Reasoning about Composition Using
Property Transformers and Their Conjugates

Michel Charpentier! and K. Mani Chandy?

! University of New Hampshire
Computer Science Department
charpov@cs.unh.edu
2 California Institute of Technology
Computer Science Department
mani@cs.caltech.edu

Abstract. Compositional design is concerned with both constructing
systems by composing components and with deconstructing systems into
proposed sets of components. In bottom-up design, engineers prove sy-
stem properties given properties of components and a compositional
structure. In top-down design, they propose properties of components
and a compositional structure given system properties. In this paper we
show how the theory of predicate transformers, which has been used
so successfully in sequential programming, can be applied to composi-
tional design of systems. The rules of composition we study are more
general than the rules employed in sequential programming, and the sy-
stems we study are not limited to programs. We exploit theorems about
weakest and strongest solutions to equations to obtain a collection of
useful predicate transformers, and then we exploit the theory of con-
jugate transformers to obtain more useful transformers. We show how
these transformers are useful for both bottom-up and top-down design.

1 Motivation

1.1 Composition and Compositional Properties

Composition is the most fundamental operation in design. Designers of space ve-
hicles, buildings and programs have common concerns: How to compose systems
from components and how to partition systems into components. Compositional
design offers the hope of managing complexity by avoiding unnecessary detail:
systems designers prove properties of systems given properties, but not detailed
implementations, of components.

We introduce an informal concept of compositional properties to motivate
our exploration, and define terms precisely later. Compositional properties are
those classes of properties that allow designers to deduce system properties from
component properties using simple rules. For example, mass is a compositional
property because the mass of a system can be deduced in a simple way from
the masses of components: the system mass is the sum of component masses. By

J. van Leeuwen et al. (Eds.): IFIP TCS 2000, LNCS 1872, pp. 580-595] 2000.
© Springer-Verlag Berlin Heidelberg 2000

Reasoning about Composition 581

contrast, temperature does not appear to be a compositional property because
the temperature of a system depends in very complex ways on the shapes, masses,
insulation properties, power consumption, locations of the components, etc.

Designers have to compute properties of composed systems given properties
of components, whether the properties are compositional or not. The challenge
is to develop theories that help designers prove system properties they need from
component properties.

In this paper, we restrict ourselves to properties that are predicates on sy-
stems. We explore properties that are compositional in the following sense: we
can prove that a property holds for a system given that the property holds for
some or all of its components. In later papers we propose to explore other kinds
of compositional properties.

In our paper, systems are abstract entities. They are not necessarily programs
and they may not have “states” or “computations.” We consider composition
operators that have certain algebraic properties, such as associativity, and we
explore theorems that are derived solely from these properties. Our goal is to
explore composition in the abstract as opposed to studying how composition is
used in constructing specific kinds of systems.

The simplest rules are those that establish that a property X holds for a sy-
stem given that (i) property X holds for at least one component, or (ii) property
X holds for all components. Therefore, in this paper, we restrict attention to two
kinds of compositional properties: existential properties and universal properties.
A property is an existential property exactly when, for all systems, a system has
the property if there exists a component of the system that has the property. A
property is a universal property exactly when, for all systems, a system has the
property if all components of the system have the property.

1.2 An Introduction to Property Transformers for Composition

We motivate our exploration of predicate transformers by a few examples, and
then develop the theory.

Questions about the Weakest Existential Transformer. Consider the
following specification S for a component F': All systems that have F' as a com-
ponent must have a property X.

We postulate that any system is a component of itself. Since F' is a component
of F it follows that F itself must have property X. If X is an existential property,
then from the definition of existential properties it follows that X holds for all
systems that contain F' as a component. Therefore, if X is an existential property,
the given specification S is equivalent to the simpler specification: X holds in F'.
What if property X is not existential?

Suppose we can define a predicate transformer WE where WE.X is an exi-
stential property stronger than X. If we can demonstrate that component F
has existential property WE. X, then any system that includes component F' also
has property WE.X, and therefore also enjoys the weaker property X. Let S’ be

582 M. Charpentier and K.M. Chandy

the following specification of F: WE.X holds in F. From the above argument, it
follows that specification S’ is stronger than specification S.

Examples of the kinds of questions that we wish to explore are the follo-
wing. For a given property X, is there a weakest existential property at least as
strong as X7 And, if this weakest property exists and we define WE. X to be this
property, then are specifications S’ and S equivalent?

Questions about the Strongest Existential Transformer. Next, consider
a dual set of questions. Given that system F has property X, what properties
can we deduce about all systems that have F' as a component? If X is existential,
then all systems that have F' as a component also have property X. But, what
if X is not existential?

Suppose we can define a predicate transformer SE where SE. X is an existential
property weaker than X. If F has property X then it also has the weaker property
SE. X and, since SE.X is existential, all systems that contain F' as a component
also satisfy SE.X. The obvious question to explore is: Can we define SE.X to be
the strongest existential property weaker than X7 And if we can, is SE.X the
strongest property that holds for all systems that contain F' as a component?

Questions about the Conjugate Weakest Existential Transformer. Now,
consider an engineer designing a system top down. The designer is given the spe-
cification that the system must have property X. The designer asks the question:
Can I restrict myself to considering only those components that have a property
Y? In other words, can we prove that any system that contains a component
that does not have property Y also does not have property X? We will show
that the conjugate of the weakest existential transformer is helpful in answering
this question.

Questions about Universal Transformers. We also consider the analogous
case for universal properties. We explore the following question: Is there a wea-
kest property Y such that, if all components of any system have property Y,
then the system has property X7 If X is a universal property and all compo-
nents have property X then the system itself has property X. So, since Y must
be at least as strong as X, Y is the same as X. What if X is not universal?

We can introduce a predicate transformer WU with the requirement that
WU. X is universal and stronger than X. If we can then prove that all components
of a system have property WU.X then we can conclude that the system enjoys
this property and hence also enjoys the weaker property X.

Can we require that WU.X be the weakest universal property stronger than X7
We can show that we cannot do so because there does not exist, in general, a
weakest universal property stronger than X. What are good ways of defining
WU, then? We do not have answers to this question.

In the main body of this paper, we explore similar questions about strongest
universal transformers and their conjugates.

Reasoning about Composition 583

2 Terminology and Notations

2.1 Composition

We postulate a composition operator denoted by o and we restrict ourselves to
systems built from a finite number of applications of that operator. We assume
that o is associative. We do not assume other properties such as symmetry or
idempotency. We do not interpret systems, and we do not consider how systems
are constructed by composing elemental or atomic systems. All that is relevant
in this paper is that systems can be composed to obtain systems.

We postulate the existence of a binary relation / and we only consider sy-
stems FoG for those components F' and G for which F/G holds. We assume
that F\/G denotes that F' can be composed with G (in that order).

We assume that if the system FoGoH can be constructed, then it can be
constructed by first composing F' with G and then composing the resulting
system with H, or by first composing G with H and then composing the resulting
system with F' on the left. Specifically, we assume the following property of 1/,
for any F, G and H:

F\/G A (FoG)\/JH = G/H N F\/(GoH) .

We assume the existence of a UNIT component that satisfies the following
axiom for all systems F:

UNIT\/F A F\/UNIT A (UNIToF = FoUNIT=F) . (1)

For some theorems, we need the additional axiom that the unit system cannot
have non-unit components:

(FoG = UNIT) = (F = UNIT)A (G = UNIT) . (2)
Most results presented in this paper do not require this additional axiom. Ho-
wever, some results do. These results are marked with a ® sign.
2.2 Membership Relation
We introduce a specific notation to denote that a system F is part of a system G:

FAaG = (3H,K : H\/F AN HoF\/K : G = HoFoK) .

Note that, because of the axiom () on the UNIT element, < is a reflexive
operator and UNIT < F is true for any F'.

2.3 Properties and Specifications

Properties are point-wise predicates on systems. We treat a property as boolean-
valued function with a single argument of type system. We use dot notation to
denote function application, as in f.x denotes the application of function f to x.

584 M. Charpentier and K.M. Chandy

Therefore, for any property X and any system F', the notation X.F denotes
the boolean: system F' has property X. Following [13], we use square brackets
to denote that a predicate is “everywhere true”. For a property X, [X] is the
boolean: property X holds in all systems.

We introduce two properties that are specific to the UNIT component,
UNIT- (“to be the UNIT”) and its negation UNIT. (“to be different from
the UNIT”):

A

UNIT- . F £ (F=UNIT) and UNIT,.F £ (F # UNIT) .

2.4 Bags of Colored Balls

In order to illustrate the ideas presented in this paper, we use a simple model
of components. In this model, systems are bags of colored balls. Composition
corresponds to bag-union and the UNIT element is the empty bag. Note that
this bag model satisfies axiom (). Therefore, properties marked with ® can be
used when reasoning on this model.

Bags can always be composed (i.e., the relation 4/ is always true) and com-
position is symmetric (Abelian monoid), but we do not rely on these additional
properties of the model for they may not be true of more interesting models.
For instance, sequential composition of programs is not symmetric and parallel
composition of processes may not always be possible (for example, if a process
references a local variable from another process).

3 Existential and Universal Properties

3.1 Existential Properties

A property X is existential (denoted by the boolean exist.X) if and only if X
holds in all systems that contain a component that satisfies X:

erist X = (VF,G:F\/G:X.FVX.G= X .FoG) .
The following results can be proved about existential properties:

exist. X A ezistY = exist. (X NY),
exist. X A exist.Y = exist. (X VY),
exist. X = (X . UNIT = [X]),
exist. UNIT, © .

We define a function guarantees, from pairs of properties to properties. The
property X guarantees Y holds for a system F' if and only if, for all systems G
that contain F' as a component, if X holds for G then Y also holds for G:

X guarantees Y . F = (VG:F<1G:X.G=>YG) .

Reasoning about Composition 585

Proposition 1 For all properties X and Y,
exist. (X guarantees V) .

Thus, guarantees provides us with a systematic way of building existential
properties from other kinds of properties. The existential properties described
with guarantees have been used successfully in compositional specifications and
proofs of distributed systems [7].

3.2 Universal Properties

A property X is universal (denoted by the boolean univ.X) if and only if X is
true in all systems built from components all of which satisfy X:

wniv.X = (VF,G:F/G:X.FAX.G= X .FoG) .
From the definitions of exist and univ, any existential property is also universal:
exist. X = univ. X .
Moreover, the following properties can be proved:

univ.X A univ.Y = univ. (X AY),
univ.X A exist.Y = univ. (X VY),
ungv. UNIT- .

3.3 All-Components and Some-Component Properties

We define two additional forms of composition as the duals of existential and
universal composition. A property is all-components if and only if its negation
is existential:

all-c. X = exist.(—X) .

Unfolding the definition of exist, we find that a property is an all-components
property if and only if, when it holds for any system, it holds for all components
of that system:

all-c X = (VF,G:F\/G:X . FoG = X.FAF.G) .

In the same way, we define some-component properties as the duals of uni-
versal properties:

some-c.X = univ.(-X) .

A property is a some-component property if and only if, when it holds for any
system, it holds for at least one component of that system:

some-c.X = (VF,G:F/G:X .FoG= X.FVFQG) .

Existential and universal properties are used in bottom-up design. Their dual
are used in top-down design.

586 M. Charpentier and K.M. Chandy

— Bottom-up. Given components that have existential or universal properties,
designers can deduce properties of systems composed from these components
using very simple rules.

— Top-down. Given that a system should satisfy an all-components property,
designers know that they must design all components to also satisfy that
property. Likewise, given that a system should have a some-component pro-
perty, designers know that they must design at least one component to have
that property.

Of course, systems may be specified in terms of properties that are not exi-
stential, universal, all-components or some-component. However, as shown in the
next sections, any property can be related in a systematic way to some properties
that have one of these characteristics.

3.4 Examples of Properties

In the bags of colored balls model, the following properties are examples of
existential, universal, all-components and some-component properties:

exist . (at least one blue ball in the bag) (3)

exist . (at least two balls of different colors in the bag)

no ball in the bag is blue) (4)

un .

univ . (all the balls in the bag are red, or at least two are blue)

(
(
(
all-c . (all the balls in the bag are blue, or all the balls are red)
(
(
(

all-c . (there are at most three balls in the bag)

some-c . (the bag contains more blues balls than red balls) (5)

some-c . (exactly one ball in the bag is red)

Note that (B) is also some-component, (d) is also all-components and (B
is also universal. All other example properties only have the stated characte-
ristic (besides the fact that any existential property is universal and any all-
components property is some-component).

4 Property Transformers for Composition

4.1 Extreme Solutions of Equations in Predicates

As claimed in sect. Bl conjunctions of universal properties are universal and con-
junctions and disjunctions of existential properties are existentiaﬂ. An equation
in predicates has a weakest solution if and only if the disjunction of all soluti-
ons is itself a solution, and in this case the weakest solution is that disjunction.
Likewise, an equation in predicates has a strongest solution if and only if the
conjunction of all solutions is itself a solution, and in this case the strongest
solution is that conjunction [13].

! In sect. B, junctivity is stated finitely for convenience, but actually holds for an
infinite number of predicates.

Reasoning about Composition 587

4.2 The Property Transformer WE
We consider the following equation in Z, parametrized by predicate X:
Z:|Z = X]| N exist.Z . (6)

A property Z is solution of (@) if and only if it is existential and stronger than
X. Since disjunctions of existential properties are existential, equation () has a
weakest solution, and we denote that weakest solution by WE.X:

WE.X = (3Z:[Z= X]|AewistZ:Z) .

For any property X, WE.X is the weakest existential property stronger than X.

Suppose we wish to design a system F' so that any system that has F' as
a component enjoys property X. What properties must system F have? The
next theorem tells us that the necessary and sufficient specification of such a
component F' is that it satisfies WE. X .

Proposition 2 WE. X is the weakest property of a component that ensures that
any system that contains that component will enjoy property X :

(VF,G:F<4G:Y.F=XG) = [Y = WE.X] .

This is a consequence of the following proposition that states that, for a com-
ponent, to bring the property X to any system containing the component, or to
satisfy WE.X are equivalent.

Proposition 3 WX .F = (VG:F<G:XG) .
Proposition Bl is proved in [§]. The following elementary properties hold as well:
VE.X = X],
exist X = [WE.X = X],
ME.(X A\Y) = WE.X AVWE.Y], (7
(X =Y]=[WE.X = WEY], (8)
WE.X] = [X] .

Property (@) states that the transformer WE is conjunctive. It can be shown that
WE is not disjunctive. Property () expresses that WE is monotonic.

The property transformer WE can be used in two ways. Firstly, it provides
us with an abstract way of expressing that a component, all by itself, ensures a
system property X. Moreover, proposition B can be used to derive proof rules
for properties of the form WE.X for a specific formalism. For instance, proof
rules for UNITY logic are used in the correctness proof of a distributed system
in [7]. Secondly, properties such as () and () can be used to reason about
existential properties in general, without the inconvenience of a quantification
over components. For instance, using proposition [B] it is easy to see that

[X guarantees Y = WE.(X = Y)] .

Then, it is easier to reason on WE to deduce properties of guarantees (such as
existentiality or transitivity).

588 M. Charpentier and K.M. Chandy

4.3 The Property Transformer SE

The property transformer WE was defined using the fact that disjunctions of exi-
stential properties are existential. Because conjunctions of existential properties
also are existential, the equation Z : [X = Z] A exist.Z has a strongest solution
SE.X:

SEX = (VZ:[X = Z|Aexist.Z : Z) .

For any property X, SE.X is the strongest existential property weaker than X.
Among interesting properties concerning SE, we can prove:

[X = SE.X],
exist X = [SE.X = X],
[E.(XVY) = SEX VY],
[X =Y]=[EX = SEY],
[SE.X] = (X . UNIT)® . (9)

Property (@) has an interesting intuitive explanation. SE.X holds for all sy-
stems that have at least one component that satisfies X. Since all systems have
UNIT as a component, for all properties X that hold for UNIT, all systems
have property SE.X. So, as expected, designers do not get useful information
from knowing that UNIT is a component of their systems.

Proposition 4 SE.X is the strongest property that can be deduced of any system
built from components, one of which, at least, satisfies X :

WF,.G:F<G:XF=YG) = [EX=Y].

4.4 The Property Transformer SU

From sect. 3] we know that conjunctions of universal properties are universal.
However, disjunctions of universal properties are not always universal. Therefore,
we cannot define a transformer WU in the same way as we defined WE. Actually,
it can be shown [8] that some properties do not have a weakest universal property
stronger than them. Nevertheless, because conjunctions of universal properties
are universal, the equation Z : [X = Z] A univ.Z has a strongest solution SU.X:

VX = (VZ:[X = Z|Auniv.Z - Z) .
For any property X, U.X is the strongest universal property weaker than X.
Because SE.X is universal (since it is existential) and weaker than X, we can

deduce:

[(U.X = SE.X] .

Reasoning about Composition 589

Among interesting properties concerning SU, we can prove:

(X = .X],
univ.X = [U.X = X],
X =Y]=[VU.X=3Y]
[U.X] = (X . UNIT)® . (10)

Note that property () is only an implication because SU.X is, in general,
strictly stronger than SE.X. Also, U is monotonic but neither conjunctive, nor
disjunctive.

If all components of a system satisfy X, they also satisfy SU.X and, be-
cause . X is universal, the whole system satisfies SU.X. Moreover, U.X is the
strongest property that can be deduced this way.

Proposition 5 U.X is the strongest property that can be deduced of any system
built from components that all satisfy X :

(VF,G,H,--: F\/G N FoGy/H A FoGoH,/- - - :
XFANXGANXHAN---=Y .FoGoHo---)

4.5 Example

We consider the following question: What must be proved on a bag of balls to
ensure that any system that contains that bag, if it contains at least one red
ball, contains at least two balls of different colors? Formally, the specification of
the component is that any system that contains that component satisfies:

(at least 1 red ball) = (at least 2 colors) .
Then, from proposition [, we know that the specification for the component is:
WE.((at least 1 red ball) = (at least 2 colors)) . (11)

In this section, we show how an explicit formulation of property (Il can be
calculated. The calculation relies on the following proposition, proved in [8]:

Proposition 6 [X = UNIT,.] Vv WE.(UNIT-V X) = WE.X|® .
Then, we can calculate an equivalent formulation of ({IJ):

WE.((at least 1 red ball) = (at least 2 colors))
= {Predicate calculus}
WE.(UNIT- V (at least 1 non red ball))

[Assume there exist red balls, hence
| ~[(at least 1 non red ball) = UNITy], apply prop.

590 M. Charpentier and K.M. Chandy

WAE.(at least 1 non red ball)
= {exist.(at least 1 non red ball)}
(at least 1 non red ball)

Therefore, we deduce that the necessary and sufficient specification of the
component is that it should contain at least one non-red ball. In other words,
to ensure that any system that uses F' as a component will have at least two
balls of different colors provided it has at least one red ball, it is sufficient and
necessary that F' contains at least one non-red ball. This is consistent with our
intuition. However, instead of guessing the desired property of F' and then prove
that it is both necessary and sufficient, we have calculated the property. This
provides us with both the property and the proof at the same time, and avoids
dealing explicitly with the universal quantification over components.

5 Conjugates of Property Transformers

Any predicate transformers has a unique conjugate. Duality allows us to easily
deduce properties of a predicate transformer from properties of its conjugate. In
this section, we focus on the conjugates of WE, SE and SU.

5.1 Conjugate of a Predicate Transformer

Let f be a predicate transformer. Its conjugate, denoted by f* is defined by [13]:
frX = =f.(=X) .

Duality provides us with a way of deducing properties of f* from properties
of f, and vice-versa. For instance, f is monotonic iff f* is monotonic. In the same
way, f is conjunctive (resp. disjunctive) iff f* is disjunctive (resp. conjunctive).

5.2 The Property Transformer WE*

We define WE* as the conjugate of the property transformer WE:
WE*. X = -WE.(-X) .

Because the dual of existential properties are all-components properties, we
can easily deduce that WE*.X is the strongest all-components property weaker
then property X. Moreover, applying the duality principle to proposition [2, we
can deduce the following proposition.

Proposition 7 WE*.X is the strongest property that can be deduced of all com-
ponents of any system that satisfies X :

VF,.G:F<1G: XG=YF) = [WE"X=Y].

Reasoning about Composition 591

Duality can also be applied to the basic properties of WE to obtain the following
properties of WE*:

[X = WE*.X],
all-c. X = [WE".X = X],
WE*.(XVY) = WE".X VWE".Y],
X =Y]= [WE".X = WE"Y],
[X = false] = [WE*. X = false] .

5.3 The Property Transformer SE*

In the same way as what is done in the previous section, we can study the
conjugate of the property transformer SE. Applying duality, SE*.X is the weakest
all-components property stronger than X. From proposition [we obtain:

Proposition 8 SE*.X is the weakest property that must be proved on a system
to ensure that all components of the system satisfy X :

VF,G:F<4G:Y.G=XF) = [Y =¥ X] .

5.4 The Property Transformer SU*

SU*. X, as the conjugate of SU. X, is the weakest some-component property stron-
ger than X. By duality of proposition

Proposition 9 SU*.X is the weakest property that must be proved on a system
to ensure that at least one component of the system satisfies X :

(VF,G,H,---: F\/GANFoG\/H AN FoGoH+/---:
Y . FoGoHo---= X.FVXGVXHV---)
=Y = U".X] .

5.5 Comparison of the Six Transformers

The following table summarizes the intuitive interpretation for each one of the
six property transformers that we have defined. Each transformer corresponds
to a different view of composition:

592 M. Charpentier and K.M. Chandy

WE.X [What must be proved on a component to ensure that any
system that contains that component satisfies X.

SE.X |What can be deduced of any system that contains at least
one component that satisfies X.

U.X |What can be deduced of any system that contains only
components that satisfy X.

WE*.X|What can be deduced on all components of any system
that satisfies X.

SE*.X |What must be proved on a system to ensure that all com-
ponents satisfy X.

U*. X [What must be proved on a system to ensure that at least
one component satisfies X.

5.6 Example

We consider another example that uses the bags of balls model: If a system
contains exactly one ball and that ball is blue, what can we tell from its compo-
nents? Using proposition [[] we can claim that all components in such a system
must satisfy:

WE™.(exactly one ball and the ball is blue) . (12)
Applying duality to proposition [6, we deduce:
[X = UNIT_] V [WE*.(UNIT: A X) = WE*.X]® .
We can then calculate and equivalent formulation for (I2):

WE*.(exactly one ball and the ball is blue)
= {Predicate calculus}

WE*.(UNIT, A (all balls are blue) A (at most one ball))
= {Apply the dual of prop. @I}

WE*.((all balls are blue) A (at most one ball))

| Both properties are all-components and a conjunction of all-components
properties is an all-components property, for which [WE*.X = X]|

(all balls are blue) A (at most one ball)

This is consistent with our intuition: If a system contains only one ball and the
ball is blue, then all its components must contain only blue balls and at most
one ball. Note that the condition we obtain is no guaranteed to hold in a system
even if it holds in all its components because the property “at most one ball” is
not universal.

Reasoning about Composition 593

6 Conclusions

This paper reports on an ongoing exploration of using ideas from the mathema-
tics of program construction to develop a theory of compositional design. This
paper shows how we exploit concepts from the axiomatic semantics of programs
for designing systems. The specific constructs that we investigated in this paper
are predicate transformers and their conjugates. The only assumptions we made
about the composition operator were that it was associative and that it had
a unit element. A sizable body of theory about transformers can be developed
from only these limited assumptions.

We started this study because of our conviction of the importance of composi-
tion in systems design. We believe that systems, and especially software systems,
should more and more be constructed from generic, “off the shelf”, components.
This means that reuse of systems and components is going to be a central issue.

Reuse of existing systems and description of generic components require a
specification language that is abstract enough to be able to specify only the
relevant aspects of a system and to hide operational details as much as possible.
For this reason, we depart from the process calculus approach, such as in CSP or
CCS, and focus on logical specifications. Especially, we are interested in applying
our approach to concurrent systems specified with temporal logics.

Of course, more abstract specifications lead to more difficulties in terms of
composition. However, a great amount of work has been done in relation with the
composition of concurrent systems described in terms of temporal logic specifi-
cations. Among the logics that were considered, we can cite the linear temporal
logic [15] and some variants [14], TLA [2] or UNiTY [QIOTTI2/[16]. It should be
noted that all these works, and even more general studies done at a semantic [1
4] or syntactic [3] level, rely on the same fundamental hypothesis that systems
are described in terms of states and computations. More precisely, the key point
that allows systems to be composed is always the same: Components are speci-
fied in terms of open computations, i.e., infinite traces that are shared with the
environment.

In this paper, we adopt a dual perspective on the question of composition.
We do not want to consider systems that can always be composed (i.e., that are
specified in such a way that composition is going to work) and we do not rely
on the open computations assumption. Instead, we consider any kind of systems
and look at what happens when they are composed. In this way, we hope to be
able to reason on composition in the abstract and understand its fundamental
issues.

So far, this proposed framework helped us better understand the guaran-
tees operator, which was originally defined in [5], along with existential and
universal properties. It is interesting to note that guarantees, when applied to
temporal logic and reactive systems, gives us a powerful way to combine logi-
cal specifications. Especially, the compositional characteristics (existential) of
X guarantees Y does not depend on properties X and Y. For instance, both the
left-hand side and the right-hand side can be progress properties, which is not

594 M. Charpentier and K.M. Chandy

possible with usual assumption-commitment specifications. This leads to simpler
proofs of composition, as in [7].

Also, the framework emphasizes a symmetry between top-down design and
bottom-up design. Conjugates of predicate transformers allow us to deduce theo-
rems about top-down decomposition from corresponding theorems of bottom-
up composition. We believe that, from a practical point of view, the top-down
problem (identify suitable components) is as important as the more classical
bottom-up problem (deduce system properties).

In this paper we limited our discussion to properties that were existential
or universal or conjunctions of such properties. We have also shown elsewhere
[6]7] that nice proofs of correctness for significant concurrent programs can be
developed using these concepts coupled with a logic such as UNITY. In this pa-
per we were not concerned with showing how these concepts could be used for
programming; instead, we were primarily concerned with showing how concepts
from programming can be applied to broad classes of systems in which composi-
tion has simple properties such as associativity and existence of a unit element.

Much further work needs to be done to develop an axiomatic semantics of a
theory of compositional design. We have only begun to explore the area. Theo-
rems that derive from further assumptions about the compositional operator
must be developed. Properties that are not necessarily predicates on systems
should be studied. In general, a property is a function from systems to some
type that is not limited to booleans. A theory should be able to reason about
properties such as mass and energy consumed. We believe that it is possible to
construct axiomatic theories that help in understanding the basic principles of
compositional design.

References

1. Martin Abadi and Leslie Lamport. Composing specifications. ACM Transactions
on Programming Languages and Systems, 15(1):73-132, January 1993.

2. Martin Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions
on Programming Languages and Systems, 17(3):507-534, May 1995.

3. Martin Abadi and Stephan Merz. An abstract account of composition. In Jivri Wie-
dermann and Petr Hajek, editors, Mathematical Foundations of Computer Science,
volume 969 of Lecture Notes in Computer Science, pages 499-508. Springer-Verlag,
September 1995.

4. Martin Abadi and Gordon Plotkin. A logical view of composition. Theoretical
Computer Science, 114(1):3-30, June 1993.

5. K. Mani Chandy and Beverly Sanders. Reasoning about program composition.
Submitted for publication.
http://www.cise.ufl.edu/~sanders/pubs/composition.ps.

6. Michel Charpentier and K. Mani Chandy. Examples of program composition
illustrating the use of universal properties. In J. Rolim, editor, International
workshop on Formal Methods for Parallel Programming: Theory and Applicati-
ons (FMPPTA’99), volume 1586 of Lecture Notes in Computer Science, pages
1215-1227. Springer-Verlag, April 1999.

10.

11.

12.

13.

14.

15.

16.

Reasoning about Composition 595

Michel Charpentier and K. Mani Chandy. Towards a compositional approach
to the design and verification of distributed systems. In J. Wing, J. Woodcock,
and J. Davies, editors, World Congress on Formal Methods in the Development of
Computing Systems (FM’99), (Vol. I), volume 1708 of Lecture Notes in Computer
Science, pages 570-589. Springer-Verlag, September 1999.

Michel Charpentier and K. Mani Chandy. Theorems about composition. Technical
Report CS-TR-99-02, California Institute of Technology, January 2000. 29 pages.
Pierre Collette. Design of Compositional Proof Systems Based on Assumption-
Commitment Specifications. Application to UNITY. Doctoral thesis, Faculté des
Sciences Appliquées, Université Catholique de Louvain, June 1994.

Pierre Collette. An explanatory presentation of composition rules for assumption-
commitment specifications. Information Processing Letters, 50:31-35, 1994.
Pierre Collette and Edgar Knapp. Logical foundations for compositional verifica-
tion and development of concurrent programs in UNITY. In International Confe-
rence on Algebraic Methodology and Software Technology, volume 936 of Lecture
Notes in Computer Science, pages 353-367. Springer-Verlag, 1995.

Pierre Collette and Edgar Knapp. A foundation for modular reasoning about safety
and progress properties of state-based concurrent programs. Theoretical Computer
Science, 183:253-279, 1997.

Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and program seman-
tics. Texts and monographs in computer science. Springer-Verlag, 1990.

J.L. Fiadeiro and T. Maibaum. Verifying for reuse: foundations of object-oriented
system verification. In I. Makie C. Hankin and R. Nagarajan, editors, Theory and
Formal Methods, pages 235—257. World Scientific Publishing Company, 1995.
Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1992.

Rob T. Udink. Program Refinement in UNITY-like Environments. PhD thesis,
Utrecht University, September 1995.

	Motivation
	Composition and Compositional Properties
	An Introduction to Property Transformers for Composition

	Terminology and Notations
	Composition
	Membership Relation
	Properties and Specifications
	Bags of Colored Balls

	Existential and Universal Properties
	Existential Properties
	Universal Properties
	All-Components and Some-Component Properties
	Examples of Properties

	Property Transformers for Composition
	Extreme Solutions of Equations in Predicates
	The Property Transformer ensuremath {@mathrm {Wtmspace -thinmuskip {.1667em}tmspace -thinmuskip {.1667em}E}}
	The Property Transformer ensuremath {@mathrm {Stmspace -thinmuskip {.1667em}E}}
	The Property Transformer ensuremath {@mathrm {Skern -2ptU}}
	Example

	Conjugates of Property Transformers
	The Property Transformer WE*
	The Property Transformer SE*
	The Property Transformer SU�
	Comparison of the Six Transformers
	Example

	Conclusions

