On the Performance Characterisation of Image
Segmentation Algorithms: A Case Study

B. Southall'?3, B.F. Buxton?, J.A. Marchant?, and T. Hague?

! GRASP Laboratory, University of Pennsylvania,
3401 Walnut Street,
Philadelphia, PA 19104, USA
southall@grip.cis.upenn.edu

Tel: +1 215 898 0352 Fax: +1 215 573 2048

2 Department of Computer Science, University College London, Gower Street,
London, WCI1E 6BT, UK
b.buxton@cs.ucl.ac.uk
Tel: +44 20 7679 7294 Fax: +44 20 7387 1397

3 Silsoe Research Institute, Wrest Park, Silsoe,
Bedfordshire, MK45 4HS, UK
{john.marchant,tony.hague}@bbsrc.ac.uk
Tel: +44 1525 860000 Fax: +44 1525 860156

Abstract. An experimental vehicle is being developed for the purposes
of precise crop treatment, with the aim of reducing chemical use and
thereby improving quality and reducing both costs and environmental
contamination. For differential treatment of crop and weed, the vehicle
must discriminate between crop, weed and soil. We present a two stage
algorithm designed for this purpose, and use this algorithm to illust-
rate how empirical discrepancy methods, notably the analysis of type I
and type II statistical errors and receiver operating characteristic curves,
may be used to compare algorithm performance over a set of test ima-
ges which represent typical working conditions for the vehicle. Analysis
of performance is presented for the two stages of the algorithm sepa-
rately, and also for the combined algorithm. This analysis allows us to
understand the effects of various types of misclassification error on the
overall algorithm performance, and as such is a valuable methodology
for computer vision engineers.

1 Introduction

Economic and ecological pressures have led to a demand for reduced use of che-
mical applicants in agricultural operations such as crop and weed treatment. The
discipline of precision agriculture strives to reduce the use of agro-chemicals by
directing them more accurately and appropriately. The extreme interpretation
of this approach is plant scale husbandry, where the aim is to treat individual
plants according to their particular needs. An experimental horticultural vehicle
has been developed to investigate the viability of plant scale husbandry, and
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previous work [15[1716] has described a tracking algorithm, centred upon an
extended Kalman filter, that allows navigation of the vehicle along the rows
of crop in the field. This paper presents a simple algorithm for frame-rate seg-
mentation of images for the task of differential plant treatment, together with
a thorough evaluation of algorithm performance on data captured from the ve-
hicle. The algorithm comprises two stages. Stage I aims to extract image features
which represent plant matter from the soil background, and stage II divides these
features into crop and weed classes for treatment scheduling.

The practical application of the algorithm requires that we understand how
its performance varies in different operating conditions; Haralick [I0] underlines
the necessity of the evaluation of computer vision algorithms if the field is to
produce methods of practical use to engineers. In this paper, we evaluate the
two stages of the algorithm separately and as a result, we are able to gain deeper
insight into the performance of the algorithm as a whole. A review of techniques
for image segmentation evaluation is presented by Zhang [22], who partitions the
methods into three categories; analytical, where performance is judged on the
basis of its principles, complexity, requirements and so forth; empirical goodness
methods, which compute some manner of “goodness” function such as unifor-
mity within regions, contrast between regions, shape of segmented regions; and
finally, empirical discrepancy methods, which compare properties of the segmen-
ted image with some ground truth segmentation and computes error measures.
Analytic methods may only be useful for simple algorithms or straightforward
segmentation problems, and the researcher needs to be confident of the models
on which these processes are based if they are to trust the analysis. Empirical
goodness methods have the advantage that they do not force the researcher to
perform the onerous task of producing ground truth data for comparison with
the segmentation, for meaningful results, an appropriate model of “goodness”
is required, and in most practical problems if such a model were available, it
should be used as part of the algorithm itself. This leaves empirical discrepancy
methods, which compare algorithmic output with ground truth segmentation of
the test data and quantify the levels of agreement and/or disagreement.

A discrepancy method which is suitable for two-class segmentation problems
is receiver operating characteristic (ROC) curve analysis. Rooted in psychophy-
sics and signal detection theory, ROC analysis [RI21] has proved popular for the
comparison of diagnostic techniques in medicine [TT]9], and is gradually gaining
currency within the computer vision and image analysis community for the com-
parative evaluation of algorithms such as colour models [2], edge detectors [TIJ5]
and appearance identification [6]. Receiver operating characteristic curves typi-
cally plot true positive rates against false positive rates as a decision parameter
is varied and provide a means of algorithm comparison and evaluation. ROC
analysis also allows selection of an operating point which yields the minimum
possible Bayes risk [8]. ROC curves will be discussed further below, together
with the related maximum realisable ROC (MRROC) curve [14]. Although our

algorithm produces a three-way final classification (crop, weed and soil), stages
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I and II are both binary classifiers, so we can analyse their performance using
ROC methods.

We will first outline the segmentation algorithm prior to discussing evaluation
of the performance of stages I and II. Final results for the complete algorithm
are then presented and discussed in the light of our knowledge of its constituent
parts.

2 The Segmentation Algorithm

The two stage segmentation algorithm is sketched in the following sections; for
the sake of brevity, details of the algorithms are not given (these may be found
elsewhere [I5I18]), but sufficient information is provided to allow the performance
evaluation sections to be understood.

2.1 Stage I: Plant Matter Extraction

The experimental vehicle is equipped with a monochrome camera that is fitted
with a filter which blocks visible light, but allows near infra-red wavelengths to
pass. Many researchers, including for example Biller [4], have noted that the con-
trast between soil and plant matter is greater in the near infra-red wavelengths
than the visible, and this allows us to use a grey level threshold to extract pi-
xels which represent plant matter from the images captured by the vehicle as
it traverses the field. We use an adaptive interpolating threshold algorithm, to
allow for the fact that there is often a brightness gradient across many of the
images captured by the vehicle. The cause of such a gradient is most likely the
position of the Sun relative to the ground plane and the vehicle’s camera, and
the interaction of the illuminant with the rough surface of the soil. A simple
linear variation in intensity between the upper and lower parts of the image is
used to allow for such effects. Accurate modelling of illumination and reflectance
effects is a complex issue and not of direct concern to this work. More principled
models are known for surface reflectance, such as those due to van Branniken
et al [20] or Oren and Nayar [12].

The algorithm is also adaptive to the average brightness of the image, which
offers some robustness to changes in illumination as, for example, when the Sun
is temporarily masked by a cloud. A mean grey-level is computed for both the
top (u1) and bottom (p2) halves of the image and these two means are used
as fixed points to linearly interpolate a mean p(yy) across the vertical pixel co-
ordinates of the image. The classification of output pixels O(zf,yy) is then given
by the adaptive interpolating thresholding algorithm:

[ Pif I(zy,yr) > aplyy)
Oz, yr) = { Sif I(zg,yp) < aplyy) ’ W

where P denotes plant matter (crop or weed) and S soil. The decision rule of
equation [ is used in a chain-code clustering algorithm [7] whereby groups of
neighbouring above-threshold pixels are clustered into “blobs”. Each blob is
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described by the pixel co-ordinates of its centroid in the image, and its size in
number of pixels. The process is illustrated in figure []which shows an image and
the plant matter extracted from it automatically. It can be seen from the figure
that some of the plants fracture into multiple blobs. This is largely caused by
shadows falling between plant leaves which lead to areas of the plant in the image
that lie below the chosen threshold. Another problem that sometimes occurs is
that neighbouring plants sometimes become merged into a single feature. Whilst
there is little that can be done about the latter problem, the feature clustering
technique in stage II of the algorithm aims to address difficulties caused by plant
features fracturing.

Fig. 1. An image and its automatically extracted plant matter.

2.2 Stage II: Crop/weed Discrimination

The image on the left of figure [I] shows that the crop plants grow in a fairly
regular pattern in the field, and also that they are generally larger than the
weeds. These are the two pieces of information that we exploit in the second
stage of the segmentation algorithm, which aims to separate the set of plant
matter features (denoted P) into subsets of crop (C) and weed (W). The first
step of this stage is to filter the plant matter features on the basis of their
size in the image. Justification for this decision is provided by figure 2, where
histograms of the feature sizes (in pixels/feature) are plotted for both weed and
crop. This data is derived from manually segmented images that we use as our
ground truth data throughout this paper. More details of this data are given
below.

It can be seen from the histograms that the vast majority (in fact 95%) of
the weed blobs have a size of less than 50 pixels, whilst most (90%) of the crop
blobs have a size of 50 or pixels or greater. This supports the claim that the
weeds are typically smaller than the crop.

Thus, we have a straightforward algorithm that places a threshold on the
size s of the image features. This may be expressed as follows:

W if s(feature) < ¢

Class(feature) = { P if s(feature) > ¢ ° (2)
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Fig. 2. Blob size histograms. Left: weed blobs. Right: crop blobs. In both histograms,
the right-most bin (marked 50) counts all blobs of size > 50. Note that the crop feature
histogram, most of the bins are empty, except for the right-most.

where s(feature) is the size of an image feature in pixels, and ¢ is the size thres-
hold.

The second step of stage II of the algorithm makes use of the regular grid
pattern formed by the crop as they are planted in the field. The grid pattern
is used as a cue for vehicle navigation [I5], where the position of the vehicle
relative to the crop grid and the dimensions of the grid are estimated by an
extended Kalman filter (EKF) [3]. The EKF also produces a covariance matrix
that describes the level of confidence in the current estimate. The state estimate
is used to predict the position of each plant within the grid, and an algorithm
akin to a validation gate [13] is used to cluster all plant matter features within
a certain radius of the predicted crop plant position.

The validation gate has proved to be effective as an outlier rejection me-
chanism in practical Kalman filtering applications [I3]. The algorithm combines
the uncertainty on the predicted feature position and the uncertainty attached
to the observed data to define a validation region outside of which candidate
feature matches are rejected as being outliers. In our algorithm, we take the
uncertainty of the estimated plant position and combine it with a user defined
region which describes a radius on the ground plane about the plant centroid
within which all of the crop plant should lie. This defines an association region in
the image inside of which all plant matter features are labelled as crop (C), and
outside of which the features are labelled as weed (W). The schematic diagram
in figure B illustrates the components of the association region, Full details of
the algorithm can be found elsewhere [18]. The size of the region which describes
the user-defined plant radius is controlled by a single parameter r, the radius on
the ground plane within which the crop plant matter should lie. This model im-
plicitly assumes a distribution for the weed matter that gives lower probability
of weed occurrence than plant occurrence within the radius r.

3 Evaluation Using ROC Curves

The receiver operating characteristic (ROC) curve [8] supports the analysis of
binary classification algorithms whose performance is controlled by a single para-
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Fig. 3. The construction of the association region.

meter. For each parameter setting, algorithmic output is compared with ground
truth data, and four numbers are calculated; TP, the number of “positive” ca-
ses correctly classified as positive; TN, the number of “negative” cases correctly
classified as negative; FN, the number of positive cases incorrectly classified as
negative; and FP, the number of negative cases incorrectly classified as positive.
In the statistical literature, FN cases are type I errors, and FP cases type II
errors [19]. From these four figures, two independent quantities are construc-
ted, the true positive ratio, TPR = TP/(TP+FN), and the false positive ratio,
FPR=FP/(FP+TN). To construct an ROC curve, a set of algorithm parameter
values are chosen, and for each of these, the TPR and FPR values are calculated
and plotted against each other. The set of TPR,FPR pairs form the ROC curve.

To characterise the performance of our algorithms, we shall use the area
underneath the ROC curve. This metric has often been used to compare the
performance of different algorithms across the same data sets [2[1J6], but we will
use it to compare the performance of stage I of our algorithm across a number
of test data sets which represent different stages of crop growth and weather
conditions that the vehicle is likely to encounter. The performance of stage II
across these data sets is assessed using the maximum realisable ROC (MRROC)
curve. It is also possible to use the slope of the ROC curve to select a value for
the algorithm’s controlling parameter which minimises the Bayes risk associated
with the decision being made. van Trees [21] provides full details.

3.1 The MRROC Curve

In the analysis described above, variation of a single decision parameter in a
classification algorithm leads to the formation of the ROC curve. Each point on
the curve characterises an instance of the classification algorithm that we call
a classifier. If a single parameter is undergoing variation, then all of the classi-
fiers lie along the ROC curve. This is the case within stage I of our algorithm,
the adaptive interpolating threshold, which has gain parameter «, as defined in
equation [II

When an algorithm has more than one parameter, then it will generate a
cloud of classifiers in the ROC space. The convex hull of this cloud is the MRROC
curve [I4], and the area underneath it reflects the best overall classification
performance it is possible to obtain from this group of classifiers. We will use
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the area under the MRROC curve to compare the operation of stage II of our
algorithm, which has two parameters ¢ and r (the size threshold and clustering
radius, respectively), on different data sets. The set of classifiers which provide
the best performance is comprised of those that lie on the MRROC curve. Unlike
the normal ROC curve which is a function of one decision parameter alone, it is
not possible to set the algorithm operating point on the basis of the slope of an
MRROC curve.

4 Characterisation of the Algorithm

We will now deal with algorithm characterisation, which is the evaluation of
algorithmic performance over a range of different data sets. For the purposes
of performance evaluation, we require image data sets which are representative
of the application, and also a set of labelled images which represent the “true”
segmentation of these scenes into the classes of interest to compare with the
algorithmic output [22].

4.1 Ground Truth Image Data

Four sequences of images captured from the vehicle were used in off-line tests
of the classification algorithm. An example image from each sequence is given
in figure @ (a)-(d). The sequences have been chosen to represent a range of
typical crop growth stages and imaging conditions, although this range should
by no means be considered exhaustive. The sequence properties are summarised
in table[l The deep shadows seen in figure[d D are a result of bright sunlight.

Sequence|# images|Crop age|Weed density| Weather
A 960 8 weeks low cloudy
B 960 3 weeks very low |overcast
C 1380 | 6 weeks | moderate |overcast
D 1280 | 3 weeks | very low sunny

Table 1. Properties of the image sequences.

Haralick [T0] asserts that performance characterisation requires a test set
of statistically independent data. To this end, a subset of each image sequence
was chosen such that no two images contain overlapping areas of the ground,
which ensures that no two pixels in the test set represent the same patch of soil
or plant. For each image in these test sets (a total of 66 images across the four
sequences), a ground truth labelling was produced by hand segmenting the image
pixels into four classes: crop, weed, soil and doubt. The ground truth images
have been produced by hand using standard image editing software, and are
subject to error, especially at border pixels where different image regions (crop,
weed or soil) are adjacent. Some of these pixels will be incorrectly classified as
their adjacent class, whilst some will be of genuinely mixed class. Alexander [2]
noted such problems with border pixels and proposed that at the border between
foreground (in our case plant matter) and background (soil), regions of doubt
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Fig. 4. Examples from the four image sequences A — D.

should be inserted, and the pixels within these doubt regions should be ignored
for the purpose of assessing classifiers. All pixels that are on the border of plant
matter and soil in the ground truth images are assigned to the doubt class and
ignored in the classification assessments.

4.2 Stagel

A set of 27 threshold gain levels was chosen and the algorithm applied to the
test images to generate the TPR,FPR pairs that constitute the ROC curve. The
area under each of the curves plotted for sequences A — D is given in table[Z.

Data Set|Area under ROCC||Area under MRROCC
A 0.9957 0.9974
B 0.9779 0.9997
C 0.9846 0.9996
D 0.9241 0.9993

Table 2. Area underneath ROC curves for algorithm stage I, sequences A-D (left) and
for the MRROC curves for algorithm stage II (right).

The performance of stage I on each of the four data sets is reflected by
the measures of area underneath the ROC curve shown in table 2 These show
that the algorithm performs best on sequence A, where the plants are large and
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there are few shadows, with sequences C and B following. The lowest overall
performance is seen on sequence D, caused by the heavy shadows present (figure

D).

4.3 Stage II

As noted above, to compare the performance of stage II of the algorithm on our
data sets, we use MRROC analysis. The two parameters ¢ and r, described in
section 2:2] are varied systematically (27 samples of each parameter, yielding a
total of 729 classifiers) to produce a cloud of TPR,FPR pairs in the ROC space.
The convex hull of these points constitutes the MRROC curve [14], and the area
underneath the curve is calculated for each data set and used as a metric for
comparison, with better performance indicated as usual by an area closer to 1.

Recall that stage II of the algorithm comprises two steps, a size filtering step
followed by feature clustering on the basis of proximity to the crop grid pattern.
In the fully automatic algorithm, the input features are provided by stage I, and
the grid position by the extended Kalman filter crop grid tracker [T5]. In our
first experiment, we removed the dependency on both of these algorithms by
locating the crop grid by hand, and used the ground truth classified features as
our input. In his outline of a performance characterisation methodology Haralick
[10] states that testing algorithms on perfect input data is not worthwhile; if
the algorithm’s performance is less than perfect, then a new algorithm should
be devised. In an ideal world, this would be the case, but our the crop/weed
discrimination problem is difficult; capturing the large variations in size and
shape of each sort of plant devising an algorithm to fit such models to image
data will not be easy, so we currently have to settle for an imperfect algorithm
that makes mistakes even on perfect data. In this case, testing on perfect input
data tells us the best performance that the algorithm can be expected to deliver.

The areas underneath the MRROC curve for each sequence in this experiment
are given in the right-hand columns of table [2] whilst a section of the MRROC
curve, and the cloud of classifiers in the ROC space, is plotted in figure[5] (where
we take crop pixels to be positives and weed pixels to be negatives). In table
Bl the performance of the stage II algorithm is seen to be consistent over each
sequence, and very close to the ideal of 1 in each case. As noted above, to generate
the curve for each sequence, we ran 729 trials of the algorithm over each of the 4
sequences, a time-consuming task. To cut down on computational effort for the
fully automatic algorithms, we selected a single ¢, r pair for each sequence. The
point selected was that closest to the ideal (0,1) point in ROC space. A more
principled selection of operating parameters might be possible if the values and
costs of correct and incorrect decisions were known. For example, if the farmer
wishes to remove all weeds and is willing to risk some crop in this process, the
value of true negatives (correctly classified weed) would be high, and the cost
of a false positive (weed classified as crop) would be higher than the cost of a
false negative (crop classified as weed). If crop fertilisation was a priority, a true
positive (correctly identified crop) would be high, and the cost of a false negative
would be higher than the cost of a false positive. The values of ¢ and r chosen,
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Fig. 5. The MRROC curve for ground truth plant matter segmentations of sequence
C.

together with their corresponding TPR and FPR, are given for each sequence in
table B

Parameter Setting||Automatic Tracking

Sequence|s (pixels)|r (mm)| TPR FPR TPR FPR
A 100 450 |0.9950 0.0 0.9939 0.1564
B 30 100 |0.9940 0.0 0.9982 0.0
C 80 100 10.9970| 0.0094 |(|0.9981 0.0307
D 30 100 ]0.9975] 0.0638 ]0.9993 0.2017

Table 3. Operating points for the size filtering and clustering algorithms, and their
corresponding TPR and FPR chosen in the parameter setting experiment (left), to-
gether with the TPR and FPR realised under automatic tracking (right, and section

).

4.4 Segmentation of Ground Truth Plant Images

Before combining stages I and II of the algorithm and analysing overall perfor-
mance, we test stage Il on the ground truth plant matter images under automatic
tracking by our Kalman filter algorithm [T5]. We perform this experiment in or-
der to assess stage II of the algorithm in such a way that is as far as possible
independent of the image thresholding algorithm of stage I. The test is not ent-
irely independent of the image processing errors, because they have an effect
on the tracker’s estimate of the crop grid position that is used in the feature
clustering algorithm, but it does allow us to compare the true positive and false
positive ratios for crop pixels directly with those found in the parameter selection
experiments.

We use the Kalman filter’s estimate of the crop grid position in conjunction
with the size filtering and feature clustering algorithm of algorithm stage II. After
this processing, we have two sets of classified pixels for each image sequence. The
first set is C, the ground truth plant matter pixels that have been classified as
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crop. The second set is W, the ground truth plant matter pixels that have been
classified as weed. Given the two sets C and W, we can produce true positive
(ground truth crop pixels that are classified C) and false positive (ground truth
weed pixels classified as C) ratios for the automatic segmentation. These ratios
are given in table B]in the column marked ‘automatic tracking’.

Before we compare the ratios from the tracking experiment with those from
the parameter setting experiment, we reiterate the main differences between
the two experiments. In the tracking experiment, the association region, within
which all features are classified as crop, includes the uncertainty on the grid
position, so will be larger than the corresponding region in the parameter setting
experiment where the grid position was assumed to be known perfectly. We
might expect that, as the association region expands, more image features will
fall within it, so both TPR and FPR are likely to rise. The second difference is
that the grid position in the tracking experiment is determined automatically by
tracking the features derived from image processing, whilst the in the parameter
setting experiment, the grid was placed by hand, and will be unaffected by any
image processing errors.

If we now compare the tracking and parameter setting figures in table B]
we can see how these two experimental differences manifest themselves for each
sequence:

Sequence A: The TPR drops and the FPR rises when the grid is tracked
automatically. This sequence is the most difficult to track, because many crop
plant features merge together so that feature centroids do not represent plant
locations. Poor tracking is almost certainly the cause of the increased errors.
Sequence B: The TPR rises for the automatic tracker, where the association
regions will be larger than in the parameter setting experiment owing to the
increased uncertainty on plant position. The FPR is unaffected; this is a
result of the low weed density in sequence B.

Sequence C: Both TPR and FPR increase under automatic tracking. This
will be caused by the larger association region as it incorporates plant posi-
tion uncertainty from the tracker.

Sequence D: As with sequence C, both TPR and FPR increase. Owing to
the strong shadows present in this sequence, automatic tracking is difficult,
so the uncertainty on individual plant position will be large; this is reflected
in the dramatic rise in FPR.

The figures in table[3 show that the combination of size filtering and feature
merging is very effective for classifying crop features, with true positive ratios in
excess of 0.99 in for every sequence. The algorithm is less effective at weed pixel
classification when tracking is difficult, as in sequences A and D, where the FPR
rises to 15% and 20% respectively. This is not surprising because the success
on the feature clustering algorithm hinges on the crop grid tracker providing
good estimates of the crop position. However, when the tracking is easier, as in
sequences B and C, the FPRs are much lower, 0.0% and 3.07% respectively.
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4.5 Combining Stages I and II

The second segmentation experiment relies wholly on the thresholding and chain-
coding algorithms and tests the full automatic segmentation algorithm that com-
bines stages I and II. In the previous experiment, we knew that all the features
presented for size filtering and clustering were true plant matter. In this expe-
riment, some soil pixels will be misclassified as plant matter (and labelled C or
W), and some plant matter pixels (crop or weed) will be labelled S. A suitable
value for the threshold gain « for each sequence was determined from the slope
of the ROC curves generated for each sequence [I8] by using an empirical esti-
mate of the Bayes costs and values and prior probabilities computed from the
test data.

Each of the tables [ — [ presents the percentage of the ground truth crop,
weed and soil pixels classified as C, W and S, together with the total number of
ground truth pixels in each class from the ground truth images of sequences A
— D. The numbers of pixels bordering ground truth crop and weed features are
also given as an indication of the number of doubt pixels that have been ignored
in the classification totals. Each image is composed of 384 x 288 pixels, although
only pixels in the region of the image (approz65%) that will pass underneath the
autonomous vehicle’s treatment system (a bar of spray nozzles that runs along
the front axis of the vehicle) are classified.

Perusal of the figures in tables @] —[7 prompts a number of observations:

1. In every sequence, in excess of 98% of the soil pixels are correctly classified
as S.

2. In each sequence, more crop pixels are misclassified as S than misclassified
as W.

3. In each sequence, more weed pixels are misclassified as S than misclassified
as C.

4. In sequences A and C, a greater percentage of crop pixels are correctly
classified C than the percentage of weed pixels that are correctly classified
as W.

5. In sequences B and D, a greater percentage of weed pixels are correctly
classified W than the percentage of crop pixels that are classified C.

6. The number of doubt pixels that border ground truth weed features out-
number the total number of ground truth weed pixels in every test sequence.

7. The total number of ground truth crop pixels outnumber the doubt pixels
that border the crop features in every test sequence.

Observations 1, 2 and 3 directly reflect the performance of the adaptive inter-
polated grey-level thresholding algorithm, which misclassifies a large percentage
of the plant matter pixels as soil. This will obviously be the most common
misclassification, because plant matter is most often seen against a background
of soil rather than other plant matter. The observations do, however, highlight
the fact that the plant matter/soil discrimination problem requires more atten-
tion if image segmentation is to be improved.
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Ground truth

Classified as

C (%)

W (%)

S (%)

pixels

Number of

border pixels

Crop
Weed
Soil

95.11
10.50
0.33

1.28
51.88
0.03

3.61
37.62
99.64

331,222
505
905,200

52,688
1,373

363

Table 4. Sequence A segmentation results, percentages of true numbers of crop, weed
and soil pixels classified as C, W or S, and the number of pixels that border crop and
weed features. There are 16 ground truth images for sequence A.

Classified as Number of
C (%)W (%)|S (%)|| pixels |border pixels
Crop| 78.90 | 3.72 [17.38|| 53,514 19,615
Ground truth|Weed| 0.0 | 81.8 | 18.2 934 3,455
Soil| 0.01 | 0.04 [99.95(/1,152,254 -

Table 5. Sequence B segmentation results, percentages of true numbers of crop, weed
and soil pixels classified as C, W or S, and the number of pixels that border crop and

weed features. There are 17 ground truth images for sequence B.

Classified as Number of
C (%)|W (%)|S (%)|| pixels |border pixels
Crop|81.72 | 4.51 |13.76| 141,075 | 19,615
Ground truth|Weed| 3.93 | 56.90 {39.17| 17,160 18,544
Soil| 0.06 | 0.24 | 99.7 ||1,195,308 -

Table 6. Run C segmentation results, percentages of true numbers of crop, weed and
soil pixels classified as C, W or S, and the number of pixels that border crop and weed
features. There are 17 ground truth images for sequence C.

Classified as Number of
C (%)W (%)[S (%)|| pixels |border pixels
Crop| 55.00 | 4.11 |40.89| 41,411 13,171
Ground truth|Weed| 6.31 | 73.52 [20.17|| 1,046 2,202
Soil| 0.06 | 1.13 [98.81(/1,003,418 -

Table 7. Run D segmentation results, percentages of true numbers of crop, weed and
soil pixels classified as C, W or S, and the number of pixels that border crop and weed
features. There are 16 ground truth images for sequence D.
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Observations 4 and 5 suggest that the larger plants seen in image sequences
A and C are more easily identified than the smaller plants in sequences B and D.
The reasons for this are unclear, but may be related to changes in the infra-red
reflectance of the crop plants as they age.

Observations 6 and 7 show that the weed features, which are dominated by
border pixels, are typically smaller than the crop features. This has already been
illustrated in figure 2] and forms the basis of the size threshold algorithm.

If we ignore the crop and weed ground truth pixels that the segmentation
algorithm labels S, we can construct true positive and false positive ratios for
the crop and weed pixels that have been classified as plant matter (either C or
W). These figures are given for each sequence in table Bl and show that those
pixels which are identified as plant matter are separated into the crop and weed
classes with some success. This allows us to conjecture that if plant matter/soil
discrimination were more reliable then figures similar to those in table Bl might
be obtained.

Sequence| TPR | FPR
A 0.9639(0.1683
B 0.9550( 0.0
C 0.9477(0.0650
D 0.9305(0.0790
Table 8. TPR and FPR for the correctly identified plant matter pixels in sequences
A-D.

5 Conclusions

We have used a novel two stage algorithm developed for a horticultural applica-
tion to illustrate that breaking an algorithm down into its constituent compo-
nents and testing these individually can provide a better understanding of overall
behaviour. Analysis of the test results allows us to conclude that the majority of
the errors in the system are propagated forward from stage I of the algorithm.
It was seen that II performs effectively on the data that is correctly propagated
form stage I, so algorithm development should focus on improving the plant mat-
ter/soil segmentation. Empirical discrepancy analysis based on ROC curves and
type I and type II statistical errors was used for the individual binary classifiers,
and overall tri-partite classification figures given for the full algorithm.
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