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Abstract. We present new constructions of non-malleable commitment
schemes, in the public parameter model (where a trusted party makes
parameters available to all parties), based on the discrete logarithm or
RSA assumptions. The main features of our schemes are: they achieve
near-optimal communication for arbitrarily-large messages and are non-
interactive. Previous schemes either required (several rounds of) interac-
tion or focused on achieving non-malleable commitment based on general
assumptions and were thus efficient only when committing to a single
bit. Although our main constructions are for the case of perfectly-hiding
commitment, we also present a communication-efficient, non-interactive
commitment scheme (based on general assumptions) that is perfectly
binding.

1 Introduction

Commitment protocols are one of the most fundamental cryptographic primi-
tives, used as sub-protocols in such applications as zero-knowledge proofs (see
Goldreich, Micali, and Wigderson [17] and Goldreich [15]), secure multi-party
computation (see Goldreich, Micali, and Wigderson [16]), contract signing (see
Even, Goldreich, and Lempel [13]), and many others. Commitment protocols
can also be used directly; for example, in remote (electronic) bidding. In this
setting, parties bid by committing to a value; once bidding is complete, parties
reveal their bids by de-committing. In many of these settings, it is required that
participants, upon viewing the commitment of one party, be unable to generate
a commitment to a related value. For example, in the bidding scenario it is un-
acceptable if one party can generate a valid commitment to x+ 1 upon viewing
a commitment to x. Note that the value of the original commitment may remain
unknown (and thus secrecy need not be violated); in fact, the second party may
only be able to decommit his bid after viewing a decommitment of the first. Un-
fortunately, most known commitment protocols are easily susceptible to these
types of attacks.
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Two types of commitment schemes have been considered in the literature:
perfectly-binding [19] and perfectly-hiding [21] (following [15] we refer to the for-
mer as standard and the latter as perfect). In a standard commitment scheme,
each commitment is information-theoretically bound to only one possible (legal)
decommitment value; on the other hand, the secrecy of the commitment is guar-
anteed only with respect to a computationally-bounded receiver. In a perfect
commitment scheme, the secrecy of the commitment is information-theoretic,
while the binding property guarantees only that a computationally-bounded
sender cannot find a commitment which can be opened in two possible ways.
The type of commitment scheme to be used depends on the application [15];
it may also depend on assumptions regarding the computational power of the
participants. For example, in many protocols certain commitments are never
opened; information-theoretic privacy ensures that the committed data will re-
main hidden indefinitely (for further discussion, see [23,21]).

Commitment size is an important parameter, particularly when committing
to a very large message such as the contents of a database. Unfortunately, stan-
dard commitment schemes (even malleable ones) require commitment size at
least M + ω(log k), where M is the message size and k is the security param-
eter. Perfect commitment schemes, on the other hand, offer the opportunity
to achieve much shorter commitment lengths. Indeed, the non-malleable, per-
fect commitment schemes presented here achieve commitment size only 3k for
arbitrarily-large messages.

Previous Work. Non-malleability was first explicitly considered by Dolev,
Dwork, and Naor [11], who define the notion in a number of different settings.
They also provide the first construction of a standard commitment scheme which
is provably non-malleable. Although their protocol is constructed from the min-
imal assumption of a one-way function (in particular, without assuming a public
random string), it requires a non-constant number of rounds of interaction1.
Assuming a public random string available to all participants, Di Crescenzo,
Ishai, and Ostrovsky [9] construct a non-interactive, non-malleable standard
commitment scheme. Interestingly, their construction can be modified to give a
non-interactive, non-malleable perfect commitment scheme. Unfortunately, the
resulting commitments are large (i.e., O(Mk)), thus motivating the search for
more efficient protocols.

Constructions of non-malleable public-key encryption schemes have also been
proposed [11,6,25]. In some cases, these constructions give non-malleable stan-
dard commitment schemes, in the model where public parameters are published
by a trusted party. We discuss this connection in more detail in Section 3.

Two efficient non-malleable commitment schemes, based on stronger (but
standard) assumptions, have also been proposed. Like the construction of [9],
these protocols both require publicly-available parameters generated by a trusted
party (in some cases this can be reduced to the assumption of a public random

1 Furthermore, their protocol allows an adversary to generate a different commitment
to an identical value (unless user identities are assumed). Other protocols discussed
in this paper (including our own) do not suffer from this drawback.
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string). The first can be obtained from an adaptive chosen-ciphertext secure
public-key encryption scheme proposed by Cramer and Shoup [6], whose security
is based on the decisional Diffie-Hellman problem. More recently, non-malleable
perfect commitment schemes based on the discrete logarithm and RSA assump-
tions were introduced by Fischlin and Fischlin [14]. Though efficient, these pro-
tocols require interaction between the sender and receiver.
Our Contribution. We present the first efficient constructions of non-inter-
active, non-malleable perfect commitment schemes. We work in the same setting
as other efficient non-malleable commitment schemes, where public parameters
are available to all participants [6,14] (our discrete logarithm construction can
be implemented in the public random string model using standard techniques).
Our constructions are based on the discrete logarithm or the RSA assumptions.
Previous constructions are either for the case of standard commitment [11,9,6]
or require interaction [11,14]. Our constructions allow efficient, perfectly-hiding
commitment to arbitrarily-large messages. The schemes described in [14], while
able to handle large messages, require modifications which render them less
efficient and also result in statistical secrecy only.

Additionally, we discuss the case of non-interactive, non-malleable, standard
commitment schemes and prove secure a folklore construction based on trapdoor
permutations which is near-optimal in terms of commitment size. The large
commitment size of this construction (though near-optimal) serves as motivation
for our consideration of perfect commitment schemes. Indeed, for arbitrarily-
large messages, our perfect commitment schemes require commitments of size
3k, where k is the size of RSA or discrete log problems believed to be hard to
solve (see Section 5 for improvements which reduce the commitment size even
further). Our schemes require only O(k) bits of public information.

2 Definitions

We discuss the communication models in which we present our constructions, and
recall the notions of commitment schemes, equivocable commitment schemes,
and finally non-malleable commitment schemes.
Communication models. We will consider two models: the public-random-
string model of [4,3], and a slight generalization of it, considered for instance by
[14] in the context of commitment schemes, which we call the public-parameter
model.

The former model was introduced in order to construct non-interactive zero-
knowledge proofs (i.e., zero-knowledge proofs which consist of a single message
sent from a prover to a verifier). In this model, all parties share a public reference
string which is assumed to be uniformly distributed. The latter model generalizes
the public random string model in the following sense: all parties still share a
public reference string which is now defined as the output of an efficient algorithm
(and may therefore have arbitrary distribution).

For a unified treatment, we present our definitions for the public-parameter
model, keeping in mind that analogous definitions may be obtained for the public
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random string model if the algorithm generating the public reference string is
replaced by an algorithm which chooses a uniformly distributed string.
Commitment schemes. A commitment scheme (T T P,S,R) in the public-
parameter model is a two-phase protocol between two probabilistic polynomial
time parties S and R, called the sender and the receiver, respectively, such that
the following is true. In the first phase (the commitment phase), given the public
reference string σ returned by the probabilistic polynomial time algorithm T T P,
S commits to bit b by computing a pair of keys (com, dec) and sending com (the
commitment key) to R. Given just σ and the commitment key, the polynomial-
time receiver R cannot guess the bit with probability significantly better than
1/2 (this is the hiding property). In the second phase (the decommitment phase)
S reveals the bit b and the key dec (the decommitment key) to R. Now R checks
whether the decommitment key is valid; if not, R outputs a special string ⊥,
meaning that he rejects the decommitment from S; otherwise, R can efficiently
compute the bit b revealed by S and is convinced that b was indeed chosen by
S in the first phase (this is the binding property).

We remark that the commitment schemes considered in the literature can be
divided in two types, according to whether the hiding property holds with respect
to computationally bounded adversaries or to unbounded adversaries. Commit-
ment schemes of the first (resp., second) type have been shown to have appli-
cations to zero-knowledge proofs (resp., arguments) [17,21]. A computationally-
hiding bit-commitment scheme has been constructed under the minimal assump-
tion of the existence of pseudo-random generators [19]. A perfectly-hiding bit-
commitment scheme has been constructed under the assumption of the existence
of one-way permutations [21]. Both schemes have been designed in the interac-
tive model (where no public reference string is available to parties); the former,
however, can be adapted to run in the public parameter model.
Equivocable commitment schemes. Informally, an equivocable commitment
scheme in the public parameter model is one for which there exists an efficient
algorithm, substituting for the trusted third party (T T P), which outputs a set
of public parameters and a commitment such that: (a) the distribution of the
generated public parameters, the commitment, and any decommitment is exactly
equivalent to their distribution in a real execution of the protocol; and (b) the
commitment can be opened in more than one possible way.

Definition 1. Let (T T P,S,R) be a perfectly-hiding commitment scheme in the
public parameter model over message space M. We say that (T T P,S,R) is
perfectly equivocable if there exists a probabilistic, polynomial time equivocable
commitment generator Equiv such that:

1. Equiv1(1k) outputs (σ, com, s) (where s represents state information).
2. For all m ∈ M, Equiv2(s,m) outputs dec such that:

(a) R(σ, com,dec) = m.
(b) The following two random variables are identically distributed:

{σ ← T T P(1k); (com,dec) ← S(σ,m) : (σ, com,dec)}
{(σ, com, s) ← Equiv1(1k); dec ← Equiv2(s,m) : (σ, com,dec)}. �
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The notion of equivocable commitment was first discussed by Beaver [1]. In [9] it
was shown that an adaptation of the commitment scheme in [19] is equivocable
in the public random string model (this fact was used in the construction of the
non-malleable commitment scheme of [9]). Other applications of such schemes
include zero-knowledge protocols [10].
Non-malleable commitment schemes. Two definitions of non-malleable
commitment have appeared in the literature, both seeking to capture the fol-
lowing intuition of security: if an adversary, after viewing a commitment to x,
can produce a commitment to a related value y, then a simulator can perform
at least as well without viewing a commitment to x. The difference is in the
definition of “producing a commitment”. In the original definition [11] (non-
malleability with respect to commitment), generating a valid commitment of y is
sufficient. Note that this definition does not apply to perfectly-hiding commit-
ment schemes since for such schemes the value committed to by a commitment
is not well-defined. In the definition of [9] (non-malleability with respect to open-
ing), the adversary must also be able to give a (valid) decommitment to y after
viewing the decommitment to x. Since our primary constructions are of perfectly-
hiding commitment schemes (for which non-malleability with respect to opening
is the appropriate notion), we present a formal definition of this variant, and
refer the reader elsewhere [11,14] for definitions of non-malleability with respect
to commitment.

Definition 2. Let (T T P,S,R) be a perfectly-hiding commitment scheme, and
let k be a security parameter. We say that (T T P,S,R) is ε-non-malleable (fol-
lowing [11]) with respect to opening if, for all ε > 0 and every probabilistic,
polynomial time algorithm A, there exists a simulator A′ running in poly(k, 1/ε)
time, such that for all poly-time computable, valid relations R (see note below),
for all efficiently sampleable distributions D, we have:

SuccNMA,D,R(k) − S̃uccA′,D,R(k) ≤ ε+ negl(k)

(for some negligible function negl); where:

SuccNMA,D,R(k) def=

Pr
[
σ ← T T P(1k);m1 ← D; (com1,dec1) ← S(σ,m1); com2 ← A(σ, com1);

dec2 ← A(σ, com1,dec1);m2 ← R(σ, com2,dec2) :
com1 �= com2 ∧ R(m1,m2) = 1]

S̃uccA′,D,R(k) def=
Pr

[
m1 ← D;m2 ← A′(1k,D) : R(m1,m2) = 1

]
. �

Definition of non-malleability: The definition of security above allows for
the possibility that the simulator may do arbitrarily better than the adversary.
The reason for this is that the adversary may simply refuse to decommit, even
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when it would have otherwise succeeded2. In any case, if a simulator can do
better than an adversary who gets to see a commitment to m1, the scheme still
satisfies our intuition of non-malleability.

Valid relations. In order for relation R to be valid, we impose the following
restriction: for all m ∈ M, we have R(m,⊥) = 0. This could also be taken into
account by checking that m2 �=⊥ in the definitions of success, above; however,
we find it easier to simply work with valid relations only.

Multiple messages. The authors of [11] point out that a strictly stronger defi-
nition allows the adversary to produce several commitments com(1)

2 , com
(2)
2 , . . . ,

and later several decommitments dec
(1)
2 , dec

(1)
2 , . . . to messages m

(1)
2 ,m

(2)
2 , . . . .

The simulator simply outputs messages m(1)
2 ,m

(2)
2 , . . . . The adversary (or simu-

lator) succeeds when a relation R(m1,m
(1)
2 ,m

(2)
2 , . . . ) holds. For simplicity, we

use the weaker definition in this paper. However, we stress that all the schemes
in this paper are non-malleable with respect to this stronger definition.

History. The definition of [11] includes the possibility of giving the adversary
hist(m1) (for any computable function hist) before he is required to generate his
commitment. We note that the current proof of our perfect commitment schemes
does not consider this property.

3 Computationally-Hiding Commitment Schemes

We first (briefly) examine the case of standard commitment schemes. Note that
the size of a standard, non-interactive commitment (even for malleable schemes)
must be at least M + ω(log k), where M is the message length and k is the
security parameter. Perfect binding implies that the size must be at least M ,
and semantic security requires, in particular, that each message have ω(poly(k))
possible commitments associated with it.

The lemma below indicates that we can achieve roughly this bound for stan-
dard non-malleable commitment, assuming the existence of trapdoor permuta-
tions3 (in the model with public parameters). The commitment scheme is built
from the following components: first, we use a cryptosystem that is secure indis-
tinguishable under an adaptive-chosen-ciphertext attack. Such a scheme can be
obtained using a construction in [11], and we denote this scheme by Epk(·). Next,
we use a symmetric-key cryptosystem (with secret key of length k) which is in-
distinguishable under adaptive chosen-ciphertext attack (which can be obtained
using, e.g., the construction of [11]), and we denote this scheme by E∗

K(·). The
2 For any relation R, a simulator exists for R as well as for its complement R̄, so one
might think that this “problem” can be avoided. The difficulty is that there is an
asymmetry here, in that both R and R̄ must satisfy R(∗,⊥) = R̄(∗,⊥) = 0 (see the
note on valid relations).

3 Recall that [9] achieves a non-interactive, non-malleable computationally-hiding
commitment using only one-way functions. However, their scheme requires com-
mitment size O(kM).
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commitment scheme works as follows: public parameters consist of a public key
pk for the public-key cryptosystem. Commitment is done by choosing a random
secret key for the symmetric-key system, encrypting this secret key using the
public key, and then encrypting the committed message using the secret key. A
commitment to message m is then computed as:

Epk(K) ◦ E∗
K(m). (1)

Decommitment consists of revealing m and the random bits used to form the
commitment. Commitment verification is done in the obvious way.

Although the proof of the lemma is relatively straightforward (and is a “folk
lemma” for the case of encryption), the result below was not widely known for
the case of commitment. Indeed, there are some complications which require
care to get right. A sketch of the proof can be found in Appendix A.

Lemma 1. Assuming the existence of trapdoor permutations, there exists a comp-
utationally-hiding commitment scheme in the public parameter model that is non-
malleable with respect to commitment and has commitment size M + poly(k),
where M is the size of the committed message and k is a security parameter.

Note that this lemma immediately implies the security (under the decisional
Diffie-Hellman assumption) of the above construction when using the efficient
public-key cryptosystem of [6] for E and any adaptive chosen-ciphertext-secure
private-key cryptosystem E∗. Finally, we note that the security requirements
for E and E∗ can be relaxed. One can show that E is only required to be non-
malleable under a chosen-plaintext attack (NM-CPA) and E∗ need only be in-
distinguishable under a P0 plaintext attack and an adaptive chosen-ciphertext
attack (IND-PO-C2); see [2,18] for formal definitions). This allows for much
greater efficiency since NM-CPA-secure public-key cryptosystems can be con-
structed more efficiently than IND-CCA2 schemes [12] and IND-P0-C2-secure
private-key schemes may be deterministic. We remark that the result in the
lemma applies to the public random string model when so-called dense public-
key encryption schemes [8,7] are used.

4 Perfectly-Hiding Commitment Schemes

The computationally-hiding commitment scheme presented in Section 3 achieves
near-optimal commitment size M +poly(k). We cannot hope to improve this by
much (since computationally-hiding commitments have size at least M). In this
section we present perfectly-hiding commitment schemes that improve signifi-
cantly on the commitment length, achieving commitment size 3k for arbitrarily-
large messages (see Section 5 for modifications allowing further reductions in the
commitment size).

Both of our perfectly-hiding commitment schemes build on the paradigm
established in [9], with changes which substantially improve the efficiency. A
commitment consists of three components 〈A,B,Tag〉. The first component A is
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a commitment to parameters r1 and r2 for a one-time “message authentication
code” (mac) for B. The second component B contains the actual commitment to
the message m, using public parameters which depend upon the first component
A. Finally, Tag = macr1,r2(B). An adversary who wishes to generate a commit-
ment to a related value has two choices: he can either re-use A or use a different
A′. If he re-uses A, with high probability he will be unable to generate a correct
Tag for a different B′, since he does not know the values r1, r2. On the other
hand, if he uses a different A′, the public parameters he is forced to use for his
commitment B′ will be different from those used for the original commitment;
thus, the adversary will be able to decommit in only one way, regardless of how
the original B is decommitted. In particular, if it is possible to equivocate B for
a particular choice of A, an adversary who uses a different A′ will be unable to
equivocate B′ (without breaking some computational assumption). We refer the
reader to [9] for further discussion.

In [9], the dependence (upon A) of the public parameters used for commit-
ment B was achieved via a “selector function”4, which results in public parame-
ters of size dependent on the length of the committed message (as a consequence,
the scheme can be efficient only in the case of commitment to a single bit). Here,
we exploit algebraic properties to drastically reduce the size of the public pa-
rameters and obtain a more efficient scheme, even in the case of large messages.

4.1 Construction Based on the Discrete Logarithm Problem

The schemes discussed in this paper work over any group G of prime order for
which extracting discrete logarithms is hard but multiplication is easy. However,
for concreteness we will always assume that p, q are prime with q|p− 1 and the
group G ⊆ ZZ∗

p is the set of elements of order q.
Our starting point is the perfect commitment scheme of Pedersen [24]. Let g, h

be generators of G. To commit to a message m ∈ ZZq, choose random r ∈ ZZq and
output com = gmhr. This scheme achieves information-theoretic secrecy, since
com is uniformly distributed in G; furthermore, it is computationally binding as
long as the discrete logarithm problem is hard. Note that a simple extension of
the scheme (which we refer to as extended-Pedersen) allows commitment to two
messages: simply let g1, g2, g3 be generators of G, and to commit to messages
m1,m2 ∈ ZZq, choose random r and output com = g1

m1g2
m2gr

3. This scheme
retains perfect secrecy; furthermore, computational binding of the extended-
Pedersen scheme can be proved via a reduction to the standard Pedersen scheme
(see [5]). Note further that the Pedersen and extended-Pedersen schemes are
perfectly equivocable (one simply chooses public parameters with known discrete
logarithms).

The public parameters, output by T T P(1k), are primes p, q with q|(p − 1)
and |p| = k, along with random generators g1, g2, g3 of G. Additionally, a random
function H is chosen from a family of universal one-way hash (UOWH) functions
[20]. Commitment is as shown in Figure 1.
4 A different implementation of this technique first appeared in [11].
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Public: p, q, g1, g2, g3; H : G→ ZZq

S (input m ∈ ZZq)

Commitment phase:

r1, r2, r3, r4
R←− ZZq

A = gr1
1 gr2

2 gr3
3 ;α = H(A)

B = (gα
1 g2)mgr4

3

Tag =macr1,r2(B)
A, B, Tag ✲

R

Decommitment phase:

m, r1, r2, r3, r4 ✲
Verify: A

?= gr1
1 gr2

2 gr3
3

B
?= (gH(A)

1 g2)mgr4
3

Tag ?=macr1,r2(B)

Fig. 1. DLog-based, NM perfect commitment scheme.

Theorem 1. Assuming the hardness of the discrete logarithm problem in the
underlying group, the protocol of Figure 1 is an ε-non-malleable perfectly-hiding
commitment scheme in the public-parameter model.

Proof It is clear that the protocol is perfectly-hiding since B is uniformly
distributed in group G independently from the distribution of every other com-
ponent of the commitment. Computational binding of the protocol is also easy
to show (proof omitted).

The proof of non-malleability is more involved; however, we provide some
intuition here. As mentioned in Sec. 2, we prove non-malleability with respect
to a single commitment output by the adversary; however, the same proof tech-
nique suffices to prove non-malleability with respect to multiple commitments.
The simulator (which will do as well as the adversary without seeing the com-
mitment) works as follows. First, it generates public parameters which are dis-
tributed identically to the real experiment, but for which the simulator knows
some trapdoor information which allows it to perfectly equivocate its commit-
ment (cf. Definition 1). The simulator generates a commitment com to a random
message, gives this commitment to the adversary, and the adversary produces its
commitment com2. The simulator now tries to get the adversary to open com2
(this will be the message output by the simulator). To do this, the simulator
decommits com to a random message and gives the decommitment to the ad-
versary, and repeats this step (rewinding the adversary each time) sufficiently
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many times until the adversary opens5 com2. Since the simulator can perfectly
equivocate its commitment, the adversary’s view is equivalent to its view in the
original experiment. Furthermore, we show that the adversary itself is unable to
equivocate its commitment com2 (under the discrete logarithm assumption). A
complete proof follows.

Assume an adversary A which, given commitment 〈A,B,Tag〉, generates
commitment 〈A′, B′,Tag′〉. Given decommitment 〈m, r1, r2, r3, r4〉, the adver-
sary gives decommitment 〈m′, r′

1, r
′
2, r

′
3, r

′
4〉. Following the proof structure of [9],

we distinguish the following sub-cases:

Case 1. A′ = A. If this occurs, there are two possibilities: either 〈r1, r2, r3〉 =
〈r′

1, r
′
2, r

′
3〉, or not. If they are equal, since r1 and r2 are information-theoretically

hidden from the adversary when giving his commitment (and assuming the se-
curity of the mac), the adversary will have been unable (except with negligible
probability) to generate B′ �= B and Tag′ such that Tag′ =macr1,r2(B

′). If
〈r1, r2, r3〉 �= 〈r′

1, r
′
2, r

′
3〉, we can construct an adversary C which, given oracle

access to A, can violate the computational binding property of the extended-
Pedersen scheme (via a standard reduction). Thus, the success probability of A
in this case must be negligible.

Case 2. A′ �= A but H(A′) = H(A). If this happens, the security of the family
of universal one-way hash functions is violated. Simply choose p, q along with
random generators g1, g2, g3. Then, select random m, r1, r2, r3, r4, generate the
commitment 〈A,B,Tag〉, and output A. Upon being given a random member H
from the UOWH family, run A on input the public parameters and the generated
commitment. The first component of the commitment generated by A will then
give the desired collision.

Case 3. A′ �= A and H(A′) �= H(A). This is the most interesting case to con-
sider. Fix ε, D, and R, and assume adversary A. Denote the process of selecting
group parameters, as run by T T P, by p, q,G ← G(1k) (i.e., this selects primes
p, q with q|p−1 and |p| = k). We describe an equivocable commitment generator
Equiv which will be used as a subroutine of simulator A′:

Equiv1(1k)
p, q,G ← G(1k)
g1, g3 ← G;H ← UOWH
r, s, t ← ZZq

A = gr
1g

s
3;α = H(A)

g2 = g−α
1 gt

3
σ = 〈p, q, g1, g2, g3, H〉
r2, u ← ZZq

r1 = r + αr2; r3 = s− tr2
B = gu

3 ;Tag = macr1,r2(B)
com = 〈A,B,Tag〉
s = 〈r1, r2, r3, t, u〉
Output (σ, com, s)

Equiv2(〈r1, r2, r3, t, u〉,m)
r4 = u− tm
dec = 〈m, r1, r2, r3, r4〉
Output dec

5 If the adversary never opens its commitment, the simulator outputs ⊥.
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Note that Equiv satisfies Definition 1. In particular, the distributions of the
public parameters output by Equiv and those of the real protocol are the same;
they differ only in the “trapdoor” information stored by Equiv. Furthermore,
note that p, q, g1, g3 can be chosen at random and given to Equiv; knowledge of
logg3

g1 is not necessary. This will be crucial for the proof of security. We now
describe the simulator A′:

A′(1k,D)
(σ, com, s) ← Equiv(1k)
Fix random coins ω
com2 = A(σ, com;ω)
Repeat at most 2ε−1 ln 2ε−1 times:
m1 ← D
dec = Equiv(s,m1)
dec2 = A(σ, com, dec)
m2 = R(σ, com2, dec2)
if m2 �=⊥ break

Output m2

We show that the difference SuccNMA,D,R(k)− S̃uccA′,D,R(k) (with terms as defined
in Definition 2) is negligible. Straightforward manipulation, using the fact that
Equiv is a perfectly equivocable commitment generator and (T T P,S,R) is a
perfect commitment scheme, gives:

SuccNMA,D,R(k) =

Pr
[
σ ← T T P(1k);m1 ← D;ω ← Ω; r1, r2, r3 ← ZZq;

(com1, dec1) ← S(σ,m1; r1, r2, r3);
m2 = R(σ,A(σ, com1;ω),A(σ, com1, dec1;ω)) : R(m1,m2) = 1]

and

S̃uccA′,D,R(k) =
Pr

[
σ ← T T P(1k);m1 ← D;ω ← Ω; r1, r2, r3 ← ZZq;

(com1, dec1) ← S(σ,m1; r1, r2, r3);
m∗

2 = R(σ,A(σ, com1;ω),A(σ, com1, dec∗;ω)) : R(m1,m
∗
2) = 1] .

The notation dec∗ represents the fact that the decommitment given to A was
produced according to algorithm A′. In particular, dec∗ represents either the
first decommitment given to A which resulted in m2 �=⊥, or the (2ε−1 ln 2ε−1)th

decommitment given to A (if all decommitments up to then had m2 =⊥).
Define the tuple (σ;ω; r1, r2, r3; com1) as good if the following holds:

Pr [m1 ← D : R(σ,A(σ, com1;ω),A(σ, com1, dec1;ω)) �=⊥] ≥ ε/2,

(the above probability is over choice of m1 only; note that once the tuple is fixed,
choice of m1 determines r4, and hence dec1). Furthermore, define event Good as
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occurring when the tuple generated by the experiment is good. We now have (for
brevity, we denote generation of a random tuple by γ ← Γ (1k); also, we denote
m2 = R(σ,A(σ, com;ω),A(σ, com, dec;ω)) by m2 = A(σ, com, dec)):

SuccNMA,D,R(k) − S̃uccA′,D,R(k) =

Pr
[
γ ← Γ (1k);m1 ← D;m2 = A(σ, com1, dec1) : R(m1,m2) ∧ Good

]
+ Pr

[
γ ← Γ (1k);m1 ← D;m2 = A(σ, com1, dec1) : R(m1,m2) ∧ Good

]
−Pr

[
γ ← Γ (1k);m1 ← D;m∗

2 = A(σ, com1, dec∗) : R(m1,m
∗
2) ∧ Good

]
−Pr

[
γ ← Γ (1k);m1 ← D;m∗

2 = A(σ, com1, dec∗) : R(m1,m
∗
2) ∧ Good

]
,

from which we derive (by definition of event Good):

SuccNMA,D,R(k) − S̃uccA′,D,R(k) ≤
Pr

[
γ ← Γ (1k);m1 ← D;m2 = A(σ, com1, dec1) : R(m1,m2) ∧ Good

]
+ ε/2
−Pr

[
γ ← Γ (1k);m1 ← D;m∗

2 = A(σ, com1, dec∗) : R(m1,m
∗
2) ∧ Good

]
.

But this, in turn, implies:

SuccNMA,D,R(k) − S̃uccA′,D,R(k) ≤
Pr

[
γ ← Γ (1k);m1 ← D;m2 = A(σ, com1, dec1);m∗

2 = A(σ, com1, dec∗) :

R(m1,m2) ∧ R(m1,m∗
2) ∧ Good

]
+ ε/2,

which can be re-written as:

SuccNMA,D,R(k) − S̃uccA′,D,R(k) ≤
Pr

[
γ ← Γ (1k);m1 ← D;m2 = A(σ, com1, dec1);m∗

2 = A(σ, com1, dec∗) :

R(m1,m2) ∧ R(m1,m∗
2) ∧ m∗

2 =⊥ ∧ Good
]

(2)

+ Pr
[
γ ← Γ (1k);m1 ← D;m2 = A(σ, com1, dec1);m∗

2 = A(σ, com1, dec∗) :

R(m1,m2) ∧ R(m1,m∗
2) ∧ m∗

2 �=⊥ ∧ Good
]

(3)

+ ε/2.

We now bound probabilities (2) and (3). First, notice that expression (2)
is bounded from above by the probability that m∗

2 =⊥. However, definition of
event Good and a straightforward probability calculation show that:

Pr
[
γ ← Γ (1k);m∗

2 ← A(σ, com1, dec∗) : m∗
2 =⊥ ∧ Good

] ≤
Pr

[
γ ← Γ (1k);m∗

2 ← A(σ, com1, dec∗) : m∗
2 =⊥ |Good

] ≤ ε/2.

Finally, notice that for the event in expression (3) to occur, we must have m2 �=⊥
and m2 �= m∗

2. But this then gives a Pedersen commitment com2 (using genera-
tors g3 and gα′

1 g2 = g
(α′−α)
1 gt

3) which is decommited in two different ways. This
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would allow determination of logg3
g1 (recall that α′ �= α since we are dealing

with Case 3). The experiment is as follows: choose random ω and r1, r2, r3 and
run Equiv using the given values g1, g3 to generate σ′ and com1 (recall that knowl-
edge of logg3

g1 is not necessary to run Equiv). The adversary A then produces
a commitment com2. Following the description of A′, run A to obtain a decom-
mitment to message m∗

2. Then, decommit once more to a randomly selected m1
and give this as input to A to obtain a decommitment to m2. If m2 �=⊥ and
m∗

2 �=⊥ and m2 �= m∗
2 (which we call event Success), then logg3

g1 can be calcu-
lated, as discussed above. But the probability of Success is bounded from below
by expression (3); by assumption, however, the discrete logarithm problem is
intractable and thus:

(3) ≤ Pr [Success] ≤ negl(k).

Putting everything together gives the desired result. �
Note that the proof of non-malleability is exactly the same even if the mes-

sage is hashed before commitment. Equiv can still perfectly equivocate to any
(random) message M by first computing m = H(M) and then running the
identical Equiv2 algorithm. The simulator A′ is also identical (messages will be
longer, but this does not affect the analysis). The hash function must be colli-
sion resistant for the binding property to hold, but no other assumptions about
the hash function are necessary, and the scheme is still perfectly secret6. The
present scheme therefore gives a practical method for committing to arbitrarily
long messages.

We remark that by making minor modifications to the above protocol, it can
be proven secure in the public random string model as well.

We give an alternate proof of Theorem 1 in App. B. This proof, while more
complicated than the proof given above, achieves a slightly stronger security
guarantee by using a simulator which runs in expected polynomial time.

4.2 Construction Based on RSA

We have also developed an efficient non-interactive, non-malleable perfect com-
mitment scheme based on the RSA assumption. Since the ideas underlying this
construction, as well as the proof of security, are substantially similar to the
scheme presented above, we defer details to the full version of this paper.

5 Extensions

There are extensions of our scheme which may be of practical value:

Reducing the commitment size. Our schemes produce commitments com =
(A,B, Tag) of size 3k, where k is the length of the string representing a group

6 This can be compared to [14] which requires added complications when using an
arbitrary hash function and achieves only statistical secrecy.
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element. However, inspection of the proof of Thm. 1 reveals that one can re-
place this with any string that uniquely binds the sender to com. At least two
modifications in this vein seem useful:

– Using a collision-resistant hash-function h, we can replace the commitment
com with h(com). The decommitment phase is the same as before. This
does not increase the computational cost of the protocol by very much. The
resulting commitment size is the output length of a hash function believed
to be collision-resistant, e.g. SHA or MD5. In particular, this allows us to
achieve optimal commitment size O(ω(log k)), assuming an appropriate hash
function. Note that this approach (hashing the commitment) does not seem
to give provable security for general non-malleable commitment schemes, yet
it does work (as can be seen by careful examination of the proof) for the
particular construction given here.

– By adding one more public parameter and making appropriate (small) mod-
ifications to the scheme, we can set the commitment to the product of
A,B and Tag (assuming Tag is computed as Br1gr2

3 , which serves as an
information-theoretically secure mac). This reduces the commitment length
to k. We defer a proof of security to the full version of the paper.

Unique identifiers. As mentioned in [11], in many situations there is a unique
identifier (ID) associated to each user and using them can improve the efficiency
of non-malleable primitives. This is also true of our scheme. If each user in
the system has ID id ∈ ZZq, we can simplify the scheme by replacing α with
id. An adversary who attempts to generate related commitments must do so
with respect to his identifier id′ �= id. The public parameters are p, q and three
generators g1, g2, g3. The commitment is B = (gid

1 g2)
mgr3

3 (the components A
and Tag are no longer needed, since their only role in the original protocol was
to force an adversary to change α). The proof of non-malleability is the same as
for the original scheme except there is no need to handle cases 1 and 2.
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A Proof of Lemma 1

Sketch of Proof First note that for (1) to be binding, we require that the
decryption algorithms for both the public-key and symmetric-key systems have
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zero probability of decryption error7. Thus, revealing the randomness used to
generate the commitment perfectly binds the sender to the message.

The proof of non-malleability with respect to commitment will imply that
the scheme is semantically secure (this has been noted previously for the case of
encryption [2,18], but a similar result holds for the case of commitment). Note
that if we can prove that (1) constitutes a non-malleable (public-key) encryption
scheme, we are done. Using the results of [2], it suffices to prove that (1) is secure
under adaptive chosen-ciphertext attack.

Consider an adversary A who has non-negligible advantage in attacking (1)
under an adaptive chosen-ciphertext attack. Define adversary B which uses A
as a black box to break Epk under an adaptive chosen-ciphertext attack (the
notation D(·) means that B is given access to a decryption oracle for Epk):

Algorithm BD(·)
1 (1k,pk)

(M0,M1, s) ← AD̃(·)
1 (1k,pk)

K ← {0, 1}k

b ← {0, 1}
C ← E∗

K(Mb)
return (K, 0k, (C, s))

Algorithm BD(·)
2 (y, (C, s))

b′ ← AD̃(·)
2 (y ◦ C, s)

if b′ = b return 1
else return 0

The notation D̃(·) means that decryption oracle queries of A are handled by
B in the following way: in the first stage, when A submits ciphertext y′ ◦ C ′

to its decryption oracle, B submits y′ to its decryption oracle for Epk, receives
key K ′, and then computes M ′ := DK′(C ′). In the second stage, B answers as
before except that A might submit a ciphertext y◦C ′. Note that B would not be
allowed to submit y to its decryption oracle, since he cannot ask for decryption
of the challenge ciphertext. Instead, B “assumes” that y is an encryption of K,
and computes the response M := DK(C). Adaptive chosen-ciphertext security
of Epk implies that the advantage of B is negligible.

We now consider the following adversary which uses A as a black box to
break E∗ under an adaptive chosen-ciphertext attack. Here, the notation D(·)
means that C is given access to a decryption oracle for E∗

K (where K is some
secret key unknown to C). We let Gen denote the algorithm which selects public
and private keys for E .

Algorithm CD(·)
1 (1k)

(pk, sk) ← Gen(1k)

(M0,M1, s) ← AD̃(·)
1 (1k,pk)

y ← Epk(0k)
return (M0,M1, (y, sk, s))

Algorithm CD(·)
2 (C, (y, sk, s))

b′ ← AD̃(·)
2 (y ◦ C, s)

return b′

7 This can be relaxed slightly, but since many commonly-used encryption schemes
already have this property, we assume it here for simplicity of exposition.
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Here, the notation D̃(·) means that decryption oracle queries of A are handled
by C in the following way: in the first stage, when A submits ciphertext y′ ◦C ′ to
its decryption oracle, C decrypts y′ to get K ′ (it knows the secret key) and then
computes M ′ := DK′(C ′). In the second stage, however, C answers as before
unless A submits a ciphertext y ◦C ′. In this case, C submits C ′ to its decryption
oracle for E∗

K and returns the result to A. Adaptive chosen-ciphertext security
of E∗ implies that the advantage of C is negligible.

Informally, define the following probabilities of success:

p0,r
def= Pr[AD(·)(Epk(K) ◦ E∗

K(M0)) = 0]

p0,f
def= Pr[AD̃(·)(Epk(0k) ◦ E∗

K(M0)) = 0]

p1,r
def= Pr[AD(·)(Epk(K) ◦ E∗

K(M1)) = 1]

p1,f
def= Pr[AD̃(·)(Epk(0k) ◦ E∗

K(M1)) = 1].

B’s advantage is given by 1/2 {1/2(1 − p0,f ) + 1/2(1 − p1,f )} + 1/4(p0,r + p1,r).
C’s advantage is given by 1/2(po,f + p1,f ). Note that these are both negligible,
by the arguments advanced above. Finally, the advantage of A in the original
experiment is given by 1/2(p0,r+p1,r). Simple algebra implies that A’s advantage
must be negligible.

Note that adaptive-chosen-ciphertext-secure private-key encryption schemes
can be constructed using a one-way function, while non-malleable public-key
encryption schemes (with 0 probability of decryption error) are known to exist
assuming trapdoor permutations [11,25]. This completes the proof. �

B Alternate Proof of Theorem 1

In this section, we present an alternate proof of Theorem 1, which in fact gives
us a stronger security guarantee. First, notice that in the previous proof, the
simulator had to cut off the simulation after 2ε−1 ln 2ε−1 steps. This is because
for some values of the initial setup γ, it is possible that the adversary would
not decommit at all, and thus that the simulation would never terminate. This
is an essential problem with the sort of simulation described above: even if the
fraction of “bad setups γ” were barely noticeable, the expected running time of
the simulation might be infinite!

Instead, we give a simulation which always runs in expected polynomial time,
provided that the adversary succeeds with noticeable probability. To do so, we
adapt the proof technique of DIO [9]. Unfortunately, one cannot apply their
proof directly here since their proof relies on the fact that the DIO commitment
scheme is statistically binding.

Let pA be the success probability of the adversary in the original basic ex-
periment for non-malleability with respect to opening, i.e. pA = SuccNMA,D,R(k).
For a given simulator A′, let p̃A′ denote the simulator’s success probability, i.e.
p̃A′ = S̃uccA′,D,R(k). We will construct a simulator A′ such that pA − p̃A′ ≤
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negl(k)
(

1
pA

)
and the expected running time of A′ is polynomial in 1

pA
. Notice

in particular that when the adversary’s probability of success is noticeable, our
simulation does (essentially) at least as well as the original adversary, and runs
in expected polynomial time.

The simulator A′ is simple: it runs the adversary in the basic non-malleability
experiment until the adversary succeeds; it then outputs whatever m2 the adver-
sary succeeded with. We describe two equivalent formulations of this simulator
below. The first simulation generates all its parameters honestly; the second
simulation uses the equivocator of the previous section.

A′
1(1

k,D)
m1,m2 :=⊥
com1, com2 := 0
Repeat until R(m1,m2) = 1

and com1 �= com2 :
σ ← T T P(1k)
m1 ← D
(com1, dec1) ← S(σ,m1)
com2 ← A(σ, com1)
dec2 ← A(σ, com1, dec1)
m2 ← R(σ, com2, dec2)

Output m2

A′
2(1

k,D)
m1,m2 :=⊥
com1, com2 := 0
Repeat until R(m1,m2) = 1

and com1 �= com2 :
(σ, com1, s) ← Equiv(1k)
Fix random coins ω
com2 := A(σ, com1;ω)
m1 ← D
dec1 := Equiv(s,m1)
dec2 := A(σ, com1, dec1)
m2 := R(σ, com2, dec2)

Output m2

From the point of view of the adversary, both of these simulations are equiv-
alent, since the equivocator creates a public string σ and a commitment com
which are from the same distribution as the “real” strings σ and com1. Thus,
the output distribution of the two simulations is the same, and hence so is their
probability of success. Moreover, both simulations expect to make 1

pA
calls to

A, and thus their expected running times are essentially the same.
The only difference between the two simulations is that in the first simulation

A′
1, the simulator knows no more than the adversary about the relationship of

the public parameters g1, g2, g3,H, and so all three of these values could come
from an outside source. In the second simulation A′

2, only g1 and g3 can come
from an outside source; g2 and the other parameters are carefully constructed.

As before, we now consider the three possible cases.
Cases 1 and 2. Consider the first simulator A′

1. As mentioned above, it does
not choose the public parameters g1, g2, g3, H, and so the analysis from the
previous proof of cases 1 and 2 tells us that the probability of either of these cases
is negligible. (Otherwise, the simulator would break either the computational
binding of the Pedersen scheme or the intractability of finding collisions for the
hash function).

Hence, we can assume even in the second simulation that whenever the ad-
versary generates a new commitment to which he decommits, we have H(A′) �=
H(A).
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Case 3. As in the previous proof, we denote the generation of a tuple γ =
(σ, com, s, ω) by the shorthand γ ← Γ (1k). Note that these variables uniquely
determine both com1 and com2. Moreover, once the simulator chooses m1, the
decommitted message m2 is completely determined by m1 and γ. For conciseness
we write simply m2 = A(m1, γ). By convention, we will take A(m1, γ) =⊥
whenever the adversary refuses to decommit or simply copies the commitment
(i.e. com2 = com1).

On one hand, we can calculate the adversary’s success probability, using the
properties of the equivocator:

pA = Pr
[
γ ← Γ (1k);m1 ← D : m2 = A(m1, γ) and R(m1,m2)

]
.

We can also calculate the success probability of the simulator (second formula-
tion):

p̃A′ = Pr
[
γ ← Γ (1k); m1,m

′
1 ← D : R(m′

1,A(m1, γ))
∣∣∣ R(m1,A(m1, γ))

]

=
Pr

[
γ ← Γ (1k); m1,m

′
1 ← D : R(m′

1,A(m1, γ)) and R(m1,A(m1, γ))
]

pA

The numerator in the last expression can be interpreted as the success probability
of the following experiment:

Choose m1 at random, and run the simulation to obtain a decommitment
to a message m2. Then pick a new message m′

1 at random and see if both
R(m1,m2) and R(m′

1,m2) hold.

Now intuitively, we expect that for any given γ the adversary can only decommit
to one valid message. We want to use that intuition to show that the success
probability of the experiment above is no worse than the following:

Choose m1 and obtain m2 as before. Now, for the same setup γ, pick a
new message m′

1 and run the simulation to get m′
2. Output a success if

both R(m1,m2) and R(m′
1,m

′
2) hold.

This intuition is captured in the following lemma:

Lemma 2. Let m2 = A(m1, γ), and m′
2 = A(m′

1, γ), where γ,m1,m
′
1 are cho-

sen as in the previous discussion. Then we have:

Pr [R(m1,m2) ∧R(m′
1,m2)] > Pr [R(m1,m2) ∧R(m′

1,m
′
2)] − negl(k).

Proof For any two events A and B, we have P (A)−P (B) ≤ P (A \B). Thus:

Pr [R(m1,m2) ∧R(m′
1,m

′
2)] − Pr [R(m1,m2) ∧R(m′

1,m2)]

≤ Pr
[
R(m1,m2) ∧R(m′

1,m
′
2) ∧R(m′

1,m2)
]
.

Now this last event occurs only when m2 and m′
2 are different, yet both of them

are valid messages. However, such an event allows extraction of the discrete log
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of g3 with respect to g1, even in the setting of the second simulation. Since A is
polynomial time, this probability must be negligible in k. �

Using the lemma and the shorthand notation set up in the lemma, we get:

p̃A′ ≥ Pr [R(m1,m2) ∧R(m′
1,m2)]

pA
≥ Pr [R(m1,m2) ∧R(m′

1,m
′
2)] − negl(k)

pA
.

Recall that once γ and m1 are fixed, m2 is also fixed. Similarly, m′
2 is fixed

once γ and m′
1 are fixed. Thus, we can write:

p̃A′ ≥
(∑

γ Pr
[
γ = Γ (1k)

] · Pr [R(m1,m2) | γ] · Pr [R(m′
1,m

′
2) | γ]

)
− negl(k)

pA

=

(∑
γ Pr

[
γ = Γ (1k)

] · Pr [R(m1,m2) | γ]2
)
− negl(k)

pA
.

For any random variable X we have E(X2) ≥ (E(X))2. Applying this to the
numerator we get:

p̃A′ ≥
(∑

γ Pr
[
γ = Γ (1k)

] · Pr [R(m1,m2) | γ]
)2

− negl(k)

pA
.

But the numerator is simply (pA)2. Thus p̃A′ ≥ pA − negl(k)
pA

. �
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