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Abstract. Reconstructing the scene from image sequences captured by moving
cameras with varying intrinsic parameters is one of the major achievements of
computer vision research in recent years. However, there remain gaps in the kno-
wledge of what is reliably recoverable when the camera motion is constrained to
move in particular ways. This paper considers the special case of multiple came-
ras whose optic centres are fixed in space, but which are allowed to rotate and
zoom freely, an arrangement seen widely in practical applications. The analysis
is restricted to two such cameras, although the methods are readily extended to
more than two.

As a starting point an initial self-calibration of each camera is obtained inde-
pendently. The first contribution of this paper is to provide an analysis of near-
ambiguities which commonly arise in the self-calibration of rotating cameras. Se-
condly we demonstrate how their effects may be mitigated by exploiting the epipo-
lar geometry. Results on simulated and real data are presented to demonstrate how
a number of self-calibration methods perform, including a final bundle-adjustment
of all motion and structure parameters.

1 Introduction

A configuration of cameras which occurs commonly in a number of imaging applications
is that of multiple well-separated cameras whose optic centres are fixed in space, but
which freely and independently (i) rotate about their optical centres and (ii) zoom in and
out. This arrangement is used in surveillance and in broadcasting (particularly outside
broadcasting), and is a pattern for acquiring models for virtual and augmented reality,
where full or partial panoramas are taken from different positions around a building, for
example.

What are the ways of handling the combined imagery from, say, two such uncalibrated
cameras to recover a Euclidean reconstruction of a static scene? The least committed
approach might be to generate a projective reconstruction, enforcing the zero translation
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constraint within the images from a single camera, but then using overall a self-calibration
algorithm for general motion, such as those of Pollefeys et al. [11], Heyden and Åström
[9] or Hartley et al. [7]. A practical disadvantage is that general motion methods require
locating the plane at infinity, but a broader criticism is that the motion is far from general.

The most committed (and perhaps most obvious) approach is to self-calibrate each
rotating camera independently, for which methods have been described in the literature
[3,2,12,13]. The task of reconstruction is then reduced to the more familiar one of
structure from multiple views using calibrated cameras. Although dealing with each
camera separately is attractive since it reduces the problem to a set of smaller, less
complex ones, this method is likely to give poor results if the initial self-calibration is
inaccurate. Moreover it is clearly not using all the available information.

The results in this paper provide two pieces of information which inform the solution
from the spectrum of those available.

– There are some near-ambiguities in self-calibration of rotating cameras which can
have a large effect both on the camera intrinsics and a reconstruction obtained from
them. These effects are present when the self-calibration problem is ill-conditioned,
in particular with small motions, large focal lengths, short image sequences and a
poor spread of image features. They can be mitigated by modelling them correctly.

– Modelling the appropriate degree of inter-camera coupling is desirable. It proves
useful to exploit the epipolar geometry not only to recover the relative positions
of the two cameras, but also to refine the self-calibration of both sets of intrinsic
parameters.

Two very different measures are used to characterize performance. The rms re-
construction error measures the distance between points in two rescaled and aligned
Euclidean reconstructions. The rms reprojection error measures the faithfulness of re-
construction in the image: a low value implies that coplanarity and collinearity are well
preserved, but it provides little information regarding the preservation of angles.

Results from any point in the spectrum of solutions may always be used to initialize a
bundle-adjustment over all scene points and motion parameters, minimizing reprojection
error. However, in addition to its cost implications for on-line use, bundle-adjustment is
susceptible to convergence to local minima. The latter is critical in this context where a
number of near-ambiguities are present since bundle-adjustment tends to make only very
small changes to the motion parameters. Hence even if the reprojection error is reduced,
there is by no means a guarantee of a significant change in reconstruction error. One
goal of this work is to find algorithms which are good enough either to make bundle-
adjustment unnecessary or to provide better initial estimates to increase the chance of
convergence to the correct solution within it.

After introducing briefly the theory of self-calibration of rotating and zooming came-
ras in Section 2 we investigate precisely what information can and cannot be reliably ex-
tracted from such algorithms in Section 3. In particular we describe two near-ambiguities
which commonly arise. In Section 4 we review the structure from motion algorithm of
two calibrated views which we modify to resolve the ambiguities while minimizing epi-
polar transfer error. Experiments on synthetic and real data are presented in Section 5.
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2 Self-Calibrating Rotating and Zooming Cameras: Review

The imaging process is modelled by the pinhole camera model so that in the ith image,
the projection xi of a point X in the scene is described by the relation xi = PiX where
xi and X are both given in homogeneous coordinates, implying that all vectors, matrices
and equations are only defined up to an unknown scale factor. Pi is a 3 × 4 projection
matrix which may be decomposed as Pi = Ki (Ri ti) where Ri and ti describe the
transformation between a coordinate frame attached to the scene and a camera centred
coordinate system. Ki is the matrix of intrinsic parameters in image i and has the usual
form

K =


αu s u0

0 αv v0
0 0 1


 . (1)

αu and αv are the focal lengths in the u and v directions, (u0 v0) are the coordinates of
the principal point, and s is a parameter that describes the skew between the two axes
of the CCD array.

In the case of a camera rotating about its optic centre, t = 0, the final coordinate
of X = (X Y Z 1)� is immaterial, and the projection equation simplifies to xi =
KiRi (X Y Z) � . Different images taken from the same rotating camera relate to each
other by homographies which take the form

xj = Hijxi = KjRjR
−1
i K−1

i xi = KjRijK
−1
i xi . (2)

The inter-image homographiesHij may be calculated directly from image measurements,
for instance from point or line correspondences. Various techniques for this calculation
are available, ranging from fast linear methods minimizing an algebraic error, via non-
linear methods which minimize the geometric transfer error, to a bundle-adjustment in
the motion and structure parameters, the structure comprises points on a mosaic.

Eliminating Rij from equation (2) yields

(
KjKj

�)
= Hij

(
KiKi

�)
Hij

� , (3)

which can also be derived by projecting a point on the plane at infinity, X = (X Y Z 0)�,
into a camera with a non-zero fourth column in Pi. The observed inter-image homogra-
phies Hij are thus the homographies induced by the plane at infinity, and equation (3) is
known as the infinite homography constraint. ω∗ = KiKi

� is the dual of the image of
the absolute conic (DIAC).

Given the homographies, Hij , equation (3) provides constraints on the intrinsic pa-
rameters. If the camera intrinsics are constant throughout the sequence, the constraint
reduces to that of Hartley in [6], the DIAC may be computed linearly, and the matrix K
is found from it by Cholesky decomposition.

For varying intrinsics, de Agapito et al. [3] solve equation (3) in a manner similar
to that of Pollefeys et al. [11] for cameras undergoing general motion. In a non-linear
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optimization the cost function

D =
n∑

i=1

‖ KiKi
� − H0iK0K0

�H0i
� ‖2

F (4)

is minimized, where the elements of Ki, i = 0...n, are the unknown parameters. To eli-
minate the unknown scale factors, KiKi

� and H0iK0K0
�H0i

� are normalized so that their
Frobenius norms are equal to one. An advantage of this approach is that any constraints
on the intrinsic parameters, such as zero skew or known aspect ratio may be applied
directly. Alternatively, parameters such as the aspect ratio or principal point can be sol-
ved for, but constrained to be constant throughout the sequence. A similar approach was
adopted by Seo and Hong [12], but under known skew and principal point they note that
the focal lengths can be computed linearly from equation (3).

In a later work [2] de Agapito et al. proposed a fast linear method for calculating all
intrinsic parameters by employing an algebraic trick, used previously in another context
by Armstrong et al. [1]. They dealt not with the DIAC, but with its inverse, the image of
the absolute conic (IAC), ω. Under the assumption of zero skew the IAC is given by

ω = K−�K−1 =


 1/α2

u 0 −u0/α2
u

0 1/α2
v −v0/α2

v

−u0/α2
u −v0/α2

v 1 + u2
0/α2

u + v2
0/α2

v


 . (5)

Inverting the infinite homography constraint, ωj = Hij
−�ωiH

−1
ij , provides linear con-

straints on the IAC in frame iby setting the (1,2) element ofωj to zero. Further constraints
are available from additional assumptions on the intrinsic parameters, in particular, a
known aspect ratio and/or a known principal point.

Most recently, optimal results have been obtained by de Agapito et al. [4] by perfor-
ming a final bundle-adjustment in the motion and structure parameters.

2.1 Recovering Rotation Matrices and Euclidean Projection Matrices

For reconstruction, Euclidean projection matrices of the form Pi = (Pi 0) = (KiRi 0)
are required. The 3 × 3 left sub-matrices, Pi, are recovered from the projective homo-
graphies as H0iK0. Rotation matrices, referred to the initial frame, may be found by QR
decomposition of Pi.

A more direct approach for finding rotations would be to use the recoveredKi matrices
directly in the equation Ri = K−1

i H0iK0. However, it can be unwise to apply this equation
in combination with the non-linear self-calibration method of [3], especially when the
principal point is constrained to be constant throughout the sequence in the minimization.
The reason is that with fewer parameters in the model, theRi recovered fromK−1

i H0iK0 are
less close to orthonormal. Even fitting an orthonormal matrix to Ri by setting the singular
values of its SVD to unity does not guarantee that this rotation matrix is the correct
one, especially since it is an algebraic error (a Frobenius norm) that is minimized when
projecting K−1

i H0iK0 onto the 3-dimensional space of orthonormal matrices. This method
could therefore give poor motion recovery and have dire consequences for Euclidean
reconstruction. Rays would be back-projected incorrectly, and a large reprojection error



The Rôle of Self-Calibration in Euclidean Reconstruction 481

ensue. In this work we therefore adopt the approach based on QR decomposition when
using the non-linear self-calibration algorithm.

Since the linear self-calibration method of [2] is not parameterized directly in terms
of camera intrinsics, it does not suffer from the problems of non-orthonormal matrices,
and the two approaches for recovering Ri are equivalent.

With pan-tilt cameras rotations are described by two rather than three parameters. A
practical treatment of the decomposition of rotation matrices into these two parameters
is provided in [8].

3 Ambiguities in Self-Calibration

Self-calibration is an ill-conditioned problem. Significant advances have been made since
the work of Maybank and Faugeras, but there are a few underlying ambiguities which
can have a large effect on results in configurations which poorly constrain the solution,
coupled changes in the parameters in the model are barely observable. We consider two
ambiguities present in the case of rotating cameras. It would be more correct to call
these near-ambiguities: as opposed to true ambiguities which arise from certain motions
and scenes [14,17], ours are only apparent because perspective effects in the cameras
are less prominent under some camera configurations. A discussion of their relevance to
reconstruction, motivated by experimental results, is provided in Section 6.

3.1 The Ambiguity between the Angle of Rotation and the Focal Length

For small rotations there is an ambiguity between the rotation and the focal length, and
it is difficult to distinguish between small rotations with a large focal length and larger
rotations with a small focal length. The ambiguity is easily seen by differentiating the
calibrated non-homogeneous projection equationx = (α/Z)X. Remembering that there
is no translation, and secondly that the focal length α is a function of time, differentiation
yields the following image motion in the x-direction

ẋ = +αΩY − yΩZ +
x

α
(xΩY − yΩX) +

α̇x

α
, (6)

where x and X are expressed in camera centred frames and Ω is the angular velocity.
Cyclorotation and the relative change in focal length can be recovered from the terms

−yΩZ and α̇x/α respectively (the latter is zoom-induced looming motion). However,
the first term αΩY , a uniform motion in the image due to the component of rotation
perpendicular to the optic axis, contains an ambiguity between focal length and rotation.
The third term (x/α)(xΩY − yΩX), which also arises from the component of rotation
perpendicular to the optic axis, provides some disambiguating information, but the term
is likely to be small except at the edges of the image. Unfortunately this is also where the
optical properties of the lens are poorest. Notice too that the disambiguating information
is weakest for large focal lengths. Compounding these difficulties is that in practical
applications, sequences taken at large α are less likely to contain significant rotation.
Since motion is being integrated over time, this ambiguity persists over a sequence of
images.
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In experiments we find that the ambiguity is much more pronounced when the prin-
cipal point is allowed to vary in the self-calibration algorithm: with more parameters, the
model is more likely to fit to the noise rather than the underlying true solution. However,
if the sequence is ill-conditioned, the ambiguity is also noticeable even if the principal
point is constrained to a constant location.

3.2 The Principal Point/Rotation Ambiguity

A similar analysis (again using the x-dimension of the image motion) shows that it is
difficult to distinguish between a shift in the principal point along x and a rotation of the
camera about y. If δu is the error in the estimation of the principal point, and α is the
focal length, the erroneous rotation is ∼ δu/α about y. This is an ambiguity between
parameters from a single image.

Another way of describing this ambiguity is that a large focal length perspective
projection is hard to distinguish from a spherical projection where the principal point is
meaningless.

3.3 Experiments

Figures 1 and 2 illustrate these ambiguities using both simulated and real image data.
The “bookshelf” sequence [3], was gathered by zooming while moving the vergence
and elevation axes of one camera of a stereo head (equivalent to pan and tilt, up to an
ordering of the the kinematic chain) so that the optic axis traced a right-circular cone.
Point features were detected and matched, and homographies derived. Figure 1 shows
the resulting mosaic. Simulated point data were synthesized similarly. Levenberg-Mar-
quardt was used to minimize D in equation (4) allowing the principal point and focal
length to vary over the sequence during minimization. (That is, in the minimization there
are different values to be found for each frame, rather than a single value to be found for
the whole sequence.)

In each set of results the first two plots show the recovered and veridical focal length
and principal point. The + symbols in the third plots show the recovered camera motion
in terms of elevation and vergence angles. These are roughly circular, but there is a good
deal of scatter about the best-fit circle.

In earlier work it was supposed that this scatter arose from noise [3]. However it
turns out to be almost entirely due to the principal-point/rotation ambiguity. Using the
ground truth value for the position of the principal point, the elevation and vergence
angles are corrected and re-plotted as × symbols. These form near perfect circles.

However, the scale of the motion is still incorrect. This is due to the ambiguity
between focal length/motion. Table 1 illustrates this point with the recovered scale of
focal length and motion compared to the ground truth: multiplied together they give a
number very close to unity.
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Fig. 1. A Mosaic constructed from the bookshelf sequence during which the camera panned and
tilted while the lens zoomed.
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Fig. 2. Correcting the elevation and vergence angles by accepting the principal-point/rotation
ambiguity. Parts (a) uses simulated data, (b) real data. Both sequences use a linearly increasing
focal length and motion with cone half angle 3◦.

Table 1. Verification of the ambiguity between focal length and motion exhibited in Figure 2.

Recovered α / Radius of recovered motion / Product of
true α radius of true motion the two

Synthetic data, varying α 0.7819 1.2789 1.000
Real images, varying α 1.198 0.826 0.989
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4 Improving Self-Calibration via the Epipolar Geometry

We now turn to the second theme of the paper; using the appropriate degree of coupling
between the two rotating cameras to improve the self-calibration of each, and then also
improve the reconstruction. The methods utilize epipolar geometry and it is convenient
first to review the work of, among others, Longuet-Higgins [10] and Zhang [16].

4.1 Stereo from Calibrated Cameras: Review

The geometry of two calibrated views is encapsulated in the essential matrix, E [10].
Corresponding image pointsx andx′ in the first and second views are related byx′�Ex =
0 where E = [t]×R, and [t]× is the skew-symmetric form of the translation vector, t,
describing the location of the optic centre of the second camera in the coordinate frame
of the first. R is the relative rotation of the two cameras. E has five degrees of freedom,
three for the rotation and two for translation up to scale. Since [t]× is rank two, so is E,
and the nullspace of E is t. R may be recovered from E and t using quaternions.

The solution is refined with an algorithm due to Zhang [16] which uses the uncali-
brated image measurements directly. For uncalibrated views the fundamental matrix, F,
plays a similar role to E, and the two matrices relate as F = K′−�EK−1 where K and K′

are the intrinsic parameters for the first and second camera respectively. F is calculated
directly from image measurements. An initial estimate of F is provided by the linear 8-
point algorithm. The fundamental matrix is refined by minimizing a cost function with
geometric significance, the distance between points and epipolar lines,

E =
∑

k

d2(x′k, Fxk) + d2(xk, F�x′k), d(xk, F�x′k) =
xk�Fx′k√

(Fx′k)21 + (Fx′k)22
(7)

where the superscripts denote a particular point correspondence and (Fx′k)j is the jth
component of the vector (Fx′k). Thus, given F and the calibration matrices, E may be
recovered and decomposed. The five parameters in R and t are then refined using the
same geometric measure as above. t is parameterized by a point on the unit sphere, and
R by a rotation vector1.

Having computed R, t and the self-calibration of each camera the scene may now
readily be reconstructed, using not just the images from one stereo pair, but also further
images. The projection matrices from the first and second cameras, P and P′, in images
i and i′ respectively take the form

Pi = KiRi (I 0) and P′
i′ = K′

i′R′
i′ (R t) . (8)

3D points are found by the intersection of rays back-projected using these camera ma-
trices. We will evaluate this algorithm in the experimental section.

1 Zhang also performs a final bundle-adjustment over these five parameters and the 3D structure.
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4.2 Constraints from the Epipolar Geometry of Two Rotating Cameras

The method given above uses only a single stereo pair to compute R and t and is clearly
discarding a lot of information. Although we now have sufficient information to obtain
a Euclidean reconstruction from the entire sequence, the result will be heavily biased
towards the first pair.

Besides, since the fundamental matrix has seven degrees of freedom, and the essential
matrix only five, it is possible to solve for two further parameters in K and K′ just from
the single pair. This is indeed done by Hartley in [5] and Pollefeys et al. in [11] who
use linear methods to solve for the focal lengths assuming the principal points, aspect
ratios and skew are known. However, in our case the special geometry may be used to
greater effect by relating additional frames in either sequence to the original frame via
the inter-image homographies.

We now write the epipolar constraint between correspondence k in image i from the
first camera and image i′ from the second as

x′k
i′ �Fii′xk

i = 0 . (9)

As before, quantities without a dash refer to camera 1 and those with a dash to camera
2, subscripts relate to the frame number and superscripts to point correspondences.
Choosing a reference frame from either camera gives

F00 = K′
0
−�[t]×RK−1

0 . (10)

The fundamental matrix between two further images i and i′ from each rotating camera
relate to F00 as

Fii′ = H′
i′ −�F00H

−1
i . (11)

Parameterizing Fii′ in terms of F00, points from several image pairs are used to refine
our estimate of F00, and thus also R and t. This is the second reconstruction algorithm
we will investigate. The cost function minimized is the sum of epipolar distances over
all measured points and also all images pairs,

F =
∑
i,i′

∑
k

d2(x′k
i′ , Fii′xk

i ) + d2(xk
i , Fii′ �x′k

i′) . (12)

Any combinations of i and i′ may be chosen, provided image correspondences are avai-
lable. Since F is a cost function with geometric significance there is a strong correlation
with the reprojection error, but it is not the optimal error.

4.3 Improving Self-Calibration and Reconstruction

Now, since Hi = KiRiK
−1
0 we have that

Fii′ = K′
i′ −�R′

i′ [t]×RRi
�K−1

i . (13)

Thus, estimates of (i) the relative camera positions R and t in a reference frame, (ii)
the intrinsic parameters in both cameras at each frame in the sequence, and (iii) the
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rotations between frames within sequences from either camera, yield an estimate of the
fundamental matrix Fii′ between further frames of cameras 1 and 2. The goodness of
this modelled fundamental matrix may then be measured with the cost function F in
equation (12). Not only may further image pairs be used to provide further constraints
on R and t, further parameters may be solved for. Effectively we are constraining the
inter-image homographies together with fundamental matrices. This insight provides
the basis of the methods we derive for improving the self-calibration, and thus also the
reconstruction.

We now introduce two methods of self-calibration refinement, depending on which
ambiguities of Section 3 we wish to resolve. To parameterize the unknowns we write
the true matrix of intrinsic parameters as

Ki =




1
β α̂i 0 (u0)i

0 1
β α̂i (v0)i

0 0 1


 (14)

where α̂i is the measured focal length recovered from independent self-calibration of the
rotating cameras, and where β is the unknown overall scale factor of the focal lengths
of this camera over the entire sequence. Skew is assumed to be zero and the aspect ratio
to be either known from the outset or recovered during self-calibration of each rotating
camera. We also assume in both methods that the rotation matrices within a single camera
have only two degrees of freedom, taking the form

R = Ry(θ)Rx(φ) . (15)

This is justifiable since pan-tilt cameras are restricted to this kind of motion (the ordering
of Ry and Rx depends on the particular kinematic chain).

Method (1) deals only with the ambiguity between focal length and angle of rotation
described in Section 3.1. Thus we solve for seven parameters, five for the motion and
two for the overall scale of the focal lengths, β and β′. The true principal point (u0, v0)
is assumed to be known from the self-calibration. The method is predicated on the
assumption that rotations are small enough to model the ambiguity between focal length
and rotation by requiring the true rotation matrix Ri to relate to the measured angles θ̂i

and φ̂i as

Ri = Ry(βθ̂i)Rx(βφ̂i) . (16)

Method (2) seeks also to resolve the ambiguity between principal point and motion
described in Section 3.2, and thus the number of parameters is 7 + 2n + 2n′ where
n and n′ are the number of images from the two cameras. Method (2) models Ri by
subtracting the erroneous motion caused by the ambiguity between rotations and motion
of the principal point,

Ri = Ry

(
β

(
θ̂i − u0 − û0

α̂i

))
Rx

(
β

(
φ̂i − v0 − v̂0

α̂i

))
(17)

where (û0, v̂0) is the measured principal point from self-calibration of a rotating camera
whereas (u0, v0) is its true value. The idea behind method (2) is based on the experimental
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results of Section 3.3 where erroneous motion of the principal point is removed and the
ambiguity between focal length and motion accounts for the remaining discrepancy from
the ground truth.

4.4 Implementation Issues

Combining the information from two types of input, namely homographies and epi-
polar geometry, in order to provide accurate self-calibration and reconstruction places
emphasis in methods (1) and (2) on retaining as much information from the initial self-
calibration as possible. Two important issues are therefore initialization and applying
priors.

In our current implementation an initial estimate of, β, and similarly β′, are obtained
by re-solving for only this single parameter in the non-linear self-calibration method. The
prior is then found by investigating the curvature matrix J�J, where J is the Jacobian. In
this case J�J is a 1×1 matrix. In fact, experiments with a prior chosen more arbitrarily,
and with β and β′ initialized at unity, also worked well.

Furthermore, if the principal point was allowed to vary in the initial self-calibration,
the correction devised in section 3.3 may be applied to initialize the principal point and
motion in refinement methods (1) and (2). However, that example used ground truth of
the principal point in the correction. Since such information is not available here, we
initialize the principal point either at the centre of the image plane or with that obtained
from the non-linear self-calibration method where the principal point is maintained at a
fixed but unknown value throughout the sequence.

In our experiments we noticed that method (2) converges much more slowly than
method (1). Therefore we choose only to use method (2) to refine the output from method
(1).

4.5 Refining the Solution Using Bundle-Adjustment

The motion and structure parameters may be refined using a large non-linear minimiza-
tion over all parameters, making use of the sparse form of the Jacobian. The cost function
for the optimization is the reprojection error over all points and views,

C =
∑
views

∑
points

‖x − K (R t)X‖2 (18)

which provides a maximum likelihood estimate of the structure and motion. Each point
X in the structure has either two or three degrees of freedom depending on whether it is
visible from both cameras or only a single camera.

Bundle-adjustment is thus guaranteed to reduce the reprojection error, but not neces-
sarily the reconstruction error. Of course the reconstruction gained is a valid Euclidean
one in the sense that the projection matrices have the required form if parameterized as
P = K(R t), but it may easily “look” more projective than Euclidean in that angles are
skew, and length ratios are not preserved correctly. It would be naı̈ve to expect bundle-
adjustment to automatically cope with the inherent ambiguities which are present, the
more so as it is prone to convergence to local rather than global minima. The parameters
tend to change only by small amounts, and the final set of parameters differ little from
the initial estimate.
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5 Experiments and Results

Experiments were conducted first on simulated data to allow controlled investigation of
the sensitivity of the reconstruction techniques to varying noise, and varying separation
of the two cameras. The data were generated so as to correspond roughly with later
experiments on real imagery. The image sizes were 384 × 288 pixels, and one camera
had a focal length ranging from 1000 – 1870 pixels and a circular motion in the elevation
and vergence axes of 4◦. The second camera had a longer focal length, 1250 – 2120 pixels,
and a smaller circular motion of 3◦. The principal point used to generate the data moved
between frames with an overall motion of approximately 20 pixels.

The self-calibration and reconstruction algorithms are summarized in Table 2.
Result 1. The principal result is that a significant improvement can indeed be ach-

ieved by our method of refining the self-calibration using epipolar geometry. In Figure
3 we compare both the reconstruction error and the reprojection error as a function of
image position noise with no refinement of the self-calibration (using single and multiple
views to calculate R and t); and with refinement using method (1) of Section 4.3 which
only handles the focal length/rotation ambiguity. Priors on the scale factor were obtained
automatically from the method of Section 4.4.

Result 2. The performance of the algorithms with varying separation of the two
cameras is shown in Figure 4. As before, a significant improvement may be obtained
with our novel methods, especially when the cameras are close together, pointing in a
similar average direction.

Whereas Result 1 used linear methods of recovering the homographies, and the linear
method of initial self-calibration, and Levenberg-Marquardt for the minimization of the
refinement cost function, and so is the fastest approach, this second experiment explores
the other extreme. It uses bundle-adjusted homographies, the non-linear (LM) self-
calibration, non-linear refinement, and finally bundle-adjusts the entire solution, solving
for the focal length, principal point and two rotation parameters per camera, assuming
square pixels. Furthermore, a longer image sequence (30 rather than 20 images) and
more point correspondences (300 rather than 50 matches between images) were used.
Again the refined method works much better than non-refined, and adding a final bundle-
adjustment gives only a small further improvement. Notice that the results from method

Table 2. The algorithms evaluated in the experiments.

Algorithm outline

Description Label used in keys of graphs

A. Self-calibrate each camera individually

B. Compute R and t from a single image pair No refinement, single image pair
OR compute R and t from multiple image pairs No refinement, multiple image pairs

C. Refine solution from B by resolving focal length/rotation ambiguity Method (1)

D. (optional) Refine solution from C by resolving focal length/rotation
and principal point/rotation ambiguities.

Method (2)

E. (optional) Bundle-adjustment, initialized at above solution Bundle-adjustment
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Fig. 3. The reconstruction and reprojection errors of different levels of noise, showing that the
refinement of the self-calibration using epipolar geometry provides a significant improvement.
(The angle between the principal directions of the cameras was fixed at 20◦.)
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Fig. 4. The performance of the reconstruction techniques for different relative positions of the two
cameras. Both cameras perform small rotational motions about some initial direction, the angle
between the principal directions of the two cameras is plotted on the x-axis. In this experiment
the noise was constant at σ = 0.5 pixels.

(2), which handles both ambiguities (focal length/rotation and principal point/rotation)
is virtually indistinguishable from those from method (1) which handles only the former.

Result 3. Figure 5 demonstrates the sensitivity of bundle-adjustment to the initial
estimate. A Euclidean bundle-adjustment is initialized with the output from the initial
self-calibration, first with varying and then with fixed principal point in the minimiza-
tion, and also with the output from our refinement method (2). Only small changes in
parameters occur, and the reduction in reconstruction error is minimal.

5.1 Real Data

Two zoom sequences of a point grid, were taken with one of the cameras on a stereo
head, using the common elevation and one of the vergence axes to generate the motion.
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Fig. 5. A good initial estimate is crucial for bundle-adjustment. Using the present method for
initialization yields much better results than when the bundle-adjustment is applied directly after
self-calibration.

Fig. 6. The first, tenth and last images of the 20 frames of the sequences used from each camera.
That the sequences were taken from viewpoints very close together is reflected in the similarity
between the sequences.

Since we know the structure of the grid, we may measure results accurately, and the
quality of the ensuing reconstruction is easily visualized. In the first sequence the focal
length was varied between 1400 and 800 pixels (i.e. zooming out) with a circular motion
of half-cone 2.5◦. In the second the focal length decreased from 1700 to 1100 pixels,
and the circular motion was 2◦. Between the sequences the head was moved to provide a
finite baseline. The angle between the scene and the two optic centres was approximately
10◦. The first, tenth and last images from a 20 image sequence are shown in Figure 6.

The motion in these sequences is very small, and the initial self-calibration was
found to vary considerably depending on which algorithms were used to calculate the
homographies and self-calibration, and how many images were used. Results from three
experiments are summarized in Table 3, and Figure 7 shows reconstructions of the scene
with and without refinement. Again, the novel methods presented in this paper provide
a very significant improvement.

6 Conclusions

In this paper we have shown how systematic inaccuracies in the self-calibration of
rotating cameras apparent in [3] can be accounted for by the ambiguities inherent in
rotating motion fields. These effects are particularly keenly felt when small motions,
large focal lengths, short image sequences and a poor spread of image features are
involved.
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(a) (b) (c)

Fig. 7. Plan views of the reconstructed scene. (a) represents the fourth row of Table 3, using
homographies calculated from the linear method, and the relative motion from a single image pair
with no refinement. (b) demonstrates refinement method (1) applied to this reconstruction (row 6
in the table). (c) was obtained using bundle-adjusted homographies and a final bundle-adjustment
of the motion and structure on the output from method (2) (row 10 in the table).

Table 3. Results of reconstruction of the calibration grid.

No. of Homography Self-calibration Refinement method Angle bet- Reconstruction Reprojection
images calculation algorithm ween planes error (%) error (pixels)

5 Linear Linear, known pp Single image, no ref. 53.0 81.7 0.544
5 Linear Linear, known pp Multiple images, no ref. 52.7 79.0 0.489
5 Linear Linear, known pp Method (1) 109.7 19.9 0.298
8 Linear Linear, known pp Single image, no ref. 33.3 110.2 0.422
8 Linear Linear, known pp Multiple images, no ref. 93.4 8.3 0.316
8 Linear Linear, known pp Method (1) 95.7 8.0 0.259
20 Bundle-adj. LM, varying pp Single image, no ref. 98.8 9.2 0.336
20 Bundle-adj. LM, varying pp Method (1) 88.1 3.2 0.349
20 Bundle-adj. LM, varying pp Method (2) 88.8 3.0 0.361
20 Bundle-adj. LM, varying pp Bundle-adj. 90.6 2.8 0.327

The paper has also demonstrated that the epipolar geometry between multiple rotating
cameras can and should be exploited to refine the initial self-calibration of the sets of
intrinsic parameters, and hence to improve recovered scene structure. The improvements
can be substantial.

By experiment, it has been shown too that, by itself, a Euclidean bundle-adjustment
cannot resolve the ambiguities. Methods such as those presented here are required to
initialize the adjustment. Interestingly, especially for those concerned with on-line time-
sensitive implementations, the initialized position is often good enough for bundle-
adjustment to make rather little improvement. In current work we are exploring the
reduction of the parameters in bundle-adjustment just to those which appear poorly
estimated from independent self-calibration of each camera. However it appears that the
cost function surface of the reprojection error is still peppered with local minima.

The ambiguity between focal length and rotation is apparent as the bas-relief ambi-
guity in sequences with general motion, and can rapidly lead to disastrous results [15].
The reconstructed scene appears skewed relative to the true configuration, and length
ratios are not preserved, implying that the upgrade from projective to Euclidean structure
has not been successful. This is precisely the kind of behaviour we observe here (eg.
Fig 7(a)) with reconstructions from multiple rotating cameras if the ambiguity between
focal length and rotation is not resolved. It is found that the near ambiguity between
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principal point and motion does not have as great an impact on the resulting Euclidean
reconstruction, and resolving its effects are more difficult.

In future work we intend to extend the analysis to multi-focal constraints. This has
the added benefit of better constrained matching.
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