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Abstract. We focus in this paper on the problem of adding computer-
generated objects in video sequences that have been shot with a zoom
lens camera. While numerous papers have been devoted to registration
with fixed focal length, little attention has been brought to zoom lens
cameras. In this paper, we propose an efficient two-stage algorithm for
handling zoom changing which are are likely to happen in a video se-
quence. We first attempt to partition the video into camera motions
and zoom variations. Then, classical registration methods are used on
the image frames labeled camera motion while keeping the internal pa-
rameters constant, whereas the zoom parameters are only updated for
the frames labeled zoom variations. Results are presented demonstrating
registration on various sequences. Augmented video sequences are also
shown.

1 Introduction

Augmented Reality (AR) is a technique in which the user’s view is enhanced
or augmented with additional information generated from a computer model. In
contrast to virtual reality, where the user is immersed in a completely computer-
generated world, AR allows the user to interact with the real world in a natural
way. This explains why interest in AR has substantially increased in the past
few years and medical, manufacturing or urban planning applications have been
developed [2,5,15,18].

In order to make AR systems effective, the computer generated objects and
the real scene must be combined seamlessly so that the virtual objects align well
with the real ones. It is therefore essential to determine accurately the location
and the optical properties of the cameras. The registration task must be achieved
with special care because the human visual system is very good at detecting even
small mis-registrations.

There has been much research in the field of vision-based registration for
augmented reality [1,12,14,18]. However these works assume that the internal
parameters of the camera are known (focal length, aspect ratio, principal point)
and they only address the problem of computing the pose of the camera. This is
a strong limitation of these methods because zoom changing is likely to happen
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in a video sequence. A method is proposed in [11], which can retrieve metric
reconstruction from image sequences obtained with uncalibrated zooming cam-
eras. However, considering unknown principal point leads to unstable results if
the projective calibration is not accurate enough, the sequence not long enough,
or the motion sequence critical towards the set of constraints. More stable results
are obtained when the principal point is considered as fixed in the centre of the
image, but this assumption is not always fulfilled (see [19]) and is not accurate
enough for image composition. Other attempts have been made to cope with
varying internal parameters for AR applications [10]. However this approach
uses targets arbitrarily positioned in the environment. It is therefore of limited
use if outdoor scenes are considered.

In this paper we extend our previous works on vision based registration
methods [12,13] to the case of zoom-lens cameras. Zoom-lens camera calibration
is still found to be very difficult for several reasons [16,3]: modeling a zoom-
lens camera is difficult due to optical and mechanical misalignments in the lens
system of a camera. Moreover, zoom-lens variations can be confused with camera
motions: for instance, it is difficult to discriminate a translation along the optical
axis from a zoom.

In this paper, we take advantage of our application field to reduce the problem
complexity. Indeed, we assume that the viewpoint and the focal length do not
change at the same time. This assumption is compatible with the techniques used
by professional movie-makers. We develop in this paper an original statistical
approach: for each frame of the sequence, we test the hypothesis of a zoom against
the hypothesis of a camera motion. If the motion hypothesis is retained, we still
have to compute the camera pose with the old internal parameters. Otherwise,
the internal parameters are computed assuming that the camera pose does not
change. Camera parameters are supposed to be known in the first image of the
sequence (they can be obtained easily from a set of at least 6 2D/3D point
correspondences pointed out by the user).

This paper is organized as follows: first, we discuss in section 2 the pinhole
camera model and we show the difficulties to recover both the camera pose
and the internal parameters with varying focal lengths. Section 3 then describes
our original method for zoom/motion partitioning of the sequence. Section 4
describes how registration is performed from this segmentation. Examples which
demonstrate the effectiveness of our method are shown in section 5.

2 Registration Difficulties with a Zoom-Lens Camera

In this section, we first describe the pinhole model which is widely used for
camera modeling. Then we describe our attempts to compute both the zoom
and the motion parameters in a single stage. This task is called full calibration
in the following. We show that classical registration methods fail to recover
both the internal and the external parameters, even though some of the intrinsic
parameters are fixed.
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2.1 The Pinhole Camera Model

Let (X, Y, Z) represent the coordinates of any visible point M in a fixed reference
system (world coordinate system) and let (Xc, Yc, Zc) represent the coordinates
of the same point in the camera centered coordinate system. The relationship
between the two coordinate systems is given by
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where [R, T ] is the 3D displacement (rotation and translation) from the world
coordinate system to the camera coordinate system.

We assume that the camera performs a perfect perspective transform with
center O at a distance f of the image plane. The projection of M on the image
plane is (x = f Xc

Zc
, y = f Yc

Zc
). If 1/ku (resp 1/kv) is the size of the pixel along

the x axes (resp. y axes), its pixel coordinates are:
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where u0, v0 are the coordinates of the principal point of the camera (i.e. the
intersection of the optical axis and the image plane).

The coordinates of a 3D point M in a world coordinate system and its pixel
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Full camera calibration amounts to compute 10 parameters: 6 external pa-
rameters (3 for the rotation and 3 for the translation) and 4 internal parameters
(αu = kuf , αv = kvf , u0 and v0). Internal and external parameters are collec-
tively referred to as camera parameters in the following.

2.2 Direct Full Calibration

When the internal parameters are computed off-line, the registration process
amounts to compute the displacement [R, T ] which minimizes the re-projection
error, that is the error between the projection of known 3D features in the scene
and their corresponding 2D features detected in the image. For sake of clarity,
we only suppose that the 3D features are points but we can also consider free
form curves [12]. Moreover, we show in section 4 that 2D/2D correspondences
can be added to improve the viewpoint computation.

The camera pose is therefore the displacement [R, T ] which minimizes the
reprojection error

min
R,T

∑
dist(proj(Mi), mi)2
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where minimization is performed only on the 6 external parameters (Euler angles
and translation).

Theoretically, zoom-lens variations during shooting can be recovered in the
same way. We have therefore to compute not only the camera viewpoint but also
the internal camera parameters (focal length, pixel size, optical center) which
minimize the reprojection error.

min
R,T,αu,αv ,u0,v0

∑
dist(proj(Mi), mi)2

As mentioned by several authors [3], this approach is unable to recover both
the internal and external parameters. To overcome this problem, some authors
have proposed to reduce the number of unknowns by fixing some of the internal
parameters to predefined values. As several experimental studies proved that
the ratio αu

αv
remains almost constant during zoom variations [4], the set of the

internal parameters to be estimated is then reduced to αu, u0, v0. Unfortunately
this approach fails to recover the right camera parameters. Consider for instance
Fig. 1 which exhibits the results when registration is achieved on the 6 external
parameters and the 3 internal parameters. As the house stands on a calibration
target, the internal and external parameters can be computed for each frame us-
ing classical calibration techniques [6]. They can therefore be compared to those
computed with the registration method. The camera motions with respect to the
turntable and zoom variations during the cottage sequence are shown in Table
3.a. The camera trajectory along with the focal length computed for each frame
of the sequence are shown in Fig. 1 in dashed lines. They have to be compared
to the actual parameters which are shown in solid lines on the same figure. Note
that the trajectory is the position of the camera in the horizontal plane and the
arrows indicates the optical axis. These results prove that some camera motions
are confused with zoom variations: besides the common confusion between zoom
and translation along the optical axis, other motions do not correspond to the
actual one: between the frames 13 and 14, an unexpected translation is detected
and is compensated by a camera zoom out.

Such confusions are also observed in [3], but Bougnoux considers that they
do not really affect the quality of the reconstruction of the scene. Unfortunately,
the conclusion is not the same for the quality of a composition: an augmented
sequence of the cottage using the computed viewpoints and focal length is shown
on our web site. Small errors on the camera parameters do not really affect the
reprojection of the scene but they induce jittering effects which affect the realism
of the composition.

To take into account the interdependance of the internal parameters, Sturm
expresses u0 and v0 as polynomial functions of αu [16]. As the aspect ratio
αu/αv remains constant over the sequence, only one internal parameter αu has
to be determined. However, to determine the degrees and the coefficients of
the polynomial models, the camera has to be pre-calibrated for several zoom
positions.

Hence, resolving the general full calibration problem is difficult. In this paper,
we propose a robust solution to the particular case of sequences where camera
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Fig. 1. (a) A snapshot of the cottage sequence and the reprojection of the 3D features.
(b) The actual camera trajectory (solid line) and the computed one (dashed line). (c)
The actual (solid line) and the estimated (dashed line) focal length during the sequence.

pose and zoom do not change at the same time. This particular case is very inter-
esting for practical applications: indeed, when professional movie-makers make
shootings, they generally avoid to mix camera motions and zoom variations. To
take advantage of the structure of these sequences, we compute the reprojection
error for each frame of the sequence in the two possible cases zoom alone and
camera motion alone: (i) we consider that the internal parameters do not change
and we search for the camera pose [R, T ] that minimizes the reprojection error
(ii) we consider that the camera is fixed and we search for the internal param-
eters. Surprisingly, experiments we conducted show that the smallest of these
two residuals does not always match the right camera parameters: Fig. 2 plots
the reprojection error between frames 22 to 35 on a camera zoom sequence. For
each frame i, the reprojection error between frame 20 and frame i is computed
for the zoom and the motion hypothesis. This allows us to see the influence of
the zoom magnitude on the criterion. The results prove that this method fails to
recover the right camera parameters unless the magnitude of the zoom variation
is high.
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Fig. 2. Reprojection error with the zoom and the motion assumption for a camera
zoom motion.
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3 Discriminating between Zoom Variation and Camera
Motion

The above results show that the classical registration methods cannot be used to
cope with zoom-lens cameras. We therefore resort to a two-stage method: we first
attempt to partition the video into camera motions and zoom variations. Then,
our registration method is used on the image frames labeled camera motion while
keeping the internal parameters constant, whereas the internal parameters are
only computed for the frames labeled zoom variations. Unlike other methods for
video partitioning which are based on the analysis of the optic flow [20], our
method is only based on the analysis of a set of 2D corresponding points which
are automatically extracted and matched between two consecutive images. The
motion information brought by the key-point is very reliable and allows us to dis-
criminate easily between zoom variation and translation along the optical axis.
Our approach stands out from [20] in several points : in [20], the mean and the
standard deviation of the optical flow are computed in seven non-overlapping
sub-regions of the image. These values are compared with thresholds to dis-
criminate between zoom, tilt, pan, Z-rotation, horizontal translation, vertical
translation and Z-translation. However, it is not explained how the thresholds
are computed, whereas it is the main point of the algorithm (furthermore, many
confusions are observed in the final results). Moreover, to discriminate between
a zoom and a Z-translation, the authors suppose that the center of the zoom is
the center of the image, which is not true in practical situations [19].

Section 3.1 describes the way to extract key-points. Then we present the
affine model of a zoom introduced in [4]. Finally we give our algorithm for
zoom/motion automatic segmentation of the sequence (3.3).

3.1 Extracting and Matching Key-Points

Key-points (or interest points) are locations in the image where the signal
changes two dimensionally: corners, T-junctions or locations where the texture
varies significantly. We use the approach developed by Harris and Stephens [7]:
they exploit the autocorrelation function of the image to compute a measure
which indicates the presence of an interest point. More precisely, the eigenvalues
of the matrix [

I2
x IxIy

IxIy I2
y

]
(Ix =

∂I

∂x
. . .)

are the principal curvatures of the auto-correlation function. If these values are
high, a key-point is declared.

We still have to match these key-points between two consecutive images. To
do this, we use correlation techniques as described in [21].

Fig 3.a and 3.b exhibit the key-points which have been automatically ex-
tracted in two successive images in the loria scene and Fig. 3.c shows the matched
key-points.
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Fig. 3. (a,b) Key-points extracted in two consecutive frames. (c) The matched key-
points.

3.2 Modeling Zoom-Lens Cameras

Previous studies on zoom-lens modeling proved that the ratio αu

αv
is very stable

over long time periods. On the contrary, the position of the principal point
(u0, v0) depends on the zooming position of the camera. This point can vary up
to 100 pixels while zooming! However, for most camera lens, it can be shown that
the principal point varies on a line while zooming [4]. That is the reason why an
affine model with 3 parameters C0, a0, b0 can be used to describe zoom variations.
Enciso and Vieville [4] show that if (u′, v′) and (u, v) are corresponding points
after zooming, we have

{
u′ = C0u + a0,
v′ = C0v + b0.

(2)

The current matrix of the internal parameters A′ is therefore deduced from
the previous one A by:

A′ =


C0 0 a0

0 C0 b0

0 0 1


A. (3)

If we want to use this property to discriminate between a zoom and a camera
motion, we must prove that a camera motion can not be approximated by the
same model. This can be shown from the equations of the optical flow : the
optical flow (or instantaneous velocity) of an image point (x = f Xc

Zc
, y = f Yc

Zc
),

is {
ẋ = − U

Zc
+ xW

Zc
+ Axy − B(x2 + 1) + Cy,

ẏ = − V
Zc

+ y W
Zc

+ A(y2 + 1) − Bxy − Cx,

where (U, V, W )T is the translational component of the motion of the camera,
(A, B, C)T is its angular velocity and f is set to 1 [8]. The optical flow obtained
for the basic motions Tx (horizontal translation), Ty (vertical translation), Tz

(Z-translation), Rx (tilt), Ry (pan) and Rz (Z-rotation) are given in table 1.a.
Theoretically, none of these motions can be described by an affine transformation
with three parameters. However, if Zc = Z0+∆Z where ∆Z � Z0 for each model
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point, that is the depth of the object is small with regard to the distance from
the object to the camera (case 1), then Tx, Ty and Tz can be approximated by
a zoom model whose parameters C0, a0 and b0 are given in table 1.b (we use
the approximation ẋ = u̇

ku
= u′−u

ku∆t and ẏ = v′−v
kv∆t ). Moreover, if x � 1 and

y � 1, that is the focal length is large (case 2), then Rx and Ry can also be
approximated by a zoom model (see table 1.b).

Hence, some camera motions can induce an image motion close to the model
of the zoom. Fortunately, most of them can easily be identified as camera
motions. Indeed, for a zoom motion, the invariant point of the affine model
( a
1−C0

, b
1−C0

) is the principal point of the camera and lies approximately in the
middle of the image. On the contrary, for Tx, Ty, Rx and Ry, this point is out-
side the image and goes to infinity because C0 is close to 1. Finally, only the
translation along the optical axis Tz is really difficult to discriminate from a
zoom.

a.

Motion ẋ ẏ

Tx − U
Zc

0

Ty 0 − V
Zc

Tz x W
Zc

y W
Zc

Rx Axy A(y2 + 1)

Ry −B(x2 + 1) −Bxy

Rz Cy −Cx

b.

Case (C0, a0, b0)

Tx + case1 (1,−ku
U∆t
Z0

, 0)

Ty + case1 (1,0,−kv
V ∆t
Z0

)

Tz + case1 (1 + W∆t
Z0

,−u0
W∆t

Z0
,−v0

W∆t
Z0

)

Rx + case2 (1,0,A)

Ry + case2 (1,−B,0)

- -

Table 1. (a) Optical flow obtained for the basic motions. (b) Parameters of the
approximating affine model for ambiguous cases.

3.3 Zoom/Motion Partioning

In this section, we present our approach for zoom/motion partioning. For each
frame of the sequence, we test the hypothesis of a zoom against the hypothe-
sis of a camera motion. We proceed as follows: key-points (ui, vi){1≤i≤N} and
(u′

i, v
′
i){1≤i≤N} are extracted and matched in two consecutive frames Ik and Ik+1.

If we suppose that a zoom occurs, the model parameters C0, a0, b0 which best fit
the set of corresponding key-points are computed by minimizing the residual

r =
1
N

N∑
i=1

(u′
i − C0ui − a0)2 + (v′i − C0vi − b0)2. (4)

We must now estimate the goodness of fit of the data to the affine model of
the zoom. We have to test if the discrepancy r is compatible with the noise
magnitude on the extracted key-points. Otherwise the zoom hypothesis should
be questioned.

Statistical tests, such as χ2 tests, are often used to estimate the compatibility
of the data with the model with a given significance level a (90% for instance).
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However, the standard deviation is needed for each datum. In our case, it is very
difficult to calculate an error on the location of the key points. The χ2 test has
also a serious drawback: how can we set the significance level a? For a very large
value of a, the hypothesis is always admitted, while for a very small value of a
the hypothesis is always rejected.

That is the reason why we resort to another criterion to assess the zoom hy-
pothesis. An important thing to note is that a zoom variation does not introduce
new features in the images whereas translation motion does: some features which
are visible for a camera viewpoint are no longer visible for a neighboring camera
position. In Fig. 4.a, point A is not visible from Ck because it is occluded by
the object O1. But point A becomes visible when the camera moves from Ck to
Ck+1. Note that such a phenomenon also arises for translation along the optical
axis (Fig. 4.b). These features which become visible due to the camera motion
are very important for assessing the zoom hypothesis. As key-points are not
necessarily detected in the areas which become visible or which disappear, the
key-points are not well suited for zoom assessment. We therefore use the set of
all the contours detected in image Ik to assess the parameters (if C0 < 1 we use
image Ik+1). We first compute a correlation score for each contour. This score
belongs to [−1, 1] and is all the better that the zoom hypothesis is fulfilled. If the
zoom hypothesis is satisfied, the gray levels Ik(u, v) and Ik+1(C0u+a0, C0v+b0)
must be nearly the same. Moreover the neighborhood of these two corresponding
points must be similar. We therefore use the correlation score to evaluate the
zoom hypothesis. First, we define the correlation for a given point m = (u, v) in
Ik:

score(m) =

∑i,j=n
i,j=−n Ik(u + i, v + j) × Ik+1(C0(u + i) + a0, C0(v + j) + b0)

(2n + 1)2σ(Ik)σ(Ik+1)
,

where σ(Ik) (resp. σ(Ik+1)) is the standard deviation of Ik (resp. Ik+1) at point
(u, v) in the neighborhood (2n+1)×(2n+1) of (u, v) (resp. (C0u+a0, C0v+b0)).
The score ranges from −1 for two correlation windows which are not similar at
all, to 1 for two correlation windows which are identical.

If a contour is given by the points m1, ..., mp, the score of a contour C is
defined as the average of the scores of all points:

score(C) = 1/p

i=p∑
i=1

score(mi).

Finally the score of the zoom hypothesis is computed as the minimum of the
score of each contour (note that only the strong contours are kept). This is a
robust way to assess the zoom hypothesis. Indeed, if a zoom variation really
happens, the score is high for each contour, and the global score is high too. On
the contrary, if a camera motion happens, the score is generally low for nearly
all the contours when the camera moves because the affine zoom model does not
match the image transformation. Moreover, in case of a translating motion, the
score is low for the contours of Ik which are occluded in Ik+1. Hence the global
score is low too.

We still have to choose a threshold Thscore which allows us to distinguish
between zoom variation and camera motion according to the global score. This
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Fig. 4. New features appear under translating motion: point A is not visible from Ck

but becomes visible from Ck+1.

value has been determined experimentally on various sequences. Experiments
we have conducted (see section 5.2) prove that the value Thscore = .5 can be
used for all the considered sequences to discriminate between zoom variation
and camera motion even for the difficult case of a translation along the optical
axis. Hence, if global score > .5 and if the invariant point of the affine model lies
inside the image, then the zoom hypothesis is accepted, otherwise the camera
motion hypothesis is retained.

4 Registration with a Zoom Lens Camera

Once the zoom/motion partitioning has been achieved, registration can be per-
formed. If the frame belongs to a camera zoom sequence, then registration is
performed only on the set of the internal parameters. Otherwise, registration is
performed only on the set of the external parameters. As described in [12], we
use n 2D/3D curve correspondences. Once the curves corresponding to the 3D
features have been detected in the first frame of the sequence, they are tracked
from frame to frame.

4.1 Registration for a Camera Motion

If the frame belongs to a camera motion sequence, we perform a six-parameters
optimization from the curve correspondences:

αk+1
u = αk

u, αk+1
v = αk

v ,

uk+1
0 = uk

0 , vk+1
0 = vk

0 ,
Rk+1, T k+1 = argmin

R,T

∑
i r2

i ,

where ri is a robust distance between 2D curve i and the projection of its
3-D counterpart. The computation of the residual ri is detailed in [12]. However,
one of the limitations of using 2D/3D correspondences originates in the spatial
distribution of the model features: the reprojection error is likely to be large far
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from the 3D features used for the viewpoint computation. An example is shown
in Fig 5.a: the viewpoint has been computed using the buiding in the background
of the scene (the Opera). If we add a computer generated car on the foreground
of the the scene, this car seems to hover.

a. b.

Fig. 5. (a) Registration using only 2D/3D correspondences. (b) Registration with the
mixing method.

In order to improve viewpoint computation, we propose to use the key-points
that have being matched for the partitionning stage. Previous approaches at-
tempted to recover the viewpoint from 2D/2D correspondences alone [17]; un-
fortunately, this approach turns out to be very sensitive to noise in image mea-
surements. For this reason, points correspondences between frames are here used
to provide additional constraints on the viewpoint computation.

Our approach encompasses the strength of these two methods: the viewpoint
is defined as the minimum of a cost function which incorporates 2D/3D corre-
spondences between the image and the model as well as 2D/2D correspondences
of key-points. Note that the extracted key-points bring information in areas
where the 3D knowledge available on the scene are missing (fig. 5.b).

Given the viewpoint [Rk, Tk] computed for a given frame k, we now explain
how we compute the viewpoint in the next frame k + 1 using the 3D model as
well as the matched key-points (qi

k, qi
k+1)1≤i≤N . Let qi

k be a point in frame k.
Its corresponding point in frame k + 1 belongs to the intersection of the image
plane with the plane (Ck, Ck+1, q

i
k). This line is called the epipolar line. For two

matched points (qi
k, qi

k+1), the quality of the viewpoint computed can be assessed
by measuring the distance vi between qi

k+1 and the epipolar line of qk in frame
k+1 [9]. Then, a simple way to improve the viewpoint computation using the
interest points is to minimize

minRk+1,Tk+1

(
1
n

n∑
i=1

r2
i +

λ

N

N∑
i=1

v2
i

)
. (5)

This way, any a priori information about the scene where the virtual object
is going to sit on can be included in this model. The λ parameter controls the
compromise between the closeness to the available 3D data and the quality of
the 2D correspondences between the key-points. We use λ = 1 in our practi-
cal experiments. The minimum of equation 5 is computed by using an iterative
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algorithm for minimization such as Powell’s algorithm, initialization being ob-
tained from the parameters computed in the previous image of the sequence.
More details about this method can be found in [13].

4.2 Registration for a Zoom

If the frame belongs to a camera zoom sequence, we get the new intrinsic pa-
rameters of the camera from equation 3. However, as approximation errors can
propagate from frame to frame, we prefer to perform a three-parameters op-
timization from the 2D/3D correspondences. Hence, the camera parameters in
frame k +1 are deduced from the camera parameters in frame k by the relation:

Rk+1 = Rk, T k+1 = T k,

Ck+1
0 , uk+1

0 , vk+1
0 = argmin

C0,u0,v0

∑
i r2

i ,

αk+1
u = Ck+1

0 αk
u,

αk+1
v = Ck+1

0 αk
v .

5 Experimental Results

In this section, we first justify experimentally the use of the threshold Thscore =
0.5 to discriminate between zoom variations and camera motions. Then, section
5.2 present results of the partitioning process. Finally, registration results are
given and augmented scenes are shown.

5.1 Choosing Thscore

To prove that Thscore = 0.5 is well suited to discriminate between camera motion
and zoom variation, we considered a variety of video sequences (see Fig. 6). Each
sequence alternates zoom variations with camera motions, including translations
along the optical axis TZ . For each frame of the sequence, the labeling in terms
of zoom variation, rotation motion, translation motion is known. This allows us
to compare the results of our algorithm with the actual ones.

1:The cottage sequence 2:The cup sequence 3:The office sequence 4:The Loria sequence

Fig. 6. Snapshots of the scenes used for testing the zoom/motion partitioning algo-
rithm.



590 G. Simon and M.-O. Berger

We first compute the score of the zoom hypothesis for each frame of the four
sequences. Then we compute the mean along with the standard deviation of the
score for the frames of the sequence corresponding to zoom variation, rotation
and translation and (more difficult cases) Z-translation and panoramic motion.
These results are shown in table 2: the first column shows the kind of variation
undergone by the camera. The second and third columns give the scene under
consideration and the number of frames in the sequence corresponding to the
camera variation. Columns 4 and 5 show the mean and the standard deviation
of the residual computed from the corresponding key-points (see equation 4).
Finally, columns 6 and 7 shows the mean and the standard deviation of the score
of the zoom hypothesis. These results clearly show that the use of the residual
defined in equation (4) does not permit to discriminate between zoom variations
and translation along the optical axis. On the contrary, the score we have defined
gives high values when zoom happens and much smaller results when camera
motion happens, even in case of TZ translation. Finally, these experiments prove
that the value Thscore = .5 is appropriate to distinguish zoom variations from
camera motions.

variation in scene nb r σr mean σscore

the camera frames score
parameters

Zoom 1 6 0.617 0.030 0.747 0.055
2 4 0.460 0.266 0.860 0.055
3 32 0.860 0.057 0.677 0.133
4 29 0.515 0.014 0.561 0.064

Rotation 1 10 3.593 1.439 -0.591 0.171
+ translation
Translation 1 2 0.651 0.020 0.393 0.066
along the 2 4 0.841 0.018 0.274 0.035

optical axis 3 16 1.380 0.190 0.047 0.277
Panoramic 4 15 0.630 0.066 -0.209 0.315

motion

Table 2. Score of the zoom hypothesis for various camera parameters.

5.2 Results in Zoom/Motion Partitioning

We now give detailed results of our algorithm on the cottage sequence and the
Loria sequence. Note that the camera parameters are known for the cottage
sequence because the house stands on a calibration target. The Loria sequence
is a 700-frames sequence which has been shot outside our laboratory. The actual
camera parameters are not available for this sequence, but we have manually
partitioned the sequence (see table 3.b) to enable comparison with the algorithm.

For each of the two sequences (Fig. 7), we show the scores computed along
the sequence, the results of our partitioning algorithm, and the computed zoom
factor C0. Also shown in the Fig. 7.b and 7.e is the actual partition of the
sequence for comparison. For the cottage sequence, the algorithm performance is
quite good and the computed parameters are very close to the actual parameters.
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a.

image motion/zoom

0 → 20 rotation 40◦

20 → 35 zoom in
35 → 40 translation 10cm
40 → 55 zoom out
55 → 65 rotation −20◦

b.

Image frames camera parameters

0 → 120 panoramic motion
121 → 344 Zoom in
345 → 408 no motion, nor zoom
409 → 600 Zoom out
601 → end panoramic motion

Table 3. Camera parameters during (a) the cottage sequence and (b) the Loria se-
quence.

For the Loria sequence, the reader can notice that some scores are higher than
the threshold during the panoramic motion between frames 0 and 100 (Fig. 7.d).
However, in Fig. 7.a and 7.d, the test on the invariant point is shown with the
dash-dot lines: the value 1 indicates that the invariant point is inside the image,
while the value 0 indicates that the invariant point is outside the image. Using
this constraint, the results of the partition process is very good (Fig. 7.b and
7.e).
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Fig. 7. Results for the cottage sequence (first row) and the Loria sequence (second
row).

5.3 Registration Results

In this section, registration results are shown for the cottage sequence and the
Loria sequence. As the actual parameters are known for the cottage sequence, Fig.
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8 shows the trajectory and the focal length computed with our algorithm (dashed
lines) along with the actual parameters (solid lines). The reader can notice that
the parameters obtained are in close agreement with the actual values. To prove
the accuracy of the camera parameters, we have augmented the scene with a
palm tree and a beach umbrella (Fig. 9). Note that the shadows between the
scene and the computer generated objects greatly improve the realism of the
composite images. They have been computed from a rough 3D reconstruction
of the scene given by the corresponding key-points. The reprojection of the 3D
model features with the computed camera parameters is also shown. The overall
impression is very good.

a.

15

Zoom in

Zoom out

begin

end

b.2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

0 10 20 30 40 50 60 70

Fig. 8. Comparison of the actual trajectory (a) and focal length αu (b) (solid lines)
with the computed ones (dashed lines).

Fig. 9. Registration results on the cottage sequence: reprojection of the model (first
row) and snapshots of the augmented scene (second row).
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We do not have the actual camera parameters for the Loria sequence. Hence
looking at the reprojection of the model features is a good way to assess the
registration accuracy. Fig. 10 exhibits the reprojection of the model every hun-
dred frames. The reader can notice that the reprojection error is small even at
the end of the sequence, which proves the efficiency of our algorithm. Finally, we
augment the sequence with the well known sculpture La femme à la chevelure
défaite realized by Mirõ. The interested reader can look at the video sequences
of our results at URL http://www.loria.fr/~gsimon/eccv2000.html.

Fig. 10. Registration results on the Loria sequence: the reprojection of the model
every hundred frames (first row) and snapshots of the augmented scene (second row).

6 Conclusion

In this paper we have presented an efficient registration algorithm for a zoom
lens camera. We restricted our study to the case of image sequences which alter-
nate zoom variation alone and camera motion alone. This is a quite reasonable
assumption which is always fulfilled by professional movie-makers. The perfor-
mance of our algorithm is quite good and our algorithm is capable of discrimi-
nating between zoom variations and TZ translations. However, our experiments
show that some improvements and extensions can be made to our approach.

First, experiments on the Loria sequence show that the camera trajectory is
somewhat jagged. Smoothing the trajectory afterwards is not appropriate be-
cause the correspondences between the image and the 3D model are not main-
tained. We currently investigate methods to incorporate regularity constraints
on the trajectory inside the registration process.

Second, as was observed in our experiments, moving objects in the scene
may perturb the partitioning process. Indeed, the correlation score is always low
for moving objects and this may lead to false rejection of the zoom hypothesis.
Detecting moving objects in the scene prior to the registration process could
help to solve this problem.
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