cluster in the feature space.
The boundaries isolating each cluster with others can be learned efficiently by
support vector machines (SVMs). Similarity measure and ranking are based on
the signed distances to the boundaries, which can be simply computed. The
performance of similar pattern retrieval is significantly improved as compared to
the traditional Euclidean distance based approach.
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(a) Euclidean distance measure (b) learning similarity

Fig. 6. Image retrieval comparison. Each query image has 15 other similar images in
the database. The query image (d065-01) is shown at the top left in each case. Note
that the degradation in visual similarity in the case of Euclidean distance measure.
The images are ordered according to decreasing similarity from left to right and top
to bottom. In the case of learning similarity, the performance continues without any
marked degradation in perceptual similarity, even after 60 Images are retrieved.



190 G. Guo, S.Z. Li, and K.L. Chan

(a) Euclidean distance measure (b) learning similarity

Fig. 7. Image retrieval comparison. Each query image has 15 other similar images in
the database. The query image (d035-01) is shown at the top left in each case. Note that
the degradation in visual similarity for the case of Euclidean distance measure. In the
case of learning similarity, the performance continues without any marked degradation
in perceptual similarity, even after 90 images are retrieved.
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