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Abstract. It has recently been shown that when m > 1
2n − 1, the

nonlinearity Nf of an mth-order correlation immune function f with
n variables satisfies the condition of Nf ≤ 2n−1 − 2m, and that when
m > 1

2n − 2 and f is a balanced function, the nonlinearity satisfies
Nf ≤ 2n−1 − 2m+1. In this work we prove that the general inequality,
namely Nf ≤ 2n−1 − 2m, can be improved to Nf ≤ 2n−1 − 2m+1 for
m ≥ 0.6n − 0.4, regardless of the balance of the function. We also show
that correlation immune functions achieving the maximum nonlinearity
for these functions have close relationships with plateaued functions. The
latter have a number of cryptographically desirable properties.

Key words: Correlation Immune Functions, Nonlinearity, Resilient
Functions, Plateaued Functions, Stream Ciphers

1 Introduction

Correlation immunity has long been recognized as one of the critical indicators
of nonlinear combining functions of shift registers in stream generators (see [12]).
A high correlation immunity is generally a very desirable property, in view of
various successful correlation attacks against a number of stream ciphers (see
for instance [6]).

Another class of cryptanalytic attacks against stream ciphers, called best
approximation attacks, were advocated in [4]. Success of these attacks in breaking
a stream cipher is made possible by exploiting the low nonlinearity of functions
employed by the cipher, and it highlights the significance of nonlinearity in the
analysis and design of encryption algorithms.

Recently Sarkar and Maitra [10] have proved that when m > 1
2n − 1, the

nonlinearity Nf of an mth-order correlation immune function f with n variables
satisfies the condition of Nf ≤ 2n−1 − 2m. In addition they have shown that if
f is balanced and m > 1

2n − 2, then the condition becomes Nf ≤ 2n−1 − 2m+1.
(See also Section 8 for independent efforts by researchers other than Sarkar and
Maitra.)

In this work we focus our attention on the case of m ≥ 0.6n − 0.4. We show
that for such m and n, the nonlinearity of an mth-order correlation immune
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function f with n variables must satisfy the condition of Nf ≤ 2n−1 − 2m+1,
regardless of the balance of the function. This represents an improvement on the
upper bound of Nf ≤ 2n−1 − 2m.

Plateaued functions are a new class of functions recently introduced in [16].
These functions have a number of properties that are deemed desirable in cryp-
tography. We show that, interestingly, a correlation immune function with the
maximum nonlinearity achievable by such a function can be identified with a
plateaued function. This provides a new avenue for the analysis and design of
cryptographically useful correlation immune functions.

The remaining part of this paper is organized as follows: Section 2 introduces
basic definitions on Boolean functions, and Section 3 summarizes some of the
important cryptographic criteria for Boolean functions. This will be followed by
Section 4 where relevant properties of plateaued functions are discussed. Some
useful results on correlation immune functions are introduced in Section 5. These
results will then be used in Section 6 where our improved upper bound on the
nonlinearity of correlation immune functions is proved. In the same section some
relationships between correlation immune functions and plateaued functions are
also examined. In Section 7, the new upper bound is demonstrated to be tight for
balanced correlation immune functions. Finally the paper is closed by Section 8
where possible directions for future research are pointed out.

2 Boolean Functions

We consider functions from Vn to GF (2) (or simply functions on Vn), where Vn

is the vector space of n tuples of elements from GF (2). The truth table of a
function f on Vn is a (0, 1)-sequence defined by (f(α0), f(α1), . . . , f(α2n−1)),
and the sequence of f is a (1,−1)-sequence defined by ((−1)f(α0), (−1)f(α1),
. . ., (−1)f(α2n−1)), where α0 = (0, . . . , 0, 0), α1 = (0, . . . , 0, 1), . . ., α2n−1 =
(1, . . . , 1, 1). The matrix of f is a (1,−1)-matrix of order 2n defined by M =
((−1)f(αi⊕αj)) where ⊕ denotes the addition in Vn. A function f is said to be
balanced if its truth table contains an equal number of ones and zeros.

Given two sequences ã = (a1, · · · , am) and b̃ = (b1, · · · , bm), their component-
wise product is defined by ã ∗ b̃ = (a1b1, · · · , ambm). In particular, if m = 2n and
ã, b̃ are the sequences of functions f and g on Vn respectively, then ã ∗ b̃ is the
sequence of f ⊕ g where ⊕ denotes the addition in GF (2).

Let ã = (a1, · · · , am) and b̃ = (b1, · · · , bm) be two sequences or vectors,
the scalar product of ã and b̃, denoted by 〈ã, b̃〉, is defined as the sum of the
component-wise multiplications. In particular, when ã and b̃ are from Vm, 〈ã, b̃〉 =
a1b1 ⊕ · · · ⊕ ambm, where the addition and multiplication are over GF (2), and
when ã and b̃ are (1,−1)-sequences, 〈ã, b̃〉 =

∑m
i=1 aibi, where the addition and

multiplication are over the reals.
An affine function f on Vn is a function that takes the form of f(x1, . . . , xn) =

a1x1 ⊕ · · · ⊕ anxn ⊕ c, where aj , c ∈ GF (2), j = 1, 2, . . . , n. Furthermore f is
called a linear function if c = 0.
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A (1,−1)-matrix N of order n is called a Hadamard matrix if NNT = nIn,
where NT is the transpose of N and In is the identity matrix of order n. A
Sylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by the
following recursive relation

H0 = 1, Hn =
[
Hn−1 Hn−1
Hn−1 −Hn−1

]
, n = 1, 2, . . . .

Obviously Hn is symmetric. Let �i, 0 ≤ i ≤ 2n−1, be the i row of Hn. It is known
that �i is the sequence of a linear function ϕi(x) defined by the scalar product
ϕi(x) = 〈αi, x〉, where αi is the ith vector in Vn according to the ascending
alphabetical order.

The Hamming weight of a (0, 1)-sequence ξ, denoted by HW (ξ), is the num-
ber of ones in the sequence. Given two functions f and g on Vn, the Hamming
distance d(f, g) between them is defined as the Hamming weight of the truth
table of f(x) ⊕ g(x), where x = (x1, . . . , xn).

3 Cryptographic Criteria of Boolean Functions

The following criteria for cryptographic Boolean functions are often considered:
balance, nonlinearity, propagation criterion, correlation immunity, algebraic de-
gree and non-zero linear structures. In this paper we focus mainly on nonlinearity
and correlation immunity.

The so called Parseval’s equation (Page 416 [7]) is a useful tool in this work:
Let f be a function on Vn and ξ denote the sequence of f . Then

∑2n−1
i=0 〈ξ, �i〉2 =

22n where �i is the ith row of Hn, i = 0, 1, . . . , 2n − 1.
The nonlinearity of a function f on Vn, denoted by Nf , is the minimal Ham-

ming distance between f and all affine functions on Vn, i.e.,
Nf = mini=1,2,...,2n+1 d(f, ψi) where ψ1, ψ2, . . ., ψ2n+1 are all the affine functions
on Vn. High nonlinearity can be used to resist a linear attack. The following char-
acterization of nonlinearity will be useful (for a proof see for instance [8]).

Lemma 1. The nonlinearity of f on Vn can be expressed by

Nf = 2n−1 − 1
2

max{|〈ξ, �i〉|, 0 ≤ i ≤ 2n − 1}

where ξ is the sequence of f and �0, . . ., �2n−1 are the rows of Hn, namely, the
sequences of linear functions on Vn.

From Lemma 1 and Parseval’s equation, it is easy to verify that Nf ≤ 2n−1−
2

1
2 n−1 for any function f on Vn. If Nf = 2n−1 − 2

1
2 n−1, then f is called a bent

function [9]. It is known that a bent function on Vn exists only when n is even.
Let f be a function on Vn. For a vector α ∈ Vn, denote by ξ(α) the sequence

of f(x⊕ α). Thus ξ(0) is the sequence of f itself and ξ(0) ∗ ξ(α) is the sequence
of f(x)⊕f(x⊕α). Set ∆f (α) = 〈ξ(0), ξ(α)〉, the scalar product of ξ(0) and ξ(α).
∆(α) is called the auto-correlation of f with a shift α. We omit the subscript of
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∆f (α) if no confusion occurs. Obviously, ∆(α) = 0 if and only if f(x)⊕f(x⊕α)
is balanced, i.e., f satisfies the propagation criterion with respect to α. In the
case that f does not satisfy the propagation criterion with respect to a vector
α, it may be desirable for f(x) ⊕ f(x ⊕ α) to be almost balanced. That is, one
may require |∆f (α)| to be a small value.

The concept of correlation immune functions was introduced by Siegenthaler
[12]. Xiao and Massey gave an equivalent definition [2,5]: A function f on Vn is
called a mth-order correlation immune function if∑

x∈Vn

f(x)(−1)〈β,x〉 = 0

for all β ∈ Vn with 1 ≤ HW (β) ≤ m, where in the the sum, f(x) and 〈β, x〉 are
regarded as real-valued functions. From the first equality in Section 4.2 of [2],
a correlation immune function can also be equivalently restated as follows: Let
f be a function on Vn and let ξ be its sequence. Then f is called a mth-order
correlation immune function if 〈ξ, �〉 = 0 for every �, where � is the sequence
of a linear function ϕ(x) = 〈α, x〉 on Vn constrained by 1 ≤ HW (α) ≤ m. In
fact, 〈ξ, �i〉 = 0, where �i is the ith row of Hn, if and only if f(x) ⊕ 〈αi, x〉 is
balanced, where αi is the binary representation of an integer i, 0 ≤ i ≤ 2n − 1.
Correlation immune functions are used in the design of running-key generators
in stream ciphers to resist a correlation attack and the design of hash functions.
Relevant discussions on correlation immune functions, more generally on resilient
functions, can be found in [15].

Let f be a function on Vn and ξ denote the sequence of f . We introduce two
new notations:

1. Set f = {i | 〈ξ, �i〉 �= 0, 0 ≤ i ≤ 2n − 1} where �i is the ith row of Hn,
2. set ∗

f = {αi | 〈ξ, �αi〉 �= 0, 0 ≤ i ≤ 2n − 1} where αi is the binary
representation of an integer i, 0 ≤ i ≤ 2n − 1 and �αi

is identified with �i.

∗
f is essentially the same as f with the only difference being that its ele-

ments are represented by a binary vector in Vn. We will simply write f as 
and ∗

f as ∗ when no confusion arises. It is easy to verify that #f and #∗
f

are invariant under any nonsingular linear transformation on the variables of the
function f . #f (#∗

f ) together with the distribution of f (∗
f ) determines

the correlation immunity and other cryptographic properties of a function.

4 An Overview of Plateaued Functions

The concept of plateaued functions was introduced in [16].

Definition 1. Let f be a function on Vn and ξ denote the sequence of f . If there
exists an even number r, 0 ≤ r ≤ n, such that # = 2r and each 〈ξ, �j〉2 takes the
value of 22n−r or 0 only, where �j denotes the jth row of Hn, j = 0, 1, . . . , 2n−1,
then f is called a rth-order plateaued function on Vn. f is also simply called a
plateaued function on Vn if we ignore the particular order r.
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Due to Parseval’s equation, the condition that # = 2r can be obtained
from the condition that “each 〈ξ, �j〉2 takes the value of 22n−r or 0 only, where
�j denotes the jth row of Hn, j = 0, 1, . . . , 2n − 1”. For the sake of convenience,
however, we have mentioned both conditions in the definition of plateaued func-
tions.

Some facts about plateaued functions follow: (1) if f is a rth-order plateaued
function, then r must be even, (2) f is an nth-order plateaued function if and
only if f is bent, (3) f is a 0th-order plateaued function if and only if f is affine.

All the following results can be found in [16].

Theorem 1. Let f be a function on Vn and ξ denote the sequence of f . Set
pM = max{|〈ξ, �j〉|, j = 0, 1, . . . , 2n − 1}, where �j is the jth row of Hn. Then
the following statements are equivalent: (i) f is a plateaued function on Vn, (ii)∑2n−1

j=0 ∆2(αj) = 23n

#� , (iii) the nonlinearity Nf of f satisfies Nf = 2n−1− 2n−1√
#� ,

(iv) pM

√
# = 2n, (v) Nf = 2n−1 − 2− n

2 −1
√∑2n−1

j=0 ∆2(αj).

Theorem 2. Let f be a function on Vn and ξ denote the sequence of f . Then

2n−1∑
j=0

∆2(αj) ≥ 23n

#

where the equality holds if and only if f is a plateaued function.

Theorem 3. Let f be a function on Vn and ξ denote the sequence of f . Then
the nonlinearity Nf of f satisfies Nf ≤ 2n−1 − 2n−1√

#� , where the equality holds if

and only if f is a plateaued function.

Theorem 4. Let f be a function on Vn and ξ denote the sequence of f . Then
the nonlinearity Nf of f satisfies

Nf ≤ 2n−1 − 2− n
2 −1

√√√√2n−1∑
j=0

∆2(αj)

where the equality holds if and only if f is a plateaued function on Vn.

Proposition 1. Let f be a rth-order plateaued function on Vn. Then the non-
linearity Nf of f satisfies Nf = 2n−1 − 2n− r

2 −1.

5 Some Useful Results on Correlation Immune Functions

Consider a function f on Vn. Denote by ξ = (a0, a1, . . . , a2n−1), where aj = ±1,
the sequence of f . Obviously

(a0, a1, . . . , a2n−1)Hn = (〈ξ, �0〉, 〈ξ, �1〉, . . . , 〈ξ, �2n−1〉) (1)
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where �i is the ith row of Hn, i = 0, 1, . . . , 2n − 1.
Let p be an integer with 1 ≤ p ≤ n − 1. Rewrite (1) as

(a0, a1, . . . , a2n−1)(Hp × Hn−p) = (〈ξ, �0〉, 〈ξ, �1〉, . . . , 〈ξ, �2n−1〉) (2)

where × is the Kronecker Product [14].
Let ei denote the ith row of Hn−p, i = 0, 1, . . . , 2n−p −1. For any fixed j with

0 ≤ j ≤ 2n−p−1, comparing the jth, the (j+2n−p)th, . . ., the (j+(2p−1)2n−p)th
terms in the two sides of (2), we have

(a0, a1, . . . , a2n−1)(Hp × eT
j ) = (〈ξ, �j〉, 〈ξ, �j+2n−p〉, . . . , 〈ξ, �j+(2p−1)2n−p〉)

Write ξ = (ξ0, ξ1, . . . , ξ2p−1) where each ξi is of length 2n−p. Then we have

(〈ξ0, ej〉, 〈ξ1, ej〉, . . . , 〈ξ2p−1, ej〉)Hp = (〈ξ, �j〉, 〈ξ, �j+2n−p〉, . . . , 〈ξ, �j+(2p−1)2n−p〉)
Hence

2p(〈ξ0, ej〉, 〈ξ1, ej〉, . . . , 〈ξ2p−1, ej〉)
= (〈ξ, �j〉, 〈ξ, �j+2n−p〉, . . . , 〈ξ, �j+(2p−1)2n−p〉)Hp (3)

Based on these discussions, we have the following lemma.

Lemma 2. Let f be an mth-order correlation immune function on Vn, where
m ≤ n − 2, and ξ be the sequence of f . Then 〈ξ, �2m+1−1〉 ≡ 0 (mod 2m+2) if
and only if 〈ξ, �0〉 ≡ 0 (mod 2m+2) where �0 is the top row of Hn.

Proof. Set W = {α0, α2n−m−1 , α2·2n−m−1 , . . . , α(2m+1−1)2n−m−1}, where each αj

is the binary representation of an integer j. Note that W is an (m+1)-dimensional
linear subspace of Vn.

Write ξ = (ξ0, ξ1, ξ2, . . . .ξ2m+1−1), where each ξi is of length 2n−m−1. Let
p = m + 1 and j = 0 in (3), we have

2m+1(〈ξ0, e0〉, 〈ξ1, e0〉, . . . , 〈ξ2m+1−1, e0〉)
= (〈ξ, �0〉, 〈ξ, �2n−m−1〉, 〈ξ, �2·2n−m−1〉, . . . , 〈ξ, �(2m+1−1)2n−m−1〉)Hm+1 (4)

where e0 denotes the 0th row of Hn−m−1, i.e., the all-one sequence of length
2n−m−1.

As HW (αj·2n−m−1) ≤ m, we have 〈ξ, �j·2n−m−1〉 = 0, where j = 1, . . . , 2m+1−
2. Therefore (4) can be rewritten as

2m+1(〈ξ0, e0〉, 〈ξ1, e0〉, . . . , 〈ξ2m+1−1, e0〉)
= (〈ξ, �0〉, 0, . . . , 0, 〈ξ, �(2m+1−1)2n−m−1〉)Hm+1 (5)

Comparing the rightmost term in the two sides of (5), we have

2m+1〈ξ2m+1−1, e0〉 = 〈ξ, �0〉 − 〈ξ, �(2m+1−1)2n−m−1〉 (6)

Note that the length of ξ2m+1−1 and e0 is even. Hence 〈ξ2m+1−1, e0〉 must be
even. From this it follows that 2m+1〈ξ2m+1−1, e0〉 ≡ 0 (mod 2m+2). Finally, by
considering (6), we have proved that 〈ξ, �(2m+1−1)2n−m−1〉 ≡ 0 (mod 2m+2) if
and only if 〈ξ, �0〉 ≡ 0 (mod 2m+2). ��
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By choosing a different W in the proof of Lemma 2, we can prove the following
lemma in a similar way.

Lemma 3. Let f be an mth-order correlation immune function on Vn, where
m ≤ n − 2, and ξ be the sequence of f . Let j0 be an integer satisfying 0 < j0 ≤
2n−1 and HW (αj0) = m+1, where αj0 is the binary representation of the integer
j0. Then 〈ξ, �j0〉 ≡ 0 (mod 2m+2) if and only if 〈ξ, �0〉 ≡ 0 (mod 2m+2).

Lemma 3 allows us to claim

Lemma 4. Let f be an mth-order correlation immune function on Vn, where
m ≤ n − 2, and ξ be the sequence of f . Let j0 be an integer satisfying 0 < j0 ≤
2n − 1 and HW (αj0) = m + 1. If 〈ξ, �j0〉 ≡ 0 (mod 2m+2) then 〈ξ, �j〉 ≡ 0
(mod 2m+2) for any integer j satisfying HW (αj) = m + 1, where αj is the
binary representation of j.

The condition of HW (αj) = m + 1 in the lemma above can be removed, as
is shown below.

Lemma 5. Let f be an mth-order correlation immune function on Vn, where
m ≤ n − 2, and ξ be the sequence of f . Let j0 be an integer satisfying 0 < j0 ≤
2n − 1 and HW (αj0) = m + 1, where αj0 is the binary representation of j0. If
〈ξ, �j0〉 ≡ 0 (mod 2m+2), then 〈ξ, �i〉 ≡ 0 (mod 2m+2) for any row �i of Hn.

Proof. We use induction on HW (αj) to prove that 〈ξ, �j〉 ≡ 0 (mod 2m+2),
where αj is the binary representation of the subscript j of �j .

For 0 < HW (αj) ≤ m, since f is an mth-order correlation immune function,
we have 〈ξ, �j〉 = 0. On the other hand, from Lemma 4, we have 〈ξ, �j〉 ≡ 0
(mod 2m+2), where �j is any row of Hn satisfying HW (αj) = m + 1, and αj

is the binary representation of j. Due to Lemma 3, we also have 〈ξ, �0〉 ≡ 0
(mod 2m+2). Hence we have proved 〈ξ, �j〉 ≡ 0 (mod 2m+2), when HW (αj) ≤
m + 1.

Now assume that 〈ξ, �j〉 ≡ 0 (mod 2m+2), when m + 1 ≤ HW (αj) ≤ k ≤
n − 1. Consider the case of HW (αj) = k + 1. Obviously, W can be rewritten as
W = {α0, α2n−k−1 , α2·2n−k−1 , . . . , α(2k+1−1)2n−k−1}, where each αj is the binary
representation of an integer j. One can see that W is a (k+1)-dimensional linear
subspace.

Let ξ = (ξ0, ξ1, ξ2, . . . .ξ2k+1−1), where each ξi is of length 2n−k−1. Further-
more, let p = k + 1 and j = 0 in (3). Then we have

2k+1(〈ξ0, e0〉, 〈ξ1, e0〉, . . . , 〈ξ2k+1−1, e0〉)
= (〈ξ, �0〉, 〈ξ, �2n−k−1〉, 〈ξ, �2·2n−k−1〉, . . . , 〈ξ, �(2k+1−1)2n−k−1〉)Hk+1 (7)

where e0 denotes the 0th row of Hn−k−1, i.e., the all-one sequence of length
2n−k−1.

By the assumption, we should have 〈ξ, �j〉 ≡ 0 (mod 2m+2) where j =
i · 2n−k−1, i = 0, 1, . . . , 2k+1 − 2. Note that k ≥ m + 1. From (7), we have
〈ξ, �(2k+1−1)2n−k−1〉 ≡ 0 (mod 2m+2). Furthermore, note that HW
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(α(2k+1−1)2n−k−1) = k + 1. Taking into account Lemma 4, we can conclude that
〈ξ, �j〉 ≡ 0 (mod 2m+2), for HW (αj) = k + 1, where αj is the binary represen-
tation of j. This completes the proof. ��

In the following section, we will use these results to improve the upper bond
on the nonlinearity of correlation immune functions.

6 Improving Upper Bounds on Nonlinearity

The following lemma will be used in proving Theorem 5.

Lemma 6. Let f be an mth-order correlation immune function on Vn, where
1
2n− 1 < m ≤ n− 2, and ξ denotes the sequence of f . If

(
n

m + 1

)
> 22n−2m−2,

then there must be an integer j0, 0 ≤ j0 ≤ 2n − 1, such that HW (αj0) = m + 1
and 〈ξ, �j0〉 = 0, where αj0 is the binary representation of integer j0.

Proof. Since f is an mth-order correlation immune function on Vn, due to Theo-
rem 3 of [10], we have 〈ξ, �〉 ≡ 0 (mod 2m+1), where � is any row of Hn. Hence
〈ξ, �〉 �= 0 implies that |〈ξ, �〉| ≥ 2m+1. Using Parseval’s equation (Page 416 [7]),
we have # ≤ 22n−2m−2.

Note that the number of vectors α in Vn, satisfying HW (α) = m + 1, is

equal to
(

n
m + 1

)
> 22n−2m−2. Hence there must be a vector αj0 such that

HW (αj0) = m + 1 and αj0 �∈ ∗. As a result, we have 〈ξ, �j0〉 = 0, where αj0 is
the binary representation of j0. ��

Theorem 5. Let f be an mth-order correlation immune function on Vn, where
1
2n − 1 < m ≤ n − 2. If

(
n

m + 1

)
> 22n−2m−2, then Nf ≤ 2n−1 − 2m+1, where

the equality holds if and only if f is is a 2(n−m−2)th-order plateaued function.

Proof. By Lemma 6, there must be a vector αj0 such that HW (αj0) = m + 1
and 〈ξ, �j0〉 = 0. Now using Lemma 5, we have

〈ξ, �〉 ≡ 0 (mod 2m+2) (8)

where � is any row of Hn. Lemma 1 implies that Nf ≤ 2n−1 − 2m+1.
Assume that Nf = 2n−1 − 2m+1. From Lemma 1, we have

max{|〈ξ, �i〉|, 0 ≤ i ≤ 2n − 1} = 2m+2 (9)

Combining (8) and (9), we can conclude that 〈ξ, �〉 = 2m+2 if 〈ξ, �〉 �= 0. This
proves that f is a 2(n − m − 2)th-order plateaued function.

Conversely, if f is a 2(n − m − 2)th-order plateaued function, due to Propo-
sition 1, we must have Nf = 2n−1 − 2m+1. ��
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Let n and m be two integers with n > m > 0. We claim that that the
following inequality holds:(

n
m + 1

)
> (

n + m + 2
n − m

)n−m−1 (10)

To prove the claim, we set ρ(i) = (n−i)(m+2+i)
(n−m−1−i)(1+i) , where 0 ≤ i ≤ 1

2 (n−m−2).

Since
(

n
m + 1

)
=

(
n

n − m − 1

)
, it is easy to verify that

(
n

m + 1

)
=

{
ρ(0)ρ(1) · · · ρ( 12 (n − m − 2) − 1)(n+m+2

n−m ), if n − m is even
ρ(0)ρ(1) · · · ρ( 12 (n − m − 3)), if n − m is odd

(11)

In addition, one can also verify that ρ satisfies the condition of ρ(i) < ρ(i−1).
Hence(

n
m + 1

)
>

{
(ρ( 12 (n − m − 2))

1
2 (n−m−2)(n+m+2

n−m ), if n − m is even
(ρ( 12 (n − m − 3))

1
2 (n−m−1), if n − m is odd

(12)

There exist two cases to be considered: n − m is even and n − m is odd.
In the former case, we note that ρ( 12 (n − m − 2)) = (n+m+2

n−m )2. Due to (12),

we obtain
(

n
m + 1

)
> (n+m+2

n−m )n−m−1.

In the latter case, as ρ( 12 (n−m−3)) = (n+m+3)(n+m+1)
(n−m+1)(n−m−1) > (n+m+2

n−m )2, taking

into account (12), we have
(

n
m + 1

)
> (n+m+2

n−m )n−m−1. Thus the inequality in

(10) is indeed true.

Theorem 6. Let f be an mth-order correlation immune function on Vn. If m
and n satisfy the condition of 0.6n − 0.4 ≤ m ≤ n − 2, then Nf ≤ 2n−1 − 2m+1,
where the equality holds if and only if f is also a 2(n−m− 2)th-order plateaued
function.

Proof. One can verify that

n + λ1 + 2
n − λ1

>
n + λ2 + 2
n − λ2

for n > λ1 > λ2 > 0, where λ1 and λ2 are not necessarily integers. Since
m ≥ 0.6n − 0.4, we have

(
n + m + 2
n − m

)n−m−1 ≥ (
n + 0.6n − 0.4 + 2
n − (0.6n − 0.4)

)n−m−1 = 22n−2m−2.

By using (10), we can conclude that
(

n
m + 1

)
> 22n−2m−2. Taking into account

Theorem 5, we know that the theorem is indeed true. ��
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Part (i) of Theorem 4 in [10] states that the nonlinearity Nf of an mth-order
correlation immune function f on Vn satisfies Nf ≤ 2n−1−2m, when m > 1

2n−1.
Our Theorem 6 represents an improvement on the result in [10], especially for
the case of m ≥ 0.6n − 0.4.

As a consequence of Theorem 5 or Theorem 6, a correlation immune function
that achieves the maximum nonlinearity for such a function, also satisfies all the
properties of plateaued function, as discussed in Section 4. As a result, by taking
into account Theorem 2, we have

Corollary 1. Let f be an mth-order correlation immune function on Vn. If
0.6n − 0.4 ≤ m ≤ n − 2, then Nf ≤ 2n−1 − 2m+1, where the equality holds if
and only if f is also a 2(n−m− 2)th-order plateaued function or the equality in
Theorem 2 holds, i.e.,

∑2n−1
j=0 ∆2(αj) = 2n+2m+4.

An (n,m, t)-resilient function is an n-input m-output function or mapping F
with the property that it runs through every possible output m-tuple an equal
number of times when t arbitrary inputs are fixed and the remaining n−t inputs
runs through all the 2n−t input tuples once. The concept was introduced by Chor
et al in [3] and independently, by Bennett et al in [1]. Comparing the definition
of resilient functions with that of correlation immune functions, one can see
that an (n, 1, t)-resilient function coincides with a balanced tth-order correlation
immune function on Vn. In this context, Theorem 1 of [15] is of special interest
to practitioners alike, as it shows that each non-zero linear combination of the
component functions of an (n,m, t)-resilient function is also a balanced tth-order
correlation immune function on Vn, giving rise to 2m − 1 distinct, balanced tth-
order correlation immune functions in total.

To close this section, we point out a result which follows from Theorem 2 of
[10] and Theorem 2 in this paper.

Corollary 2. Let f be an (n, 1,m)-resilient function, where 1
2n−2 < m ≤ n−3.

Then the nonlinearity Nf of f satisfies Nf ≤ 2n−1 − 2m+1, where the equality
holds if and only if f is also a 2(n − m − 2)th-order plateaued function or the
equality in Theorem 2 holds, i.e.,

∑2n−1
j=0 ∆2(αj) = 2n+2m+4.

7 Tightness of the Upper Bound

As Theorem 6 represents an improved upper bound on the nonlinearity of all
the correlation immune functions including both balanced and unbalanced ones,
we are further interested in the question as to whether the upper bound is tight
or not. It turns out that the question can be answered in an affirmative way
for balanced correlation immune functions. The approach we take is to actually
demonstrate the existence of mth-order correlation immune, balanced functions
on Vn, whose nonlinearity Nf satisfies Nf = 2n−1 − 2m+1.

We note that [11] is the earliest paper to study the nonlinearity of cor-
relation immune functions. Of particular importance are Theorems 9 and 14
in [11] which happen to be also relevant to the current work. Theorem 9 of
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[11] proved the equivalence of two different methods for constructing correlation
immune functions, while Theorem 4 in the same paper showed how to obtain
highly nonlinear correlation immune functions. Let integers n and m satisfy
m + 2 ≥ 2n−m−2 and n ≥ 16. For such n and m, there exist 2n−m−2 non-
zero vectors in Vm+2, say γ0, γ1, . . . , γ2n−m−2−1, such that HW (γj) ≥ m + 1,
where j = 0, 1, . . . , 2n−m−2 − 1. Define a mapping P from Vn−m−2 to Vm+2
such that P (Vn−m−2) = {γ0, γ1, . . . , γ2n−m−2−1}, where P (Vn−m−2) = {P (δ)|δ ∈
Vn−m−2}. Based on P , we construct a function f on Vn by f(x) = f(y, z) =
P (y)zT where x = (y, z), y ∈ Vn−m−2 and z ∈ Vm+2. By using Theorems 9 and
14 of [11], modifying the relevant parameters accordingly, and fixing t to 1, we
can construct an (n, 1,m)-resilient (balanced) function f whose nonlinearity Nf

reaches the upper bound of 2n−1 − 2m+1.
As a concrete example, let n = 9 and m = 5. Then m + 2 ≥ 2n−m−2.

Set γ0 = (1, 1, 1, 1, 1, 1, 1), γ1 = (1, 1, 1, 1, 1, 1, 0), γ2 = (1, 1, 1, 1, 1, 0, 1) and
γ3 = (1, 1, 1, 1, 0, 1, 1). Then each γj ∈ V7 and HW (γj) ≥ 6. Define a mapping P
from V2 to V7 such that P (0, 0) = γ0, P (0, 1) = γ1 P (1, 0) = γ2 and P (1, 1) = γ3.
Based on P , we construct a function f on V9 by f(x) = f(y, z) = P (y)zT where
x = (y, z), y ∈ V2 and z ∈ V7. Theorems 9 and 14 in [11] tell us that f is a 5th-
order correlation immune function on V9, and the nonlinearity Nf of f achieves
Nf = 28 − 26 = 192, the highest possible value for such a function. Since each
γj is non-zero, f is balanced. One can verify that the function f takes the form
of

f(y, z) = y1z6 ⊕ y2z7 ⊕ y1y2(z5 ⊕ z6 ⊕ z7)
⊕z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

where y = (y1, y2) and z = (z1, z2, z3, z4, z5, z6, z7).
The above discussions indicate that the upper bound (2n−1−2m+1) is indeed

tight for balanced correlation immune functions. While we have not been able
to identify whether the bound is also tight for unbalanced correlation immune
functions, its implication would be marginal, due to the fact that unbalanced
correlation immune functions have found little use in practice.

To close this section, let us note that in [13], an unbalanced 3rd-order cor-
relation immune function on V6 whose nonlinearity achieves 25 − 23 = 24 is
constructed. This particular function does not contradict Theorem 5 or Theo-

rem 6, as the specific parameters n = 6 and m = 3 satisfy neither
(

n
m + 1

)
>

22n−2m−2 nor m ≥ 0.6n − 0.4.

8 Concluding Remarks

Three separate research groups, Sarkar and Maitra, Tarannikov [13], and Zheng
and Zhang, have apparently considered the same question on the upper bound
on nonlinearity of correlation immune functions, independently of one another.
All three groups submitted their research results to CRYPTO2000, although
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only Sarkar and Maitra’s got accepted. Our current paper contains essentially
the same research results included in our CRYPTO2000 submission, minus those
that happened to overlap results in Sarkar and Maitra’s CRYPTO2000 paper.

Theorem 6 leaves open as to whether the condition of 0.6n−0.4 ≤ m ≤ n−2
can be relaxed to 1

2n−1 < m ≤ n−2 where n > 6. We have recently successfully
solved this problem [17].

It would also be interesting, albeit purely from a theoretical point of view,
to examine whether the bound Nf = 2n−1 −2m+1, where m ≥ 0.6n−0.4, is also
tight for unbalanced mth-order correlation immune functions, and if it is, how
to construct such functions.
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