Level Lines as Global Minimizers of Energy
Functionals in Image Segmentation

Charles Kervrann, Mark Hoebeke, and Alain Trubuil

INRA - Biométrie, Domaine de Vilvert
78352 Jouy-en-Josas, France
{ck,mh,at}@jouy.inra.fr

Abstract. We propose a variational framework for determining global
minimizers of rough energy functionals used in image segmentation. Seg-
mentation is achieved by minimizing an energy model, which is comprised
of two parts: the first part is the interaction between the observed data
and the model, the second is a regularity term. The optimal bounda-
ries are the set of curves that globally minimize the energy functional.
Our motivation comes from the observation that energy functionals are
traditionally complex, for which it is usually difficult to precise global
minimizers corresponding to “best” segmentations. Therefore, we focus
on basic energy models, which global minimizers can be explicitly de-
termined. In this paper, we prove that the set of curves that minimizes
the image moment-based energy functionals is a family of level lines, i.e.
the boundaries of level sets (connected components) of the image. For
the completeness of the paper, we present a non-iterative algorithm for
computing partitions with connected components. It leads to a sound
initialization-free algorithm without any hidden parameter to be tuned.

1 Introduction

One of the primary goals of early vision is to segment the domain of an image
into regions ideally corresponding to distinct physical objects in the scene. While
it has been clear that image segmentation is a critical problem, it has proven
difficult to precise segmentation criteria that capture non-local properties of an
image and to develop efficient algorithms for computing segmentations. There
is a wide range of image segmentation techniques in the literature. Many of
them rely on the design and minimization of an energy function which captu-
res the interaction between models and image data [TOI2I2TITH27]. Conventio-
nal segmentation techniques generally fall into two distinct classes, being either
boundary-based or region-based. The former class looks at the image disconti-
nuities near objects boundaries, while the latter examines the homogeneity of
spatially localized features inside objects boundaries. Based on these properties,
each of these has characteristic advantages and drawbacks. Nevertheless, several
methods combine both approaches [29]7/512].

Region-based approaches are our main interest. In contrast to boundary-
based methods, region-based approaches try to find partitions of the image pi-
xels into zones the most homogeneous possible corresponding to coherent image
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properties such as brightness, color and texture. Homogeneity is traditionally
measured by a given global objective function and hard decisions are made only
when information from the whole image is examined at the same time. In that
case, the boundaries are the set of curves that minimizes a global energy function.
Past approaches have centered on formulating the problem as the minimization
of a functional involving the image intensity and edge functions. Some energy
models are based on a discrete model of the image, such as Markov random
fields [TOT5I27] or a Minimum Description Length (MDL) representation [T5l/8],
whereas variational models are based on a continuous model of the image [2]
21120/T9/26]. More recently, Zhu attempted to unify snakes, region growing and
energy /Bayes/MDL within a general framework [29]. Finally, Blake and Zisser-
man [2] and Mumford and Shah [2T] have written about most aspects of this
approach to segmentation and have proposed various complex functionals whose
minima correspond to segmented images. In a recent review, Morel and Soli-
mini [T9] have, indeed, shown that most approaches aim at optimizing a cost
functional which is the combination of three terms: one which ensures that the
smoothed image approximates the observed one, another which states that the
gradient of the smoothed image should be small, except on a discontinuity set,
and a last one which ensures that the discontinuity set has a small length. In
other respects, while these different approaches offer powerful theoretical fra-
meworks and minimizers exist [19129)26], it is often computationally difficult to
minimize the associated functions. Typically, some embedding procedure, like
graduate-non-convexity [2] , is used to avoid bad local minima of cost functio-
nals. A fairly complete analysis is available only for a simplified version of the
Mumford and Shah model that approximates a given image with piecewise con-
stant functions [I9]. Moreover, in the area of region-based approaches, layers
approaches attempted to use both region and boundary information [§]. But the
number of layers and the values associated with the layers must be known a pri-
ori or estimated using ad-hoc methods or prohibitive Expectation-Maximization
procedures.

The main obstacle of energy model based approaches is to find more effective
and faster ways of estimating the boundaries and values for regions minimizing
the energy than those presently available. This motivates the search for global
minimizers of energy functionals commonly used in image segmentation. The key
contribution of this paper is to provide basic energy models, which global minimi-
zers can be explicitly determined in advance. Accordingly, energy minimization
methods and iterative algorithms are not necessary to solve the optimization
problem. The energy model introduced in a discrete setting by Beaulieu and
Goldberg [1] and reviewed by Morel and Solimini [I9] has been the starting
point for our own work. This model tends to obtain a partition with a small
number of regions and small variances without a priori knowledge on the image.
The cost function allows to partition the image into regions, though in a more
restrictive manner than previous approaches [2TJ2/T5j29] since it can generate
irregular boundaries [19]. In [1], the energy is efficiently minimized using a split-
and-merge algorithm. Here, our approach is completely different to determine
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global minimizers of similar energy models. The present investigation is based
on a variational model. In Section 2, we prove that the set of curves that mini-
mizes a particular class of energy models is a family of level lines defined from
level sets of the image. We list some prior models (Markov connected compo-
nent fields, entropy prior) which are consistent with this theoretical framework.
In this sense, the method is deterministic and equivalent to a procedure that
selects the “best” level lines delimiting object boundaries. The rest of the paper
is organized as follows. A description of the initialization-free segmentation al-
gorithm is included in Section 3. In Section 4, experiments on several examples
demonstrate the effectiveness of the approach.

2 The Framework

One approach to the segmentation problem has been to try to globally minimize
what we call the “energy” of the segmentation. These energy models are usually
used in conjunction with Bayes’s theorem. Most of the time, the energy is desi-
gned as a combination of several terms, each of them corresponding to a precise
property which much be satisfied by the optimal solution. The models have two
parts: a prior model E, and a data model E,. The prior term is sometimes cal-
led the “regularizer” because it was initially conceived to make the problem of
minimizing the data model well-posed.

2.1 Minimization Problem

Our theoretical setting is the following. Let us consider a real-value function I,
i.e. the image, whose domain is denoted S : [0, a] x [0,b]. In many situations, it
is convenient to consider images as real-valued functions of continuous variables.
We define the solution to the segmentation problem as the global minimum of a
regularized criterion over all regions.

Let s = (z,y) € S an image pixel, {2, C S ,i = 1,..., P, an non-empty
image domain or object and 0f2; its boundary. We associate with the unknown
domains £2; the following regularized objective function, inspired from [TJTT]:

{E)\(f7917...79p):Ed(f,Ql,...,Qp) + )\EP(Ql,...,QP)
Ey(f, 1, 92p) = 31y Ealf, 2)

where f is any integrable function, for instance the convolution of the image I
with any filter, F,({21,...,2p) is a penalty functional and A > 0 is the regu-
larization parameter. Some choices of f have been recently listed in [T12]. Here,
we just consider the possibility of examining the image at various scales using a
Gaussian smoothing of the image, including the case of zero variance, i.e. f =1
and the case of anisotropic diffusion [14].

Equation () is the most general form of energy we can optimize globally
at present. We present two appropriate energy models for segmentation which
attempt to capture homogeneous regions with unknown constant intensities. It
will be clear that none of these models captures all the important scene variables
but may be useful to provide a rough analysis of the scene.

(1)
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LEAST SQUARES CRITERION: In this modeling, implicitly, a Gaussian distri-
bution for the noise is assumed [19/29]. The data model is usually defined as

,
Bl @1ves ) = 3 [ (f@9) = T)? dady )

where f denotes the average of f over (2;. This means that one observes a
corrupted function f = f .. + €, where ¢ is a zero-mean Gaussian white noise
and fi,.. is supposed piecewise constant, i.e.

P
fune(5) =" fo, I(s € ;) where |£]= / dzdy, (3)
i=1 g

2;

and Z(-) is the indicator function. The standard deviation is assumed to be
constant over the entire image. The image domain S is split into unknown P
disjoint regions {21, -+, 2p.

CONTRAST STATISTIC CRITERION: One may be interested in identifying bo-
undaries corresponding to sharp contrast in the image. We define the contrast
of a boundary by the difference between the average value of f per unit area on
the inside of the boundary and the outside of the object, that is the background
2p [23]. Formally, the corresponding data model is

P-1

Ed(fv*le"'v'QP) = _i: (7!21 - 7!21:)2' (4)

=1

Regions are assumed to be simple closed curves superimposed on the backgro-
und. This data model does appear to have a fairly wide application potential,
especially in medical image analysis and confocal microscopy, where the regions
of interest appear as bright objects relative to the dark background.

For the sake of clarity, we restrict ourselves to the first case, i.e. the LEAST
SQUARES CRITERION, and give major results for the other criterion.

Our aim is now to define objects in f. Therefore, we define the following class
Cp , P > 1 of admissible objects

Cp={(1,...,92p_1) C S are regular, closed and connected ; U7, 2, = S;
1<i,j<P,i#j = 2,n02;=0;}
where the subsets (£21,...,2p_1) are the objects of the image and 2p is the
background. When P = 1, there is no object in the image. An optimal segmen-

tation of image f over Cp is by definition a global minimum of the energy (when
exists)

(£27,...,02p.) = infpsy infg, . opyecy Ex(f, 21,...,02p) . (5)
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A direct minimization with respect to all unknown domains {2; and parameters
?-Qi is a very intricate problem [2I121/[19/29]. In the next section, we prove that
the object boundaries are level lines of function f if the penalty function E,
only encourages the emergence of a small number of regions. In our context,
an entropy prior or Markov connected component fields-based prior are used to
reduce the number of regions. The parameter A can be then interpreted as a
scale parameter that only tunes the number of regions [19].

2.2 Minimizer Description and Level Lines

Our estimator is defined by (when exists)

(21,....05) = argminps; argmin g, . opyecy, Ex(f;21,...,02p).  (6)

The question of the existence of an admissible global minimum for energies like
Mumford and Shah’s energy [21] is a difficult problem (see [19] for more details).
Here, our aim is not to investigate conditions for having an admissible global
minimum. In what follows, we make an ad-hoc assumption ensuring the existence
of an unique minimum of the energy [11].

Minimizer description. We propose the following lemma

LEMMA 1 If there exists an unique admissible global minimum and that no pa-
thological minimum exists [11], then the set of curves that globally minimizes the
energy is a subset of level lines of f:

~

f|zmi = Ui, i=1,...,P—1.

i.e. the border 0§2; of each (2; is a boundary of a level set of f.

Proof of Lemma 1 Without loss of generality, we prove Lemma 1 for one object
(2 and a background {2¢, where £2¢ denotes the closure of the complementary set

of £2. For two sets A and B, denote / f 2 / f —/ f . Let £25 be a small
A-B A B
perturbation of {2, i.e. the Hausdorff distance doo ({25, {2) < 6 . Then, we have

fo oo wa ([ )=o) =2 ], o+ (], )@

Al

and the following image moments:

mO:/Q]I, mlz/gf, mQ:/QfZ, KO:/S]I, Klz/sf, KQ:/SfQ.(s)

The difference between the involved energies is equal to

E)\(.ﬂ 957‘Q§) - Ek(fv‘QNQc) = Ed(f’ .Q(;,.Qg) - Ed(f’ 97 ‘Qc) +>‘EP(957‘Q§) - EP(‘Q7 ‘QC)

AEX(f,92,02°) AE4(f,02,02°) AEp(£2,02¢)

9)
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Table 1. Coefficients Ag and A; associated to the two segmentation criteria.

Ao Al
2 2

my_ (EKi—my) _2my | 2(Kh-mg)

LEAST SQUARE CRITERION mE T (Ko—mo)? mo. T T Kq—mg
Qm% 2(K1—m1)2 2mq 2(K1—my)
CONTRAST STATISTIC 3 (—7(1{0;(,“0)3 ) —m ?— (KO,,;lO)z

— 2ma (1—2mg) (K £ 20Ky —2my)

CRITERION mZ (Ko—m0)? t oo (Ko—mg)

In Appendix, it is shown that for A(|2]) — 0, AEL(f, 2, £2°) is equal to
AE,(f,2,0°) = A(12]) (Ao + ALf) + O(A(|92))%) (10)

where Ag and A; are computed from image moments given in (8). For the two
criteria described in Section 2.1, the coefficients are listed in table [II Suppose
we can write AE, (2, 2°) as

AE,(2,02°) = A(2]) (Bo + Bif) + O(A(2])%). (11)

Let sg be a fixed point of the border 0f2. Choose {25 such that 0§25 = 02 except
on a small neighborhood of sg. The energy having a minimum for 2, f(sg) needs
to be solution of the following equation

AEA(f,02,02°) = A(192]) [(Ao + ABo) + (A1 + AB1) f(s0)] + O(A(|2))*) = 0. (12)

By pre-multiplying (IZ) by A(]£2|)~! and passing to the limit A(|£2]) — 0, we
obtain

(Ao + ABo) + (A1 + ABy) f(s0) = 0. (13)

Equation (I3]) has an unique solution. The coefficients (Ag + ABy) and (A4; +
ABj1) do depend on neither sg nor f(sg), and Ag + ABg # 0. The function f is
continuous and 92 is a connected curve. Therefore f(sg) is constant when s
covers 0f2. O

In conclusion, we proved that the global minimizer is a subset of iso-intensity
curves of the image provided that E)\(f, {21, ..., 2p) is explained by second-order
image moments. In the next section, we list two penalty functionals relying on the
Markov connected component fields and entropy theories, which are consistent
with Lemma 1 and (IT).

Image representation by level sets. In consequence of Lemma 1, object
borders can be determined by boundaries of level sets. Meanwhile, it turns out
that the basic information of an image (or function f) is contained in the family
of its binary shadows or level sets, that is, in the family of sets S, defined by

Sy = {seS: f(s)>n} (14)



Level Lines as Global Minimizers 247

for all values of 7 in the range of f [16]. In contrast to edge representation, the
family of level sets is a complete representation of f [18]. This representation
is invariant with respect to any increasing contrast change and so robust to
illumination conditions changes. In general, the threshold set is made up of
connected components based both on the image gray levels and spatial relations
between pixels. To extract a connected component of a level set S,;, we threshold
the image at the gray level n and extract the components of the binary image we
obtain. A more efficient technique has been described in [IR]. A recent variant
of this representation is proposed in [3I8] by considering the boundary of level
sets, that is the level lines. This representation does not differ with respect to
the set of level sets. As a consequence of the inclusion property of level sets,
the level lines do not cross each other’s. In the following, we basically consider
that a connected component is an object §2; and the level lines are just a set of
n-isovalue pixels at the borders 92; of connected components.

2.3 Forms of Prior Models

One of the difficulties in the Bayesian approach is to assign the prior law to reflect
our prior knowledge about the solution. Besides, in consequence of Lemma 1, the
set of penalty functionals is limited. The contribution of a given pixel to the prior
does not depend on the relation with neighbors and the resulting regions may
have noisy boundaries. Here, the proposed penalty functionals are not necessary
convex but only enable to select the right number of regions. Instead of fixing a
priori the cardinality of the segmentation, which is a highly arbitrary choice, it
seems more natural to control the emergence of regions by an object area-based
penalty or by an information criterion weighted by a scale parameter .

Markov connected component fields. A new class of Gibbsian models with
potentials associated to the connected components or homogeneous parts has
been introduced in [T7]. For these models, the neighborhood of a pixel is not fixed
as for Markov random fields, but given by the components which are adjacent to
the pixel. These models are especially applicable for images where a relatively few
number of gray levels occur, and where some prior knowledge is available about
size and shape characteristics for the connected components [27]. The Markov
connected component fields possess certain appealing Markov properties which
have been established in [I7].

Here we considered a Markov connected component field which the probabi-
lity density function is proportional to

P-1
exp Y a2 + B(P—1)" + 427 (15)

i=1

E,(821,...,02p)

The parameter « controls the size of the components since the squared area of
the union of two components is greater than the sum of the squared areas of
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each component. The size of the components is however also influenced by the
parameter « together with the parameters 5 and ¢ which controls the number of
components. The potential E, ({21, ..., {2p) is the more general functional we can
use since the boundaries of connected components cannot be penalized in our
framework. These potentials can be separately used to select the right number
of regions by setting «, 3,y = {0,1}.

In Section 2.2, we proved Lemma 1 for one object {2 and a background (2¢.
Using the same notations, we easily write

AE,(2,2°) = aA(12]) +7(12]* = 121*) = A(92)) (a+ 2ymo) +~ A(|£2])*. (16)

Accordingly, we obtain By = (o + 2ymyg) and By = 0, which is consistent with
Lemma 1 and () if no pathological events (e.g. topological changes) occurs.

The application of Markov connected component fields is somewhat more
computationally demanding than the application of Markov random fields. By
the local Markov property the calculations for an update of a site in a single site
updating algorithm only involves the components adjacent to this site. Our work
may be regarded as an preliminary exploitation of the theoretical framework
described by Mgller et al [17] in image segmentation.

Entropy prior. The entropy function has been widely used as a prior in a
Bayesian context for image restoration. Here, the entropy of the segmented image
is written as follows [J]

P P
Ep(‘917"'7'QP) = _Zpilnp’i = Z | ‘ S|| (17)
=1 =1

where the p;s represent the histogram values, |{2;| the cardinality of region {2; and
|S| the cardinality of the image domain. The value p; is the number of occurrence
of the gray level value fg in the segmented image. The histogram entropy
is minimized for a Dirac distribution corresponding to one single class in the
segmented image. In image segmentation, we want to obtain a histogram sharper
than the histogram of the initial image, so the entropy should be minimized [9].
The actual reduction of number of classes is obtained from the information prior

E,(f,...,2p). Using the notations introduced in Section 2.2, we write
A2 -2
AE,(2,0°) = |(|S D 1, |S||Q | + O(A(]2))?). (18)

Accordingly, we obtain By = W In % and By = 0, which is consistent with
Lemma 1 and (TI).

2.4 Properties of the Energy Models

In this section, we complete the analysis of energy models and discuss the connec-
tions with image partitioning algorithms.
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Upper bound of the objects number. It appears, most of the time, that
variations in the values of the parameters A have significant effects on the qua-
litative properties of the minimizer [28]. We show that the maximum number of
objects is explicitly influenced by A.

LEMMA 2 If there exists an optimal segmentation defined by {) and (@) then
the optimal number P* of objects is upper bounded by

Poe = 14 (A [2un)” /S (F(xry) — Ts)Pdady

P-1
Zf Ep(QLaQP) = Z|~Ql|, i.€. CY:l,ﬂ:’y:O

i=1

Proof of Lemma 2 :

pP*—1
A X2 < B0 ) < BAES) = (o) - TePdady,
i=1 Py
IF |921] > |2, we have (P* — D] 2,] < 3 |27] gA—l/(f(x,y)—f?)Q ddy
=1 S
and P* < 1+ (A |Q,,,i,,|)_1/(f(x,y)—ﬁ)2 dwdy o
S

Connection to snakes and geodesic active contour models. Let v;(s) =
(2:(8),y:(s)) denote a point on the common boundary 92; (parametrized by
s € [0,1]) of a region §2; and the background (2p. We suppose

P B P—1
B\, 20) = 3 [ (fo) = Fo ) dudy + A Y14
=1 i =1

The time ¢ dependent position of the boundary 92; can be expressed parame-
trically by v;(s,t). The motion of the boundary 9¢2; is governed by the Euler-
Lagrange differential equation [29]. For any point v;(s,t) on the boundary 0£2;
we obtain:

dule) _ SBLRL) (40, = Fo, 4 A= (210) = T V] () (19)

where n(v;(s)) is the unit normal to 9f2; at point v;(s,t). This equation can

be seen as a degenerate case of the region competition algorithm described by
Zhu et al. [29] where X is analogous to a pressure term [I3]6]. The solving of the
Euler-Lagrange equations for each region can be complex and the region compe-
tition algorithm (see [29]) finds a local minima. Using the level-set formulation
[22/4]24], suitable numerical schemes have been derived for solving propagating
equations. However, in both cases, seed regions must be provided by the user
or randomly put across the image, and mean values ?Q are updated at each
step of the iterative algorithm. In this paper, we directly determined the steady
solutions associated with the motion equation given in ([9).
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3 Segmentation Algorithm

In practical imaging, both the domain S and the range of f are discrete sets. The
segmentation algorithm we propose is automatic and does require neither the
number of regions nor any initial value for regions. This algorithm is not a region
growing algorithm as described in [25J1l[19] since all objects are built once and
for all according to ([4). Energy minimization is performed once all admissible
objects have been registered. To implement our level set image segmentation, a
four step method is used.

LEVEL SET CONSTRUCTION The first step completes a crude mapping of each
image pixel on a given level set. At present, we uniformly quantize the function
I € [fmin, fmaz] in K = {4,8, 16,32} equal-sized and non-overlapping intervals
{ll1,h1];-- -, [lx, hi]}. Given this set of levels, we then assign one of the levels
to each pixel s: s is assigned to [l;, h;[ if 1; < f(s) < h;.

OBJECT EXTRACTION A crude way to build pixels sets corresponding to objects
is to proceed to a connected components labeling and to associate each label
with an object {2;. The background {2p corresponds to the complementary set
of objects (2;. The list of connected components of each of these then forms
the list of objects {§21,... 27} where T is the maximum number of connected
components such as [2;| > |2,.] and P< T < P,...

Though this process may work in the noise-free case, in general we would
also need some smoothing effect of the connected components labeling. So we
consider a size-oriented morphological operator acting on sets that consists in
keeping all connected components of the output of area larger than a limit £2,,,;,.

CONFIGURATION DETERMINATION  The connected components are then com-
bined during the third step to form objects configurations. Having the ob-
jects list {§21,... 27}, configurations can be built by enumeration of all pos-
sible object combinations, i.e. 27 configurations. Each possible configuration
can then be represented by a binary number b; which is the binary expansion of
i(0<i< oT _ 1). The binary value of each bit in b; determines the presence or
absence of a given object in the configuration.

ENERGY COMPUTATION  Each configuration represents a set of objects which
in turn is a set of pixels. Energy calculations take the image intensities of the
original (not quantized) image at each of these pixels to establish mean and
approximation error. Note that energies corresponding to each object are com-
puted once and stored, and energy corresponding to the background is efficiently
updated for each configuration. The configuration that globally minimizes the
energy functional corresponds to the optimal segmentation. The time necessary
to perform image segmentation essentially depends on the length of the object
list, i.e. the number T of connected components. Nevertheless, all configurations
are independent and could be potentially evaluated on suitable parallel archi-
tectures.
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4 Experimental Results

We are interested in the use of the technique in the context of medical and aerial
imagery and confocal microscopy. Our system successfully segmented various
images into a few regions. For the bulk of the experiments, we used a slightly
restricted form, in which the data model is given by () and, for the sake of
clarity, we restrict ourselves to use a single potential at one and the same time,
ie. E,(1,...,02p) = P—1or E,(f4,...,02p) = Zf:_ll [£2;|. The last prior
model can be re-defined to find large regions with low/high intensity in the
image (see Figs. 2H3). Similar results were obtained using an entropy prior. The
algorithm parameters were set as follows: K = 4,8,16 or 32, and regions which
areas |(2;] < 0.01 x |S| are discarded. Most segmentations took approximately
about 4-10 seconds on a 296MHz workstation. Two sets of simulations were
conducted on synthetic as well as real-world images to evaluate the performance
of the algorithm. In experiments, the image intensities have been normalized
into the range [0, 1].

Figure [[h shows an artificially computed 256 x 256 image representing the
superposition of two bidimensional Gaussian functions located respectively at
so = (64,128) and s; = (160, 128) with variance of oo = 792 and o1 = 1024.
Figure b shows the result of the uniform quantization operation applied on
Fig. Th (K = 32). The levels lines associated with the quantized image are
displayed on Fig. [Ik. Note that level sets of area too small are suppressed. Figures
[[H-f show how the penalization parameter influences the segmentation results
when E,(f,...,02p) = Ei_ll [£2;|. The white borders denote the boundaries
of the objects resulting from the segmentation.

We have applied the same algorithm to an aerial 256 x 256 image depicted
the region of Saint-Louis during the rising of the Mississipi and Missouri rivers in
July 1993 (Fig. Bh). We are interested in extracting dark regions labelled using
?Qi in this image. The level lines corresponding to K = 8 are shown on Fig. [2b.
The approach has successfully extracted significant dark regions and labeled in
“white” urban areas, forests and fields as “background” (Fig.[2c).

An example in 2D medical imaging is shown on Fig. Bl Figure Bk shows
the results of the above method when applied to outline the endocardium of
a heart image obtained using Magnetic Resonance. This figure illustrates how
our method selects the number of segments in a 2D medical MR image (179 x
175 image).The level lines are shown in Fig. Bb and the region of interest is
successfully located using K = 8 and A = 0.01.

Confocal systems offer the chance to image thick biological tissue in 2D+t
or 3D dimensions. They operate in the bright-field and fluorescence modes, al-
lowing the formation of high-resolution images with a depth of focus sufficiently
small that all the detail which is imaged appears in focus and the out-of-focus
information is rejected. Some of the current applications in biological studies
are in neuron research. We have tested the proposed algorithm on 2D confo-
cal microscopy 256 x 240 images (Fig. @h), courtesy of INSERM 413 IFRMP
n°23 (Rouen, France). Figure @a depicts a triangular cell named “astrocyte”.
These cells generally take the place of died neuron cells. In Figslb-c, the seg-
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[§]

Fig. 1. Segmentation results of a synthetic image. a) original image ; b) uniformly
quantized image (K = 32) ; c) level lines superimposed on the quantized image ; d)
segmentation with A = 0.01 ; e) segmentation with A\ = 0.1 — two detected objects; f)
segmentation with A = 1.0 — one detected object.

mentation of one single cell is shown. We have preliminary filtered the image
using anisotropic diffusion [I4]. The boundaries of the cell components are quite
accurately delineated in Fig. @b (K = 8, A = 0.001).

5 Conclusion and Perspectives

In this paper we have proposed basic energy functionals for the segmentation
of regions in images, and we proved that the minimizer of our energy models
can be explicitly determined. The minimization requires no initialization, and
is highly parallelizable. A total CPU time of a few seconds for segmenting a
256 x 256 image on a workstation makes the method attractive for many time-
critical applications. The contribution of this approach has been illustrated on
synthetic as well as real-world images. The energies are of a very general form and
always globally optimizable by the same algorithm. The framework offers many
other possibilities for further modeling. We are currently studying an adaptive
quantization technique instead of the uniform quantization used at present to
estimate the objects. Finally, the extension of the approach to volumetric images
(confocal microscopy) and multi-spectral images is also of interest. In this setting,
the structure of the algorithm would be largely the same, although there are a
number of points which would need to be examined closely.
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Fig. 2. Segmentation results of an aerial image (A = 0.001). Left: original image.
Middle: level lines computed from the quantized image (K = 8). Right: label map.

Fig. 3. Segmentation results of a MR image (A = 0.01). Left: original image. Middle:
level lines computed from the quantized image (K = 8). Right: boundaries of the object
of interest superimposed on the original image.

Fig. 4. Segmentation in 2D confocal microscopy (A = 0.001). Left: original image.
Middle: boundaries superimposed on a adaptively filtered image (K = 8). Right: label
map.
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A Computation of the Energy Variation for the LEAST
SQUARES CRITERION

We compute the energy variation for one object {2 and a background 2¢, where
£2¢ denotes the closure of the complementary set of 2. The data model is

B, 02,0°) = / (f(z) — Ta)? dady + / (F(x,y) — Tar)? dady. (20)

N c

For two sets A and B, denote / f = / f— / f . Let {25 be a small pertur-
A-B A B

bation of {2, i.e. the Hausdorff distance d, (25, 2) < ¢ . Then, we define

[, p=tes ey ([ a)= (o) =2 [ s [ o ([, )

AleD

The difference between the involved energies is equal to AE,(f, 2,02°) =
.Ed(f7 s, Qg) — .Ed(f7 0, Qc> = T+ Ty + T35+ T4, with

nefor- e (L) m (L)
Tg:/s,naft/s,nf?’ T4=—m(/s,%f) s </Hf> '

Using (2I) and passing to the limit A(|£2|) — 0, i.e. |£2s] ~ [2|, we obtain
(higher order terms are neglected)

nen-[ g

=i St o m U, Qf)2+ml|2/m_9“(/gf)27

T S oo foa? T (/f) (22
wﬂ—umﬂkﬁ“<l;gfy'

Deﬁnetheimagemomentsm():/]I,mlz/f,KO:/]I,Klz/f.
Q 2 s s

Using the mean value theorem for double integral, which states that if f is conti-
nuous and A is bounded by a simple curve, then for some point sg in A we have
J4 f(s)dA = f(so) - |A] where |A| denotes the area of S, it follows that

Ao Ay
2 2
oy _ [mi (K1 —m) } / [ 2m, 2(K1—m1)} /
AEy(f, 02,0 = | —5 — 755 I+ - T Ko —mo I
d(f ) [mg (KO — m0)2 P + mo + Ko —mo f(So) 2s—0

- [miojt ﬁ] f(s0)? (/96_911)2. (23)
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