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Abstract. We present a new non-interactive public key distribution sys-
tem based on the class group of a non-maximal imaginary quadratic order
Cl(∆p). The main advantage of our system over earlier proposals based
on (Z/nZ)∗ [19,21] is that embedding id information into group elements
in a cyclic subgroup of the class group is easy (straight-forward embed-
ding into prime ideals suffices) and secure, since the entire class group is
cyclic with very high probability.
In order to compute discrete logarithms in the class group, the KGC
needs to know the prime factorization of ∆p = ∆1p

2. We present an
algorithm for computing discrete logarithms in Cl(∆p) by reducing the
problem to computing discrete logarithms in Cl(∆1) and either F

∗
p or

F
∗
p2 . We prove that a similar reduction works for arbitrary non-maximal

orders, and that it has polynomial complexity if the factorization of the
conductor is known.

Keywords: discrete logarithm, non-maximal imaginary quadratic order,
non-interactive cryptography, identity based cryptosystem

1 Introduction

Public-key cryptography is undoubtedly one of the core techniques used to enable
authentic, non-repudiable and confidential communication. However, a general
problem inherent in public-key systems is that one needs to ensure the authen-
ticity of a given public key. The most common way to solve this problem is to
introduce a trusted third party, called a Certification Authority (CA), which is-
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sues certificates for public keys1. While this approach is widely used in practice,
it would be desirable to have an immediate binding between an identity IDB and
its corresponding public key b, which allows one to avoid the tedious verification
of certificates. This leads to the notion of identity based cryptosystems.

Although the paradigm of identity based cryptography was already intro-
duced by Shamir in 1984 [23], it seems that Maurer and Yacobi [19] were the
first to propose a non-interactive identity based public key cryptosystem in which
Bob’s public key b can be derived efficiently, solely from his public identity infor-
mation IDB , by computing a publicly-known embedding function b = f(IDB).
The main idea is to use an (ideally cyclic) group G (generated by g) in which
exponentiation is not only a one-way-function but a trapdoor-one-way-function.
The key generation center (KGC), a trusted third party responsible for dis-
tributing the private keys, knows the trapdoor information and hence is able to
compute discrete logarithms in G. Thus, the KGC computes Bob’s private key b
such that gb = b = f(IDB). The KGC hands over the secret key b to Bob, who
can use this key in a conventional ElGamal- or Diffie-Hellman setup. As soon as
all users are equipped with their corresponding secret key, the KGC can destroy
the trapdoor-information and may cease to exist.

Maurer and Yacobi’s initial proposal was to set up a discrete logarithm based
system in G = (Z/nZ)∗, where n = p1 · · · pr, pi prime, such that only the KGC,
which knows the factorization of n, is able to compute discrete logarithms in G.
However, this approach has a number of drawbacks which render such a scheme
impractical [20,18,17].

In this paper, we show that using the class group Cl(∆p) of a non-maximal
imaginary quadratic order is much better suited for this purpose. As in the orig-
inal scheme, the KGC knows trapdoor information (the prime factorization of
∆p) which enables it to compute discrete logarithms, while for anybody else the
discrete logarithm problem (DLP) is assumed to be intractable. We generalize
the recent result from [12], valid for the very special case of totally non-maximal
orders with prime discriminant, to arbitrary non-maximal imaginary quadratic
orders. The resulting algorithm reduces the problem of discrete logarithm com-
putation in the class group of a non-maximal order to computing discrete loga-
rithms in the much smaller class group of the corresponding maximal order and
a small number of finite fields. Only the KGC, which knows the factorization of
∆p, can perform this reduction.

As noted above there are a few advantages to our approach. Unlike the case of
(Z/nZ)∗, it is heuristically easy to find class groups Cl(∆p) which are cyclic, and
hence the embedding of an identity IDB into a group element b, for which the
discrete logarithm exists, is straightforward. As the results from [20,18] demon-
strate, it seems to be no trivial task to find an embedding into a subgroup of
(Z/nZ)∗ which does not facilitate factoring n. In fact, the only secure embedding
method for (Z/nZ)∗ seems to restrict n to having only two large prime factors p1

1 We assume throughout this work that Alice (A) wants to encrypt a message m ∈
Z>0 intended for Bob (B). We denote Bob’s unique identity, for example his email-
address, by IDB and his public key by b
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and p2, and the workload for the KGC is consequently very high. Furthermore,
since one chooses pi−1 smooth and uses Pohlig-Hellman’s simplification together
with Shank’s Baby-Step Giant-Step algorithm, the time needed for generating k
user keys is proportional to k.

In contrast, we use two different subexponential algorithms for the key gener-
ation. After the initial computation of relations over the factor bases, the work-
load for each individual key generation is very modest. For the computation
of discrete logarithms in the class group of the maximal order, Cl(∆1), we use
an analogue of the Self-Initializing Quadratic Sieve (SIQS) factoring algorithm
[14,13] and for the computation of discrete logarithms in F∗

p we use the Spe-
cial Number Field Sieve, which recently was used for the solution of McCurley’s
challenge [24].

This paper is organized as follows: in Section 2 we provide the necessary back-
ground and notation for non-maximal imaginary quadratic orders. The next sec-
tion contains the discrete logarithm algorithm for arbitrary non-maximal imagi-
nary quadratic orders, and in Section 4 we present our new non-interactive public
key cryptosystem. In order to save space, the proofs of most results have been
omitted. These proofs, as well as computational results, will be given in the full
paper [10].

2 Non-maximal Imaginary Quadratic Orders

The basic notions of imaginary quadratic number fields can be found in [1,2].
For a more comprehensive treatment of the relationship between maximal and
non-maximal orders we refer to [5,9,12].

Let O∆f
denote the non-maximal quadratic order of discriminant∆f = ∆1f

2

with conductor f, and let O∆1 denote the corresponding maximal order. When
the conductor is prime, we will use O∆p and ∆p. By Cl(∆f ) and Cl(∆1) we
denote the ideal class groups of O∆f

and O∆1 , respectively. The class num-
bers h(∆f ) and h(∆1) are the orders of these groups. Lower-case Gothic letters
a, b, . . . denote ideals in O∆f

and upper-case Gothic letters denote ideals in O∆1 .
Ideal equivalence is denoted by a ∼ b, and the class of all ideals equivalent to
a is denoted by [a]. Throughout, we will use ∆ without subscript to denote the
discriminant of an arbitrary quadratic order, maximal or non-maximal.

Our cryptosystem makes use of the relationship between a non-maximal order
of conductor f and its corresponding maximal order. Any non-maximal order can
be represented as O∆f

= Z + fO∆1 . If h(∆1) = 1, then O∆f
is called a totally

non-maximal order. An integral ideal a is called prime to f if gcd(N (a), f) = 1.
It is well-known that all O∆f

-ideals prime to the conductor are invertible, and
in every ideal equivalence class there is an ideal which is prime to any given
number. We denote the principal O∆f

-ideals prime to f by P∆f
(f) and all

fractional ideals which are prime to f by I∆f
(f). There is an isomorphism

I∆f
(f)

/
P∆f

(f) � I∆f

/
P∆f

= Cl(∆f ) , (1)
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so we can “ignore” the ideals which are not prime to the conductor if we are
only interested in the class group Cl(∆f ).

There is an isomorphism between the group of O∆f
-ideals which are prime

to f and the group of O∆1-ideals which are prime to f, denoted by I∆f
(f), and

I∆1(f), respectively.

Proposition 1. Let O∆f
be an order of conductor f in an imaginary quadratic

field Q(
√
∆1) with maximal order O∆1 .

(i.) If A ∈ I∆1(f), then a = A ∩ O∆f
∈ I∆f

(f) and N (A) = N (a).
(ii.) If a ∈ I∆f

(f), then A = aO∆1 ∈ I∆1(f) and N (a) = N (A).
(iii.) The map ϕ : A �→ A ∩ O∆f

induces an isomorphism I∆1(f)
∼→I∆f

(f).
The inverse of this map is ϕ−1 : a �→ aO∆1 .

Thus we are able to switch to and from ideals in the maximal and non-maximal
orders via the map ϕ. The algorithms GoToMaxOrder(a, f) to compute ϕ−1

and GoToNonMaxOrder(A, f) to compute ϕ can be found in [9]. If a = aZ +
b+

√
∆f

2 Z = (a, b) and A = AZ + B+
√

∆1
2 Z = (A,B) are reduced ideals, then

these algorithms need O(log(|∆1|)2) and O(log(|∆f |)2) bit-operations respec-
tively.

It is important to note that the isomorphism ϕ is between the ideal groups
I∆1(f) and I∆f

(f) and not the class groups. If, for A,B ∈ I∆1(f) we have A ∼
B, it is not necessarily true that ϕ(A) ∼ ϕ(B). On the other hand, equivalence
does hold under ϕ−1. More precisely we have the following:

Proposition 2. The isomorphism ϕ−1 induces a surjective homomorphism
φ−1

Cl : Cl(∆f ) → Cl(∆1), where [a] �→ [ϕ−1(a)].

We now focus on the kernel Ker(φ−1
Cl ) of this map, which will turn out to be

of central importance for the computation of discrete logarithms in Cl(∆f ). In
particular, we will need to compute discrete logarithms of elements in Ker(φ−1

Cl ).
Representing elements of Ker(φ−1

Cl ) as ideal equivalence classes is completely
inadequate for this purpose since we would have to compute discrete logarithms
in Cl(∆f ). Fortunately, there exists an alternative representation which allows
us to reduce the problem of computing discrete logarithms in Ker(φ−1

Cl ) to that
in a small number of finite fields.

Proposition 3. The map ψ : (O∆1/fO∆1)
∗ → Ker(φ−1

Cl ), [α] �→ [ϕ (αO∆1)], is
a surjective homomorphism.

This homomorphism suggests the following representation for ideal classes in
the kernel:

Definition 1. Let [α] = [x + yω] ∈ (O∆1/fO∆1)
∗ and let a ∼ ϕ(αO∆1) be a

reduced O∆f
-ideal whose equivalence class lies in Ker(φ−1

Cl ). Then the pair (x, y)
is called a generator representation for the equivalence class [a].
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Remark 1. Note that this generator representation (x, y) for the class of a is not
unique. It is easy to see that (kx, ky), k ∈ (Z/fZ)∗, is also a generator represen-
tation for the class of a. This means that we have a ∼ ϕ((x + yω)O∆1) ∼
ϕ((kx + kyω)O∆1). In other words, Ker(φ−1

Cl )
∼= (O∆1/fO∆1)

∗/i((Z/fZ)∗),
where i denotes the natural embedding of Z/fZ into (O∆1/fO∆1)

∗, as illus-
trated by the exact sequence (7.27) in [5, p.147].

Our reduction of the discrete logarithm problem in Cl(∆f ) to Cl(∆1) and
finite fields requires computing various preimages of elements in Ker(φ−1

Cl ) under
the map ψ. Algorithm 1 (Std2Gen) accomplishes this task. The algorithm Reduce
reduces an ideal A given in standard representation and simultaneously computes
a reducing number γ ∈ O∆1 of the form (x+ y

√
∆1)/2 such that A/γ is reduced

(see, for example, [14, Algorithm 2.6, p.16]).

Algorithm 1 Std2Gen

Input: The standard representation (a, b) of a reduced O∆f -ideal a = aZZ+
b+

√
∆f

2 ZZ

representing a class in Ker(φ−1
Cl ), and the conductor f.

Output: A generator representation (x, y) of the class [a] ∈ Ker(φ−1
Cl ).

(A, B) ← GoToMaxOrder(a, f)
(G, γ) ←Reduce(A, B)
if G �∼ O∆1 then

return(’Error! a �∈ Ker(φ−1
Cl )!’)

end if
if ∆1 ≡ 0 (mod 4) then

x ← x/2 (mod f)
y ← y/2 (mod f)

else
x ← (x − y)/2 (mod f)
y ← y (mod f)

end if
return((x, y))

3 The DLP for Arbitrary Cl(∆f)

In this section we generalize the result from [12]. We show that given the con-
ductor f and its prime factorization one can reduce the DLP in an arbitrary
Cl(∆f ) to the DLP in various smaller groups. More precisely, we first show that
the computation of discrete logarithms in Cl(∆f ) can be reduced to the com-
putation of discrete logarithms in the class group Cl(∆1) of the maximal order
and the computation of discrete logarithms in Ker(φ−1

Cl ). Furthermore, we show
that the latter problem boils down to the computation of discrete logarithms in
a small number of finite fields.
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It should be noted that our method here is in essence a special case of the
more general methods employed by Cohen et al. to compute discrete logarithms
in ray class groups [3]. The class group of a non-maximal order in any number
field, not only degree 2, can be viewed as a ray class group of the maximal order,
where the modulus is simply an integer, the conductor of the non-maximal order.
Our exposition here is a reformulation of these results in terms of the simpler,
special case of non-maximal orders using the language of [12]. In addition, we
prove that the reduction of the DLP in Cl(∆f ) to computing discrete logarithm
computations in Cl(∆1) and a small number of finite fields is of polynomial
complexity.

We start with an algorithm which reduces the DLP in Cl(∆f ) to the DLP
in Cl(∆1) and Ker(φ−1

Cl ). Since the map ψ : (O∆1/fO∆1)
∗ → Ker(φ−1

Cl ) given in
Proposition 3 induces the isomorphism Ker(φ−1

Cl )
∼= (O∆1/fO∆1)

∗/i((Z/fZ)∗),
we will reduce the latter DLP to computations in (O∆1/fO∆1)

∗. Thus, our
algorithm makes use of the following two methods:

– DLPinCl(G,A)
Accepts two reduced O∆1-ideals G,A as input and returns x ∈ Z with 0 ≤
x < h(∆1) such that Gx ∼ A, or x = −1 if no such x exists.

– DLPinKerphi(γ, α, |Ker(φ−1
Cl )|)

Accepts two generator representations γ, α of classes in Ker(φ−1
Cl ) such that

[γ], [α] ∈ (O∆1/fO∆1)
∗ as input and returns x ∈ Z with 0 ≤ x < |Ker(φ−1

Cl )|
such that ψ([γ])x = ψ([α]) in Ker(φ−1

Cl ), or x = −1 if no such x exists.

Furthermore, we assume that h(∆1) is known. This is no practical restriction,
since the best currently known algorithm [14,13] for computing discrete loga-
rithms in Cl(∆1) needs to compute h(∆1) and the group structure of Cl(∆1)
before the actual DL-computation starts. Secondly, if there were any other al-
gorithm DLPinCl with the above properties, then one could use it to compute
h(∆1), as shown in the full paper [10].

Algorithm 2 (ReduceDLP) reduces the DLP in Cl(∆f ) to the DLP in Cl(∆1)
and Ker(φ−1

Cl )
∼= (O∆1/fO∆1)

∗/i((Z/fZ)∗). The proof of correctness can be
found in the full version of the paper [10].

Proposition 4. Given the conductor f, the class number h(∆1) and the order
of the kernel |Ker(φ−1

Cl )| one can reduce the DLP in Cl(∆f ) in O(log(|∆f |)3)
bit-operations to the DLP in Cl(∆1) and Ker(φ−1

Cl ).

Thus, in order to compute discrete logarithms in Cl(∆f ), we need efficient al-
gorithms for computing discrete logarithms in Cl(∆1) and Ker(φ−1

Cl ). The subex-
ponential algorithm described in [13, Algorithm 3.3] is the most efficient algo-
rithm known for computing discrete logarithms in Cl(∆1). We now consider the
DLP in Ker(φ−1

Cl )
∼= (O∆1/fO∆1)

∗/i((Z/fZ)∗) more closely.
By the Chinese Remainder Theorem (see, for example, [15, p.11]), the DLP in

(O∆1/fO∆1)
∗/i((Z/fZ)∗) boils down to DLPs in (O∆1/p

ei
i O∆1)

∗
/i((Z/pei

i Z)∗)
for prime powers pei

i , where f =
∏

pei
i . Furthermore, this problem can be effi-

ciently reduced to the prime case (O∆1/piO∆1)
∗
/i(F∗

pi
). We give an algorithm

(ReducePe2P) for this reduction in the full version of the paper [10].
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Algorithm 2 ReduceDLP
Input: Two reduced O∆f -ideals g, a, the conductor f, the class number h(∆1), and
the order of the kernel |Ker(φ−1

Cl )| = f
[O∗

∆1
:O∗

∆f
]

∏
p | f

(
1 − (∆/p)

p

)
Output: The discrete logarithm x, such that gx ∼ a, with 0 ≤ x < h(∆f ), or x = −1,
if no such x exists.
{Compute DL in Cl(∆1)}
G ←GoToMaxOrder(g, f)
A ←GoToMaxOrder(a, f)
x1 ←DLPinCl(G, A)
if x1 = −1 then

return(−1)
end if
{Compute DL in (O∆1/fO∆1)

∗}
α ←Std2Gen(a/gx1 , f)
γ ←Std2Gen(gh(∆1), f)
c ←DLPinKerphi(γ, α, |Ker(φ−1

Cl )|)
if c = −1 then

return(−1)
end if
{Combine partial results to get DL in Cl(∆f2)}
x ← c · h(∆1) + x1

return(x)

Proposition 5. The DLP in (O∆1/p
eO∆1)

∗/i((Z/peZ)∗) can be reduced in O(e·
(log pe)3) bit-operations to 2e DL-computations in (O∆1/pO∆1)

∗/i(F∗
p).

Corollary 1. If e = O((log p)α) for some α = O(1), then the DLP in
(O∆1/p

eO∆1)
∗/i((Z/peZ)∗) can be reduced in polynomial time (in log p) to the

DLP in (O∆1/pO∆1)
∗/i(F∗

p).

Using ReduceDLP and ReducePe2P allows us to reduce the DLP in Cl(∆f )
to DLPs in Cl(∆1) and (O∆1/pO∆1)

∗/i(F∗
p). As shown in [12,11], (O∆1/pO∆1)

∗

is isomorphic to either F∗
p × F∗

p or F∗
p2 , depending how p splits in O∆1 . This

immediately leads to the central result of this section.

Theorem 1. If the prime factorization of the conductor f =
∏k

i=1 p
ei
i is known

and ei = O((log pi)α) for some α = O(1) then one can reduce the discrete
logarithm problem in Cl(∆f ) in polynomial time (in log∆f ) to the computation
of logarithms in Cl(∆1) and the following groups (1 ≤ i ≤ k):

F∗
pi
, if

(
∆1
pi

)
∈ {0, 1}

F∗
p2

i
, if

(
∆1
pi

)
= −1 .

Proof. If the conductor f and its prime factorization are known, then one can use
ReduceDLP (Algorithm 2) to reduce the DLP in Cl(∆f ) to the DLP in Cl(∆1)
and Ker(φ−1

Cl ). By Proposition 4 this is possible in polynomial time in log∆f .
By the Chinese Remainder Theorem (using the known factorization of f) the



282 Detlef Hühnlein, Michael J. Jacobson, Jr., and Damian Weber

DLP in Ker(φ−1
Cl )

∼= (O∆1/fO∆1)
∗/i((Z/fZ)∗) is nothing more than the DLP in

groups of the form (O∆1/p
ei
i O∆1)

∗/i((Z/pei
i Z)∗), which can, using ReducePe2P

(from [10]) and Corollary 1, be reduced in polynomial time (in log pi) to the
DLP in (O∆1/piO∆1)

∗/i(F∗
pi
), because ei is assumed to be polynomial in log pi.

It remains to show how one reduces the discrete logarithm problem in
(O∆1/pO∆1)

∗/i(F∗
p) to discrete logarithm problems in F∗

p or F∗
p2 . Suppose we

have two representatives γ, α of classes in (O∆1/pO∆1)
∗ for which we want to

compute the discrete logarithm c such that [γ]c ≡ [α] in (O∆1/pO∆1)
∗/i(F∗

p).
In the inert case (∆1/p) = −1, where (O∆1/pO∆1)

∗ ∼= F∗
p2 , we have

(O∆1/pO∆1)
∗/i(F∗

p)
∼= F∗

p2/i(F∗
p). It is well-known that there always exists a

surjective homomorphism from F∗
p2 to F∗

p2/i(F∗
p). Thus, we first solve the DLP

γc′ ≡ α (mod pO∆1) by simply solving the corresponding DLP in F∗
p2 . Tak-

ing c ≡ c′ mod (p + 1) yields the required solution to the DLP [γ]c ≡ [α] in
(O∆1/pO∆1)

∗/i(F∗
p).

We now restrict our attention to the split case (∆1/p) = 1, where we have
(O∆1/pO∆1)

∗ ∼= F∗
p × F∗

p. The element γ = (x1, y1) maps to (x1 mod p, y1 mod
p) ∈ F∗

p × F∗
p and similarly α = (x2, y2) maps to (x2 mod p, y2 mod p). The DLP

in (O∆1/pO∆1)
∗/i(F∗

p) becomes

(x1, y1)c ≡ l(x2, y2) (in F∗
p × F∗

p)

which in turn yields the simultaneous DLP’s

xc
1 ≡ lx2 (mod p), yc

1 ≡ ly2 (mod p) .

Since these two DLP’s must be solved for the same c and l, we can combine
them and obtain the single DLP in F∗

p(
x1
y1

)c

≡
(
x2
y2

)
(mod p)

from which we can find the desired value of c.
As noted in [8], this simple strategy can be used to improve the general maps

from [12,11]; it is shown that in this case there not only exists a surjective homo-
morphism F∗

p ×F∗
p → Ker(φ−1

Cl ), but even an efficiently computable isomorphism
F∗

p
∼= Ker(φ−1

Cl ). ��
Note that the central result of [12] now is nothing more than an immediate

corollary.

3.1 Example

We illustrate the reduction of discrete logarithm computations in Cl(∆f ) via a
small example. Suppose ∆1 = −1019, f = 23, and ∆f = ∆1f

2 = −539051. In
this case, both Cl(∆f ) and Cl(∆1) are cyclic with h(∆1) = 13 and h(∆f ) =
h(∆1)(23− 1) = 286. The equivalence class represented by the reduced ideal

g = 15Z +
−7 +√−539051

2
Z = (15,−7)
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generates Cl(∆f ).
Suppose we wish to compute the discrete logarithm of [a] with respect to the

base [g] in Cl(∆f ), where

a = 11Z +
9 +

√−539051
2

Z = (11, 9) .

That is, we want to find x such that gx ∼ a. Since g generates Cl(∆f ), we know
that such an x exists. Following ReduceDLP (Algorithm 2), we first compute
[G] = [φ−1

Cl (g)] and [A] = [φ−1
Cl (a)], and solve the discrete logarithm problem

Gx1 ∼ A

in Cl(∆1). We have G = 15Z + 1+
√−1019
2 Z = (15, 1), A = (11, 9), and we easily

compute x1 = 9.
At this point we know that x has the form x = c · h(∆1) + x1 = 13c + 9,

and it remains to compute c. Again following ReduceDLP (Algorithm 2), we
compute generator representations α, γ of [α], [γ] ∈ (O∆1/fO∆1)

∗ such that
ψ([α]) = [a/gx1 ] and ψ([γ]) = [gh(∆1)]. Following Std2Gen (Algorithm 1), we
first compute

b ∼ a/gx1 ∼ a/g9 = (311, 277)

and
c ∼ gh(∆1) ∼ g13 = (297, 295) .

To find α and γ we compute the principal ideals B = ϕ−1(b) and C = ϕ−1(c),
and reduce them while simultaneously computing their modulo fO∆1 reduced
generators, which we take as α and γ. We obtain B = (311,−15) = (α) and
C = (297,−13) = (γ) where

α = −8 + 1ω, γ = −7 + 1ω

and ω = 1+
√−1019
2 .

To compute c, we need to solve the discrete logarithm problem

[γ]c ≡ [α] (in Ker(φ−1
Cl )

∼= (O∆1/fO∆1)
∗/i((Z/fZ)∗)) .

For this example, we have (∆1/f) = (−1019/23) = 1, and thus (O∆1/fO∆1)
∗ �

F∗
23 × F∗

23 by [12, Lemma 8]. Since ω ≡ 14 (mod 23) and ω ≡ 10 (mod 23),
we obtain

γ �→ (−7 + 1ω mod 23,−7 + 1ω mod 23) = (7, 3) ∈ F∗
23 × F∗

23

and
α �→ (−8 + 1ω mod 23,−8 + 1ω mod 23) = (6, 2) ∈ F∗

23 × F∗
23 .

Since Ker(φ−1
Cl )

∼= (F∗
p × F∗

p)/i(F
∗
p), we need to find c by solving the discrete

logarithm problem (7, 3)c = l(6, 2) in F∗
23 × F∗

23 for every l ∈ F∗
23. This yields

7c ≡ 6l (mod 23), 3c ≡ 2l (mod 23),
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and we combine these two discrete logarithm problems to obtain one discrete
logarithm problem in F∗

23 :

(7/3)c ≡ (6/2) (mod 23) → 10c ≡ 3 (mod 23) .

Solving yields c = 20, and finally x = 13 ·20+9 = 269. It is easy to verify that x
is indeed the desired discrete logarithm: simply compute the reduced ideal g269

and verify that it is equal to the reduced ideal a.

4 Towards Practical Non-interactive Cryptosystems

Before we explain our system setup we list the crucial properties:

Required Properties

1. The discrete logarithm problem (DLP) in Cl(∆p) without knowing the fac-
torization of ∆p = ∆1p

2 is infeasible. To determine bounds for ∆1 and p, we
make use of the heuristic model from [7], which is a refinement of Lenstra
and Verheul’s approach [16], since it also takes into account the asymptoti-
cally vanishing o(1)-part in subexponential algorithms. We will now derive
bounds for the parameters such that an attacker would need to spend about
90, 000 MIPS years to break the system. This approximately amounts to a
ten-fold higher workload than the recent factorization of RSA155 and hence
corresponds to the very minimum requirements. The estimates in [7, Table 3]
state that ∆p should have at least 576, 667, 423 bits to prevent factoring ∆p

with the GNFS, factoring ∆p with ECM and computing discrete logarithms
in Cl(∆p) with the SIQS-analogue [14], respectively.
1.1 ∆p is large enough that using the subexponential algorithm from [13] to

directly compute discrete logarithms in Cl(∆p) is infeasible. ∆p > 2423

implies an expected workload of more than 90, 000 MIPS years.
1.2 ∆p cannot be factored to reduce the DLP to DLPs in Cl(∆1) and F∗

p (or
F∗

p2).
1.2.1 ∆p is large enough so that the Number Field Sieve would need more

than 90, 000 MIPS years. This yields ∆p > 2576.
1.2.2 ∆1 and p are large enough that it would take more than 90, 000 MIPS

years to find them with the Elliptic Curve Method. This implies
∆1, p > 2222.

2. ∆1, p must be small enough to enable the KGC to compute discrete log-
arithms in Cl(∆1) and F∗

p using subexponential algorithms. ∆1, p < 2300

seems to be feasible.
3. Cl(∆p) must be cyclic.

It is easy to see that the following setup satisfies all above requirements.
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System Setup

1. The KGC randomly chooses a prime q ≡ 3 (mod 4), q > 2260, sets∆1 = −q
and computes h(∆1) and the group structure of Cl(∆1) with the algorithm
from [14]. The Cohen-Lenstra heuristics [4] suggest that Cl(∆1) is cyclic
with probability > 0.97. If Cl(∆1) is not cyclic, the KGC selects another
prime q until it is cyclic.

2. The KGC chooses a prime p > 2260 with (∆1/p) = 1 and gcd(p−1, h(∆1) = 1
such that the SNFS can be applied as in [24], and computes ∆p = ∆1p

2.
The gcd condition ensures that Cl(∆p) is cyclic.

3. The KGC computes a generator g of Cl(∆p) and publishes it together with
∆p.

Given a generator G of Cl(∆1), which the KGC can easily obtain during the
computation of Cl(∆1) [14, Algorithm 6.1], it is also easy in practice to find a
generator g of Cl(∆p) with the additional property that φ−1

Cl (g) = G. The KGC
repeatedly selects random values of α ∈ O∆1 and takes the first g = φ(αG)
such that gh(∆p)/di �∼ O∆p for any positive divisor di of h(∆p). Although h(∆p)
is approximately as large as

√|∆p|, in practice it has sufficiently many small
factors that this condition can be verified with high probability.

User Registration

1. Bob requests the public key b corresponding to his identity IDB at the KGC.
2. The KGC verifies Bob’s identity, for example, using a passport, and starts

with the key generation.
3. The KGC computes the 128-bit hash id = h(IDB) using, for example, MD5

[22], of Bob’s identity and embeds id into a group element of Cl(∆p) by
taking the largest prime pB ≤ id, for which (∆p/pB) = 1 and computing the

prime ideal b = pBZ+
bB+

√
∆p

2 , where bB is the uniquely determined square
root of ∆p mod 4pB with 0 ≤ bB ≤ pB . Note that b is already reduced,
since

√|∆p| > 2128 > pB . If the KGC recognizes that b is already assigned
to another user it will ask Bob to choose another identity, for example, his
postal address.

4. Finally, the KGC computes the discrete logarithm b such that gb ∼ b us-
ing the secret knowledge of the conductor p and the reduction procedure
described in the Section 3, and returns b to Bob.

As soon as all users are registered this way the KGC can destroy the fac-
torization of ∆p and cease to exist. The users can obtain any other user’s au-
thentic public key simply by hashing that user’s identity and computing the
largest prime ideal whose norm is less than the hash value. Each user has a
public/private key-pair (a, a) with a ∼ ga, so discrete logarithm-based protocols
such as Diffie-Hellman or ElGamal can be directly applied in the class group
Cl(∆p).
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Preliminary experiments, together with computational experience using the
subexponential algorithms from [13] and [24], indicate that a KGC with modest
computational resources, for example, a small network of Pentium processors,
should be able to set up a key distribution system using p, q ≈ 2300 at least. For
such an example, we estimate that after a precomputation of about 3 days on a
cluster of 16 550 Mhz Pentiums III’s for computing the class group Cl(∆1), each
user registration would take about 1 day on a single 550 Mhz Pentiums III, the
vast majority of this time being spent on the computation of discrete logarithms
in F∗

p. However, adding more machines to the cluster yields a linear speedup in
both the precomputation stage and part of the user registration stage. Thus,
although this level of complexity is far from ideal, unlike the case of (Z/nZ)∗ it
is at least possible to set up noninteractive systems with secure parameters in
Cl(∆p). More detailed computational results will appear in the full version of
the paper [10].
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