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Abstract. In this paper, the complexity of a squaring operation using
polynomial basis (PB) in a class of finite fields F2m is evaluated. The
main results are as follows:
1. When the field is generated with an irreducible trinomial f(x) =

xm + xk + 1, 1 � k � m
2 , where both m and k are odd, a PB

squaring operation requires m − 1
2 bit operations.

2. When the field is generated with an irreducible trinomial f(x) =
xm + xk + 1, 1 � k � m

2 , where m + k is odd and k �= m
2 , a PB

squaring operation requires m + k − 1
2 bit operations.

3. When the field is generated with an irreducible trinomial f(x) =
xm+x

m
2 +1, a PB squaring operation requires m + 2

4 bit operations.

1 Introduction

Finite field arithmetic has recently been paid much attention mainly because its
use in elliptic curve cryptography. In implementing an elliptic curve cryptosys-
tem, a normal basis is usually utilized, because squaring operation in normal
basis is only a cyclic shift of the element’s coefficients. A multiplication opera-
tion can also be performed efficiently with an optimal normal basis (ONB) [5].
It has been shown that a bit-parallel multiplication in F2m can be done in about
2m2 ground field operations if a type-I ONB is chosen [2]. However, type-I ONB
exists only in a small class of fields F2m where m is an even number. Moreover,
it is more likely to have a comparatively efficient discrete elliptic curve loga-
rithm when m is composite [4]. On the other hand, it has been shown that a
bit-parallel multiplier using trinomial-based polynomial basis (TPB) has about
the same complexity as that using a type-I ONB [3], while irreducible trinomial
over F2m exists much more prevailingly than type-I ONB. A squaring operation
in TPB, however, is not free.
In this short article, we derive the complexity of a bit-parallel squaring opera-

tion using a TPB in F2m . It is shown to be of order O(m) ground field operations
(comparing to 2m2 ground field operation needed for a bit-parallel multiplica-
tion operation). If we try to solve an inverse in F2m using the method from
Fermat theorem, then the complexity of m − 1 bit-parallel squaring operations

D.R. Stinson and S. Tavares (Eds.): SAC 2000, LNCS 2012, pp. 118–129, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



On Complexity of Polynomial Basis Squaring in F2m 119

required is not greater than that of half bit-parallel multiplication operation.
The time propagation of the hardware architecture of a bit-parallel squarer is
also addressed.
The main results include: When the field is generated with an irreducible

trinomial f(x) = xm + xk + 1, 1 � k � m
2 , then a PB squaring operation

requires at most

1. m − 1
2 bit addition, if both m and k are odd;

2. m+ k − 1
2 bit operations, if m+ k is odd and k �= m

2 .

3. k + 1
2 bit operations, if k = m

2 .

The organization of this paper is as follows: An brief introduction to PB
squaring operation is given in Section 2. In Section 3, we present new complexity
upper bound for PB squaring operation in a class of finite fields. Hardware
bit-parallel implementation is addressed in Section 4. Finally, a few concluding
remarks are given in Section 5.

2 Polynomial Basis Squaring Operation

Let f(x) be the irreducible polynomial over F2 generating the field F2m . Let

A(x) =
m−1∑
i=0

aix
i be the polynomial representation of an arbitrary element of

F2m . The squaring operation of A(x) is

C(x)
�
=

m−1∑
i=0

cix
i = A2(x) mod f(x)

= a0 + a1x
2 + a2x

4 + . . .+ am−1x
2m−2 mod f(x).

It can be seen that squaring in F2m is actually a case of polynomial modular
reduction. Then the following corollary is obvious from the results on complexity
of polynomial modular reduction [6].
Corollary 1. Let the field F2m be generated with the irreducible r-term polyno-
mial f(x) of degreem. Then squaring a field element in parallel can be performed
with at most (r − 1)(m − 1) addition operations in F2.
When f(x) is chosen as an irreducible trinomial, however, the complexity

can be further reduced.

3 Complexity Upper Bound for PB Squaring

In this section, we assume that the field is generated with an irreducible trinomial
f(x) = xm + xk + 1, 1 � k � m

2 . Based on the the parity of m and k, the
derivation is divided into the following three cases:
1. Both m and 1 � k < m

2 are odd;
2. m is odd and 1 < k < m

2 is even;
3. m is even and 1 � k � m

2 is odd.
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3.1 Both m and 1 � k < m
2 Are Odd

Let

A2(x) =
m−1∑
i=0

aix
2i =

2m−2∑
i=0

a′
ix

i,

where a′
i

�
= a i

2
if i even, and 0 if i odd. Define

m+2l+1∑
i=0

a′
ix

i mod f(x)
�
=

m−1∑
i=0

t
(l)
i xi,

for l = −1, 0, 1, . . . , m − 1
2 − 1. Then we have

m−1∑
i=0

t
(l)
i xi =

m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
m+2l+1 mod f(x). (1)

The coefficient t
(l)
i ’s have their initial values t

(−1)
i = a′

i, and we try to solve the

final values t
(m−1

2 −1)
i = ci, i = 0, 1, . . . , m − 1. Note that t

(−1)
i = 0 if i is an odd

number.
When l = 0,

m−1∑
i=0

t
(0)
i xi =

m−1∑
i=0

a′
ix

i + a′
m+1x

m+1 mod f(x)

=
m−1∑
i=0

a′
ix

i + a′
m+1(x+ xk+1) mod f(x).

Then we have

t
(0)
i =




a′
i + a′

m+1, i = k + 1;
a′

i, i even, and i �= k + 1;
a′

m+1, i = 1;
0, otherwise.

Clearly, one bit addition is needed to compute t
(0)
i from t

(−1)
i , i = 0, 1, . . . , m−1.

In the following we will repeatedly use (1) for l = 1, 2, . . . , m
2 − 1. It will

be seen that there are a few newly generated terms at each step. For example,
when l = 0 we have two newly generated terms a′

mx and a′
mxk+1. Note that

k+1 is an even number and one bit operation is needed to take care of this even
power term. In fact, one bit addition is always required if an even power term
is generated, while one bit operation is probably needed if an odd power term is
generated. This is because for some l, t

(l−1)
i could be zero for some odd i.

For l > 0 and l � m − k
2 − 1 (in order to keep k + 2l + 1 < m), we have
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m−1∑
i=0

t
(l)
i xi =

m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
m+2l+1 mod f(x)

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
2l+1(1 + xk) mod f(x)

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
2l+1 + a′

m+2l+1x
k+2l+1 mod f(x).

Obviously in this step (from l − 1 to l), one odd power term (x2l+1) and one
even power term (xk+2l+1) are generated at the right side of the above equation.
When l runs through from 0 to m − k

2 − 1, the value of 2l+ 1 runs through the
odd numbers from 1 to m − k − 1, and the value of k + 2l+ 1 runs through the
even numbers from k + 1 to m − 1.
Therefore, when 0 � l � m − k

2 − 1, we have

t
(l)
i =




t
(l−1)
i + a′

m+2l+1, i = 2l + k + 1;
a′

m+2l+1, i = 2l + 1;
t
(l−1)
i , i even and i �= 2l + k + 1; or i = 1, 3, . . . , 2l − 1;
0, otherwise.

=




t
(l−1)
i + a′

m−k+i, i = 2l + k + 1;
a′

m+i, i = 2l + 1;
t
(l−1)
i , i even and i �= 2l + k + 1; or i = 1, 3, . . . , 2l − 1;
0, otherwise.

=




a′
i + a′

m−k+i i = k + 1, k + 3, . . . , k + 2l + 1;
a′

m+i i = 1, 3, . . . , 2l + 1;
a′

i i even and i �= k + 1, k + 3, . . . , k + 2l + 1;
0 Otherwise.

Thus for l = m − k
2 − 1, we can solve t

(l)
i as follows

t
(m−k

2 −1)
i =




a′
i + a′

m−k+i i = k + 1, k + 3, . . . , m − 1;
a′

m+i i = 1, 3, . . . , m − k − 1;
a′

i i = 0, 2, . . . , k − 1;
0 i = m − k + 1, m − k + 3, . . . , m − 2.

In the following, we consider two cases:

1. If k = 1.
When k = 1, we have m − k

2 − 1 = m − 1
2 − 1. Therefore,

ci = t
(m−1

2 −1)
i =




a′
i + a′

m−1+i i = 2, 4, . . . , m − 1;
a′

m+i i = 1, 3, . . . , m − 2;
a′

i i = 0.
(2)

It can be seen from the (2) that m − 1
2 bit additions are required for obtain-

ing ci, i = 0, 1, . . . , m − 1.
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2. If 1 < k < m
2 .

When m − k
2 � l � m − 1

2 − 1, we have

m−1∑
i=0

t
(l)
i xi =

m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
m+2l+1 mod f(x)

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
2l+1[1 + xk] mod f(x)

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
2l+1 + a′

m+2l+1x
2l+k+1 mod f(x)

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
2l+1

+a′
m+2l+1x

2l+k+1−m[1 + xk] mod f(x)

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
2l+1 + a′

m+2l+1x
2l+k+1−m

+a′
m+2l+1x

2l+2k+1−m mod f(x)

Since k � m
2 and l � m − 1

2 − 1, we have 2l + 2k + 1 − m � m − 2. It
can be seen that there are two newly generated odd power terms (x2l+1 and
x2l+k+1−m) and one even power term (x2l+2k+1−m) in this step. When l runs
through from m − k

2 to m − 1
2 − 1, the value of 2l+1 runs through the odd

numbers from m − k+ 1 to m − 2, the value of 2l+ k+ 1− m runs through
the odd numbers from 1 to k − 2, and the value of 2l + 2k + 1 − m runs
through the even numbers from k + 1 to 2k − 2.
Therefore, t(l)i can be given as follows

t
(l)
i =




a′
m+2l+1, i = 2l + 1;

t
(l−1)
i + a′

m+2l+1, i = 2l + 2k + 1− m, 2l + k + 1− m;
t
(l−1)
i , i even and i �= k + 1, k + 3, . . . , 2l + 2k − 1− m;

or i odd and i = 1, 3, . . . , 2l + k − 1− m,
2l + k + 3− m, 2l + k + 5− m, . . . , 2l − 1;

0, otherwise.

=




a′
m+i, i = 2l + 1;

t
(l−1)
i + a′

2m−k+i, i = 2l + k + 1− m;
t
(l−1)
i + a′

2m−2k+i, i = 2l + 2k + 1− m;
t
(l−1)
i , i even and i �= k + 1, k + 3, . . . , 2l + 2k − 1− m;

or i odd and i = 1, 3, . . . , 2l + k − 1− m,
2l + k + 3− m, 2l + k + 5− m, . . . , 2l − 1;

0, otherwise.
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=




a′
m+i i = 2l + k + 3− m, 2l + k + 5

−m, . . . , 2l + 1;
a′

m+i + a′
2m−k+i i = 1, 3, . . . , 2l + k + 1− m;

a′
i + a′

m−k+i + a′
2m−2k+i i = k + 1, k + 3, . . . , 2l + 2k + 1− m;

a′
i + a′

m−k+i i = 2l + 2k + 3− m, 2l + 2k + 5
−m, . . . , m − 1;

a′
i i = 0, 2, . . . , k − 1;
0 i = 2l + 3, 2l + 5, . . . , m − 2.

When l = m − 1
2 − 1, it follows from the above equations

ci = t
(m−3

2 )
i =




a′
m+i i = k, k + 2, . . . , m − 2;

a′
m+i + a′

2m−k+i i = 1, 3, . . . , k − 2;
a′

i + a′
m−k+i + a′

2m−2k+i i = k + 1, k + 3, . . . , 2k − 2;
a′

i + a′
m−k+i i = 2k, 2k + 2, . . . , m − 1;

a′
i i = 0, 2, . . . , k − 1.

Rewrite the above equation as the following

ci = a′
i i = 0, 2, . . . , k − 1; (3a)

ci = (a′
m+i + a′

2m−k+i) i = 1, 3, . . . , k − 2; (3b)
ck+i = a′

m+k+i i = 0, 2, . . . , m − k − 2; (3c)
ck+i = a′

k+i + (a
′
m+i + a′

2m−k+i) i = 1, 3, . . . , k − 2; (3d)
c2k+i = a′

2k+i + a′
m+k+i i = 0, 2, . . . , m − 2k − 1; (3e)

Then it can be seen from (3b) and (3d) that some partial sums can be reused
(indicated with the bracket). This will save k − 1

2 bit operations. The total
number of bit operations required for the squaring operation can be counted
from (3a-3e) and it is m − 1

2 .

3.2 m Is Odd and 1 < k < m
2 Is Even

The definitions of a′
i and t

(l)
i are the same as these in the last subsection. We

rewrite the equation (1) here for convenience.

m−1∑
i=0

t
(l)
i xi =

m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
m+2l+1 mod f(x).

The terms t
(l)
i ’s have their initial values t

(−1)
i = a′

i, and we try to solve the final

values t
(m−1

2 −1)
i = ci, i = 0, 1, . . . , m − 1.

When l = 0,

m−1∑
i=0

t
(0)
i xi =

m−1∑
i=0

a′
ix

i + a′
m+1x

m+1 mod f(x)
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=
m−1∑
i=0

a′
ix

i + a′
m+1(x+ xk+1) mod f(x).

It follows

t
(0)
i =




a′
m+1, i = 1, k + 1;

a′
i, i even;
0, i odd and i �= 1, k + 1;

Since both the newly generated terms are odd power ones, no bit addition is
needed to obtain t

(0)
i from t

(−1)
i , i = 0, 1, . . . , m − 1.

For l � 0, we have

m−1∑
i=0

t
(l)
i xi =

m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
m+2l+1

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
2l+1(1 + xk)

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
2l+1 + a′

m+2l+1x
k+2l+1.

It can be seen that two odd power terms are generated at the right side of the
above equation.
When l runs through from 0 to k

2 − 1, the value of 2l + 1 runs through the
odd numbers from 1 to k − 1, and the value of k + 2l + 1 runs through the odd
numbers from k + 1 to 2k − 1. Note that 2k − 1 < m − 1.
Then we have

t
(l)
i =




a′
m+2l+1, i = 2l + 1, k + 2l + 1;

t
(l−1)
i , i even, or i odd and

i �= 1, 3, . . . , 2l + 1, k + 1, k + 3, . . . , k + 2l − 1;
0, otherwise.

=




a′
m+i, i = 2l + 1;

a′
m−k+i, i = k + 2l + 1;

t
(l−1)
i , i even, or i odd and

i �= 1, 3, . . . , 2l + 1, k + 1, k + 3, . . . , k + 2l − 1;
0, otherwise.

=




a′
m+i, i = 1, 3, . . . , 2l + 1;

a′
m−k+i, i = k + 1, k + 3, . . . , k + 2l + 1;

a′
i, i = 0, 2, . . . , m − 1;
0, otherwise.

(4)

When l = k
2 − 1, from the equation (4) we have
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t
( k
2 −1)

i =




a′
m+i, i = 1, 3, . . . , k − 1;

a′
m−k+i, i = k + 1, k + 3, . . . , 2k − 1;

a′
i, i = 0, 2, . . . , m − 1;
0, otherwise.

(5)

In the following we consider two cases:

1. If 2k < m − 1.
In this case we have k � m−k−3. When l runs through from k

2 to
m − k − 3

2
(in order to satisfy k + 2l + 1 < m − 1), the value of 2l + 1 runs through
the odd numbers from k + 1 to m − k − 2, and the value of k + 2l + 1 runs
through the odd numbers from 2k + 1 to m − 2.
From (4) and since 2l + 1 � k + 1, we have

t
(l)
i =




t
(l−1)
i + a′

m+2l+1, i = 2l + 1;
a′

m+2l+1, i = k + 2l + 1;
t
(l−1)
i , i even, or i odd and

i = 1, 3, . . . , 2l − 1, 2l + 3, . . . , k + 2l − 1;
0, otherwise.

=




t
(l−1)
i + a′

m+i, i = 2l + 1;
a′

m−k+i, i = k + 2l + 1;
t
(l−1)
i , i even, or i odd and

i = 1, 3, . . . , 2l − 1, 2l + 3, . . . , k + 2l − 1;
0, otherwise.

=




a′
m+i, i = 1, 3, . . . , k − 1;

a′
m−k+i, i = 2l + 3, 2l + 5, . . . , k + 2l + 1;

a′
m+i + a′

m−k+i i = k + 1, k + 3, . . . , 2l + 1;
a′

i, i = 0, 2, . . . , m − 1;
0, otherwise.

When l = m − k − 3
2 , it follows

t
(m−k−3

2 )
i =




a′
m+i, i = 1, 3, . . . , k − 1;

a′
m+i + a′

m−k+i i = k + 1, k + 3, . . . , m − k − 2;
a′

m−k+i, i = m − k, m − k + 2, . . . , m − 2;
a′

i, i = 0, 2, . . . , m − 1;
0, otherwise.

When m − k − 1
2 � l � m − 1

2 − 1, we have
m−1∑
i=0

t
(l)
i xi =

m−1∑
i=0

t
(l−1)
i xi + am+2l+1x

m+2l+1

=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
2l+1 + a′

m+2l+1x
2l+k+1
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=
m−1∑
i=0

t
(l−1)
i xia′

m+2l+1x
2l+1 + a′

m+2l+1x
2l+k+1−m

+a′
m+2l+1x

2l+2k+1−m

When l runs through from m − k − 1
2 to m − 1

2 − 1, the value of 2l+1 runs
through from the odd numbersm−k tom−2, the value of 2l+k+1−m runs
through the even numbers from 0 to k − 2, and the value of 2l+ 2k+ 1− m
runs through the even numbers from k to 2k − 2.
Therefore, we have

t
(l)
i =

{
t
(l−1)
i + a′

m+2l+1, i = 2l + 1, 2l + k + 1− m, 2l + 2k + 1− m;
t
(l−1)
i , otherwise.

=




t
(l−1)
i + a′

m+i, i = 2l + 1;
t
(l−1)
i + a′

2m−k+i, i = 2l + k + 1− m;
t
(l−1)
i + a′

2m−2k+i, i = 2l + 2k + 1− m;
t
(l−1)
i , otherwise.

=




a′
m+i, i = 1, 3, . . . , k − 1;

a′
m+i + a′

m−k+i i = k + 1, k + 3, . . . , 2l + 1;
a′

m−k+i, i = 2l + 3, 2l + 5, . . . , m − 2;
a′

i + a′
2m−k+i, i = 0, 2, . . . , 2l + k + 1− m;

a′
i + a′

2m−2k+i, i = k, k + 2, . . . , 2l + 2k + 1− m;
a′

i, otherwise.

Then we can solve the final values for this case:

ci = t
(m−1

2 −1)
i =




a′
m+i, i = 1, 3, . . . , k − 1;

a′
m+i + a′

m−k+i i = k + 1, k + 3, . . . , m − 2;
a′

i + a′
2m−k+i, i = 0, 2, . . . , k − 2;

a′
i + a′

2m−2k+i, i = k, k + 2, . . . , 2k − 2;
a′

i, i = 2k, 2k + 2, . . . , m − 1.

(6)

From the above equation we conclude that the total cost for computing
squaring operation for this case is m+ k − 1

2 bit addition. The longest time
delay to compute a ci is the time taking to finish one bit addition.

2. If 2k = m − 1.
In this case we have 2k − 1 = m − 2. Thus from (5) it follows

t
( k
2 −1)

i =




a′
m+i, i = 1, 3, . . . , k − 1;

a′
m−k+i, i = k + 1, k + 3, . . . , m − 2;

a′
i, i = 0, 2, . . . , m − 1.

Then for k
2 � l � m − 1

2 − 1, we have
m−1∑
i=0

t
(l)
i xi =

m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
m+2l+1 mod f(x)
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=
m−1∑
i=0

t
(l−1)
i xi + a′

m+2l+1x
2l+1 + a′

m+2l+1x
2l+k+1 mod f(x)

=
m−1∑
i=0

t
(l−1)
i xia′

m+2l+1x
2l+1 + a′

m+2l+1x
2l+k+1−m

+a′
m+2l+1x

2l+2k+1−m mod f(x)

When l runs through from k
2 to

m − 1
2 − 1, the value of 2l+1 runs through

from the odd numbers k+1 to m−2, the value of 2l+k+1−m runs through
the even numbers from 0 to k − 2, and the value of 2l + 2k + 1 − m runs
through the even numbers from k to 2k − 2.
Therefore, we have

t
(l)
i =

{
t
(l−1)
i + a′

m+2l+1, i = 2l + 1, 2l + k + 1− m, 2l + 2k + 1− m;
t
(l−1)
i , otherwise.

=




t
(l−1)
i + a′

m+i, i = 2l + 1;
t
(l−1)
i + a′

2m−k+i, i = 2l + k + 1− m;
t
(l−1)
i + a′

2m−2k+i, i = 2l + 2k + 1− m;
t
(l−1)
i , otherwise.

=




a′
m+i, i = 1, 3, . . . , k − 1;

a′
m+i + a′

m−k+i i = k + 1, k + 3, . . . , 2l + 1;
a′

m−k+i, i = 2l + 3, 2l + 5, . . . , m − 2;
a′

i + a′
2m−k+i, i = 0, 2, . . . , 2l + k + 1− m;

a′
i + a′

2m−2k+i, i = k, k + 2, . . . , 2l + 2k + 1− m;
a′

i, otherwise.

Then we can solve the final values for this case:

ci = t
(m−1

2 −1)
i =




a′
m+i, i = 1, 3, . . . , k − 1;

a′
m+i + a′

m−k+i i = k + 1, k + 3, . . . , m − 2;
a′

i + a′
2m−k+i, i = 0, 2, . . . , k − 2;

a′
i + a′

2m−2k+i, i = k, k + 2, . . . , 2k − 2;
a′

i, i = 2k, 2k + 2, . . . , m − 1.

(7)

From the above equation it is clear that the total cost for computing squaring
operation for this case is also m+ k − 1

2 bit addition.

3.3 m Is Even and 1 � k � m
2 Is Odd

When the field is generated with an irreducible trinomial of form f(x) = xm +
xk + 1, where m is even and k � m

2 is odd, similar analysis can be applied. In

this case the complexity for a PB squaring operation in F2m is m+ k − 1
2 bit

additions if k < m
2 , and

k + 1
2 bit additions if k = m

2 [6].
We summarize the results obtained from the three cases in this section in the

following theorem:
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Theorem 1. If there is an irreducible polynomial f(x) = xm+xk+1, 1 � k �
m
2 over F2, then a squaring operation in F2m can be performed in

(i) m − 1
2 bit additions, if both m and k are odd.

(ii) m+ k − 1
2 bit additions, if m+ k is odd and k �= m

2 .

(iii) k + 1
2 bit additions, if k = m

2 .

4 Bit-Parallel Implementation

In hardware implementation, a bit addition in F2 can be realized using an XOR
gate. If we denote the time propagation delay of an XOR gate by TX , then the
time delay of a hardware architecture can be measured in terms of gate delays.
For example, from (3a-3d) it can be seen that the most bit operations taken

to compute a ci are when i = 1, 3, . . . , k − 2, as it is shown in (3d). Thus in this
case the longest time propagation delay in a bit-parallel architecture for squaring
is 2TX . The time delay for the other cases can be obtained from (2), (6), and
(7) in a similar way.
The results on the complexity for a bit-parallel implementation of squaring

operation are summarized as follows:

Theorem 2. If there is an irreducible polynomial f(x) = xm+xk+1, 1 � k �
m
2 over F2, then a bit-parallel hardware implementation of squaring operation
in F2m can be constructed with

(i) m − 1
2 XOR gates and the incurred time delay is 2TX , if both m and k > 1

are odd;
(ii) m − 1

2 XOR gates and the incurred time delay is TX , ifm is odd and k = 1;

(iii) m+ k − 1
2 XOR gates and the incurred time delay is TX , if m is odd and

k is even;
(iv) m+ k − 1

2 XOR gates and the incurred time delay is 2TX , if m is even and
1 < k < m

2 is odd.
(v) m

2 XOR gates and the incurred time delay is TX , if m is even and k = 1.

(vi) k + 1
2 XOR gates and the incurred time delay is TX , if m is even and

k = m
2 .

5 Concluding Remarks

Squaring operation is frequently required in elliptic curve cryptographic systems
when an inversion or a point multiple operation is performed. Normal basis
has been widely used because squaring operation using normal basis is only
a cyclic shift of the coefficients. However, normal basis multiplication can be
performed efficiently only when there is an optimal normal basis [5]. The results
in this paper have shown that the complexity of a PB squaring operation is
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very low, comparing to that of a multiplication operation (O(m2)). This fact
suggests that polynomial basis might be a good replacement for normal basis
in many cryptographic application, since the prevailing existence of irreducible
trinomial [1], comparing to that of optimal normal basis.
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