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Abstract. The unweighted k-edge-connectivity augmentation problem
(kECA for short) is defined by ”Given a σ-edge-connected graph G =
(V, E), find an edge set E′ of minimum cardinality such that G′ = (V, E∪
E′) is (σ+δ)-edge-connected and σ+δ = k”, where E′ is called a solution
to the problem. Let kECA(S,SA) denote kECA such that both G and
G′ are simple.
The subject of the present paper is (σ + 1)ECA(S,SA) (or kECA(S,SA)
with k = σ + 1). Let M be any maximum matching of a certain graph
R(G) whose vertex set VR consists of vertices representing all leaves of
G. From M we obtain an edge set E′

0, with |E′
0| = |M|, such that each

edge connects vertices in distinct leaves of G. Let L1 be the set of leaves
to be created by adding E′

0 to G, and K1 the set of remaining leaves of
G.
The main result is to propose two O(σ2|V | log(|V |/σ)+ |E|+ |VR|2) time
algorithms for finding the following solutions: (1) an optimum solution if
G has at least 2σ + 6 leaves or if |L1| ≤ |K1| and G has less than 2σ + 6
leaves; (2) a 3

2 -approximate solution if |L1| > |K1| and G has less than
2σ + 6 leaves.

1 Introduction

The unweighted k-edge-connectivity augmentation problem (kECA for short) is
described as follows: ”Given a σ-edge-connected graph G = (V, E), find an edge
set E′ of minimum cardinality such that G′ = (V, E ∪ E′) is (σ + δ)-edge-
connected and σ + δ = k.” We often denote G′ as G + E′, and E′ is called
a solution to the problem. Let kECA(*,**) denote kECA with the following
restriction (i) and (ii) on G and E′, respectively: (i) * is set to S if G is required
to be simple, and * is left to mean that G may be a multiple graph; (ii) **
is set to MA if creation of new multiple edges in constructing G′ is allowed,
and is set to SA otherwise. In kECA(*,SA), if G is simple then so is G′, or if
G has multiple edges then any multiple edge of G′ exists in G. As for kECA,
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kECA(*,MA) has mainly been discussed so far. See [3,5,7,8,12,13,20,21,22,23] for
the results. It is natural for us to assume that |V | ≥ σ +2 in (σ +1)ECA(S,SA):
in (σ + 1)ECA(*,SA), we may have |V | ≤ σ + 1.

As related results, kECA(S,SA) for G having no edges was first discussed in
[6], where the problem that is more general than kECA(S,SA) is considered. An
O(|V |+|E|) algorithm for 2ECA(S,SA) can be obtained by slightly modifying the
one given in [3] for 2ECA(*,MA). As for 3ECA(*,SA), [23] proposed an O(|V |+
|E|) algorithm for 3ECA(*,MA), and showed that if |V | ≥ 4 then this algorithm
finds an optimum solution to 3ECA(*,SA). Concerning (σ + 1)ECA(S,SA) with
|V | ≥ σ + 2 for σ ∈ {3, 4}, [15] proposed an O(|V | log |V | + |E|) algorithm.
Other related results have been reported in [14,16]. T. Jordán showed in [10]
that kECA(S,SA) is NP-hard in general, and [2] proposed an O(|V |4) algorithm
for kECA(S,SA) for any fixed k.

The subject of the present paper is (σ + 1)ECA(S,SA), that is, kECA(S,SA)
with k = σ +1. LetM be any maximum matching of the leaf-graph R(G) whose
vertex set VR consists of vertices representing all leaves of G. (The definition of
R(G) is going to be given later). FromM we obtain a certain edge set E′

0, with
|E′

0| = |M|, such that each edge connects vertices in distinct leaves of G. Let L1

be the set of leaves to be created by adding E′
0 to G, and K1 the set of remaining

leaves of G.
The main result of the paper is to propose two O(σ2|V | log(|V |/σ) + |E| +

|VR|2) time algorithms for finding the following solutions for (σ +1)ECA(S,SA):

(1) an optimum solution if G has at least 2σ + 6 leaves or if |L1| ≤ |K1| and G
has less than 2σ + 6 leaves;

(2) a 3
2 -approximate solution if |L1| > |K1| and G has less than 2σ + 6 leaves.

A central concept in solving kECA is a t-edge-connected component of G: a
maximal set of vertices such that G has at least t edge-disjoint paths between
any pair of vertices in the set [22]. A t-edge-connected component whose degree
(the number of edges connecting vertices in the set to those outside of it) is equal
to the edge-connectivity of G is called a leaf. Although (σ + 1)ECA(S,SA) can
be solved almost similarly to general kECA(*,MA), the only difference is that
the augmenting step has to choose a pair of leaves, each containing a vertex such
that they are not adjacent in G. (Such a pair of leaves is called a nonadjacent
pair.) This requires addition of some other characteristics or processes in finding
solutions by means of structural graphs: a structural graph is introduced in [11],
and is used as a useful tool that reduces time complexity in finding a solution
to kECA(*,MA) in [7,13].

This paper adopts the operation, called edge-interchange, in finding a solu-
tion, where it was introduced in [20,21] in order to reduce time complexity of
[22]. A set of two nonadjacent pairs of leaves is called a D-combination if they
are disjoint. The augmenting step in solving (σ + 1)ECA(S,SA) repeats both
choosing a nonadjacent pair of leaves and enlarging a (σ + 1)-edge-connected
component by means of edge-interchange (or an analogous operation). Hence
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obtaining an optimum solution requires finding a maximum set of nonadjacent
pairs of leaves such that any two members in the set form a D-combination and,
therefore, this is reduced to finding a maximum matching of the leaf-graph R(G)
of G. The point of (σ + 1)ECA(S,SA) is that a solution E′ is closely related to
a maximum matching M of R(G).

The paper is organized as follows. Basic definitions and several basic re-
sults on σ-edge-connected componets and leaf-graphs are given in Section 2.
In Section 3, results on maximum matchings of leaf-graphs are briefly mentio-
ned. Edge-interchange operation is explained in Section 4. Section 5 discusses
(σ + 1)ECA(S,SA) when G has less than 2σ + 6 leaves, and Section 6 considers
(σ + 1)ECA(S,SA) when G has at least 2σ + 6 leaves.

All proofs are omitted becase of space limitation.

2 Preliminaries

2.1 Basic Definitions

Technical terms not specified here can be identified in [1,4,9,19]. An undirected
graph G = (V (G), E(G)) consists of a finite and nonempty set of vertices V (G)
and a finite set of undirected edges E(G), where V (G) and E(G) are often
denoted as V and E, respectively. An edge e incident upon two vertices u, v in
G is denoted by e = (u, v) unless any confusion arises. We denote V (e) = {u, v},
or generally V (K) = {u, v ∈ V |(u, v) ∈ K} for a subset K ⊆ E. For disjoint
sets X, X ′ ⊂ V , we denote (X, X ′;G) = {(u, v) ∈ E|u ∈ X and v ∈ X ′},
where it is often written as (X, X ′) if G is clear from the context. We denote
dG(X) = |(X, X;G)|. This is called the degree of X (in G). We set dG(S) = 0
if S = ∅. If X = {v} then dG({v}) is denoted simply as dG(v) and is the total
number of edges (v, v′), v′ 6= v, incident upon v. We often denote dG(S) as d(S)
if G is clear from the context. A path between vertices u and v is often called a
(u, v)-path and denoted by PG(u, v), and is often written as P (u, v) if G is clear
from the context. For two vertices u, v of G, let λ(u, v;G), or simply λ(u, v),
denote the maximum number of pairwise edge-disjoint paths between u and v.

For a set X ⊆ V , let G[X] denote the subgraph having X as its vertex set
and {(u, v) ∈ E|u, v ∈ X} as its edge set. G[X] is called the subgraph of G
induced by X (or the induced subgraph of G by X). Deletion of X ⊆ V from G
is to construct G[V −X], which is often denoted as G−X. If X = {v} then we
often denote G− v for simplicity. Deletion of Q ⊆ E from G defines a spanning
subgraph of G, denoted by G−Q, having E−Q as its edge set. If Q = {e} then
we denote G− e. For a set E′ of edges such that E′ ∩E = ∅, let G + E′ denote
the graph (V, E ∪ E′). If E′ = {e} then we denote G + e.

Let K ⊆ E be any minimal set such that G−K has more components than
G. K is called a separator of G, or in particular a (X, Y )-separator if any vertex
of X and any one of Y are disconnected in G−K. If X = {u} or Y = {v} then it
is denoted as a (u, Y )-separator or a (X, v)-separator, respectively. A minimum
(X, Y )-separator K of G is a (X, Y )-separator of minimum cardinality. Such
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K is often called an (X, Y )-cut or an |K|-cut. It is known that a (u, v)-cut K
has |K| = λ(u, v;G). A minimum separator K of G is a separator of minimum
cardinality among all separators of G, and |K| is called the edge-connectivity
(denoted by σ) of G; particularly we call such K ⊆ E a minimum cut (of G).
G is said to be k-edge-connected if λ(G) ≥ k. A k-edge-connected component
(k-component, for short) of G is a subset S ⊆ V satisfying the following (a)
and (b): (a) λ(u, v;G) ≥ k for any pair u, v ∈ S; (b) S is a maximal set that
satisfies (a). Let ΓG(k) denote the set of all k-components of G. In a graph G
with λ(G) = σ, a (σ + 1)-component S with dG(S) = σ is called a leaf (σ + 1)-
component of G (or a leaf of G, for short). It is known that λ(G) ≥ k if and only
if V is a k-component. Note that distinct k-components are disjoint sets. Each
1-component is often called a component.

Note that we assume that |V | ≥ σ + 2 in (σ + 1)ECA(S,SA), the subject of
the paper.

A cactus is an undirected connected graph in which any pair of cycles share at
most one vertex. A structural graph F (G) of G with λ(G) = σ is a representation
of all minimum cuts of G and is introduced in [11]. We use the term ”nodes of
F (G)” to distinguish them from vertices of G. F (G) is an edge-weighted cactus
of O(|V |) nodes and edges such that each tree edge (an edge which is a bridge
in F (G)) has weight λ(G) and each cycle edge (an edge included in any cycle)
has weight λ(G)/2. Let F (G) be a structural graph of G. Particularly if σ is odd
then F (G) is a weighted tree. (Examples of G and F (G) will be given in Figs. 1
and 2.) Each vertex in G maps to exactly one node in F (G), and F (G) may
have some other nodes, call empty nodes, to which no vertices of G are mapped.
Let ε(G) ⊆ V (F (G)) denote the set of all empty nodes of F (G). Note that any
minimum cut of G is represented as either a tree edge or a pair of two cycle
edges in the same cycle of F (G), and vice versa. Let ρ: V → V (F (G)) − ε(G)
denote this mapping. We use the following notations: ρ(X) = {ρ(v)|v ∈ X} for
X ⊆ V , and ρ−1(Y ) = {v ∈ V |ρ(v) ∈ Y } for Y ⊆ V (F (G)). ρ({v}) or ρ−1({v})
is written as ρ(v) or ρ−1(v), respectively, for notational simplicity. For any cut
(X, V (F (G))−X;F (G)), if summation of weights of all edges contained in the
cut is equal to σ then (ρ−1(X), V −ρ−1(X);G) is a σ-cut of G. Note that the cut
of F (G) consists of either one tree edge or a pair of two cycle edges in the same
cycle of F (G). Conversely, for any σ-cut (X, V −X;G), F (G) has at least one cut
(Y, V (F (G))−Y ;G) in which summation of weight of all edges contained in the
cut is equal to σ, where Y is a node set of F (G) such that ρ(X) = Y −ε(G). Each
(σ + 1)-component S of G is represented as a vertex ρ(S) ∈ V (F (G))− ε(G) in
F (G), and, for any vertex v ∈ V (F (G))− ε(G), ρ−1(v) is a (σ +1)-component of
G. For v ∈ V (F (G)), if summation of weights of all edges that are incident to v in
F (G) equals to σ, then v is called a leaf node (that is a degree-1 vertex in a tree
or a degree-2 vertex in a cycle). Note that, for any leaf node v, ρ−1(v) is a leaf of
G, conversely, for any leaf L of G, ρ(L) is a leaf node of F (G). It is shown that
F (G) can be constructed in O(|V ||E|) time [11] or in O(σ2|V | log(|V |/σ) + |E|)
time [7].
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Two edges e1, e2 are said to be independent if and only if V (e1)∩V (e2) = ∅,
and a set Q ⊆ E is called an independent set or a matching of G if and only if any
pair of edges in Q are independent. An independent set of maximum cardinality
in G is called a maximum matching of G.

Proposition 1. [5] For distinct sets X, Y ⊂ V of any graph G = (V, E),

d(X) + d(Y ) = d(X − Y ) + d(Y −X) + 2|(V −X ∪ Y, X ∩ Y )|, (2.1)

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2|(X − Y, Y −X)|. (2.2)

Let dxe (bxc, respectively) denote the minimum integer no smaller (the ma-
ximum one no greater) than x.

2.2 σ-Components and Leaf-Graphs

Let λ(G) = σ > 0. Let X1, X2 be distinct (σ + 1)-components of G. The pair
{X1, X2} are called an adjacent pair (denoted as X1χX2) if any two vertices
w ∈ X1 and w′ ∈ X2 are adjacent in G, or called a nonadjacent pair (denoted
as X1χX2) otherwise. Let

VC = {v|v represents an individual (σ + 1)-component of G}

and let S(v) ∈ ΓG(σ + 1) denote the one represented by v ∈ VC . Let C(G) =
(VC , EC) be defined by VC and EC = {(v, v′)|v, v′ ∈ VC and S(v)χS(v′)}, and it
is called the component graph of G. Let LF (G) = {X ∈ ΓG(σ+1)|X is a leaf ofG}
and VR = {v|v represents an individual leaf of G} ⊆ VC . Let Y (v) denote the
leaf (σ + 1)-component represented by v ∈ VR. Let R(G) = (VR, ER) be the
subgraph of C(G) defined by ER = {(v, v′) ∈ EC |v, v′ ∈ VR and Y (v)χY (v′)},
and it is called the leaf-graph of G.

Property 1. R(G) is simple.

Let Yi, i = 1, 2, 3, 4, be distinct leaves of G. A set of two nonadjacent pairs
{Y1, Y2}, {Y3, Y4} is called a D-combination if they are disjoint (that is, {Y1, Y2}∩
{Y3, Y4} = ∅). In general, for 2t distinct leaves Yi, i = 1, . . . , 2t, of G with t ≥ 2,
a set of t nonadjacent pairs {Y1, Y2}, . . . , {Y2t−1, Y2t} is called a D-set of G if any
two pairs of the set form a D-combination. Let Y1χ{Y2, Y3} denote that both
Y1χY2 and Y1χY3 hold. A D-combination {{Y1, Y2}, {Y3, Y4}} is called an I-
combination (denoted as {Y1, Y2} 6 {Y3, Y4}) if either Y1χ{Y3, Y4} or Y2χ{Y3, Y4}
holds. If neither {Y1, Y2} 6 {Y3, Y4} nor {Y3, Y4}6 {Y1, Y2} holds then we denote
{Y1, Y2} 6 |{Y3, Y4}.

We first show some basic results on R(G) and leaves of G.

Proposition 2. Suppose that G is simple. Then either |Y | = 1 or |Y | ≥ σ + 2
for any Y ∈ LF (G).
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Since each leaf Y has dG(Y ) = σ, we obtain the next proposition by Propo-
sition 2.

Proposition 3. Suppose that G is simple. If {Y1, Y2} ⊆ LF (G) is an adjacent
pair then |Y1| = |Y2| = 1.

Proposition 4. dR(G)(v) ≥ max{|VR| − (σ + 1), 0} for any v ∈ VR.

u2

u8

u3

u7 u6

u4

u5

u1

Fig. 1. A simple graph G with λ(G) =
3 and |LF (G)| = 4.

v2

v5

v3

v4

v1

Fig. 2. A structural graph F (G) of G
in Fig. 1, where all edge-weights are 3
and none of them are written. In this
case leaves Yi in LF (G) of the graph
G shown in Fig. 1 are represented as
nodes vi of F (G) for i = 1, . . . , 5: it may
happen that G has a node to which no
corresponding leaf of LF (G) exists.

2.3 Examples

Let G = (V, E) with |V | ≥ σ + 2 and λ(G) = σ be any given simple graph.
Let OPT (M) or OPT (S) denote the cardinality of an optimum solution to
(σ+1)ECA(*,MA) or to (σ+1)ECA(S,SA) for G, respectively. For σ = 3, we give
an example such that OPT (S) = OPT (M)+1. For the graph G with |LF (G)| =
4 shown Fig. 1, R(G) is given in Fig. 3. The set of edges {(u1, u3), (u2, u4)} is
an optimum solution to 4ECA(*,MA), while {(u1, u3), (u2, u8), (u3, u7)} is an
optimum solution to 4ECA(S,SA) and, therefore, OPT (S) = 3 = OPT (M) + 1.

3 Maximum Matchings of Leaf-Graphs

One of requirements in finding a solution to (σ+1)ECA(S,SA) or (σ+1)ECA(*,
SA) with σ ≥ 1 is to obtain a largest D-set. Hence, in this section, the cardinality
of a maximum D-set is investigated by considering a maximum matching M of
R(G).
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v2
v3

v4

v1

Fig. 3. The leaf-graph R(G) of G in Fig. 1.

LetM denote any fixed maximum matching of R(G) in the following discus-
sion unless otherwise stated, where we assume that λ(G) = σ ≥ 1.

Proposition 5. |M| satisfies one of the following (1)–(3).

(1) If |VR| ≥ 2σ + 1 or if σ is even and |VR| = 2σ then |M| = b|VR|/2c.
(2) If σ is odd and |VR| = 2σ then

b|VR|/2|c − 1 ≤ |M| ≤ b|VR|/2c.
(3) If |VR| ≤ 2σ − 1 then

max{0,min{|VR| − σ, b|VR|/2c}} ≤ |M| ≤ b|VR|/2c.
Corollary 1. Suppose that |VR| = 2σ and σ = 2m + 1. If |M| = b|VR|/2c − 1
then G = (V, E) is a complete bipartite graph with V = X ∪ Y , X ∩ Y = ∅,
|X| = |Y | = σ and E = {(x, y)|x ∈ X, y ∈ Y }.

The relationship among G, C(G) and R(G) shows the following proposition
concerning |VR|, |M| and |E′| of any optimum solution E′ to (σ+1)ECA(S,SA).

Proposition 6. Let E′ be any solution to G in (σ + 1)ECA(S,SA) andM be a
maximum matching of R(G). Then

|VR| − |M| ≤ |E′|. (3.1)

4 Augmentation by Edge-Interchange

We explain an operation called edge-interchange which was originally introduced
in [20,21] for an efficient augmentation. It is also used in [14,15,16,17,18]. Let
LF (G) = {Y1, . . . , Yq} (q = |LF (G)|) denote the class of all leaves of G and
choose yi ∈ Yi as the representative of Yi. Let

Y (G) = {yi|Yi ∈ LF (G)}, q ≥ 2, and r = dq/2e.
We can easily prove the next proposition.

Proposition 7. If there is a set E′ of edges, each connecting vertices of G, such
that E′∩E = ∅ and V (E′) = Y (G) ⊆ S for some (σ+1)-component S of G+E′,
then S = V .

Let Y stand for Y (G) in the rest of the section.
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4.1 Attachments

We have dG(Yi) = σ and λ(yi, yj ;G) = σ for any yi, yj ∈ Y (i 6= j). An edge
set F is called an attachment (for G) if and only if the following (1) through (4)
hold:

(1) V (F ) ⊆ Y ,
(2) F ∩ E(G) = ∅,
(3) V (e) 6= V (e′) (∀e, e′ ∈ F, e 6= e′), and
(4) if q (= |LF (G)|) is odd then F has at most one pair f, f ′ such that |V (f) ∩

V (f ′)| = 1; or if q is even then F has no such pair.

Let F be any attachment for G. For each e = (u, v) ∈ F , G + F has a new
(σ + 1)-component, denoted by A(e, G + F ), containing V (e).

We are going to show that we can find a minimum attachment Z(σ + 1) =
{e1, . . . , er} (r = dq/2e) such that λ(G + Z(σ + 1)) = σ + 1. Although there
are two cases: r = 1 and r ≥ 2, we discuss only the latter case in the following.
(Note that if r = 1 then we immediately obtain the desired attachment F .)

4.2 Finding a Minimum Attachment

Suppose that there are an attachment F for G and vertices yij ∈ Y − V (F ),
1 ≤ i, j ≤ 2, where y11, y12, y21 are distinct, and if y22 is equal to one of the
other three then we assume that y22 = y21 (see Fig. 4). We use the following

v11 v21

v22v12

f1

f4

f3

f2

e′e

(1)

v11 v21 = v22

v12

f1 = f3

e′ = f2 = f4
e

(2)

Fig. 4. The edges e, e′ and fi, 1 ≤ i ≤ 4: (1) y21 6= y22; (2) y21 = y22.

notations:

L = G + F, e = (y11, y12), e′ =
{

(y21, y22) if y21 6= y22
(y12, y21) if y21 = y22,

A(e) = A(e, L + {e, e′}), A(e′) = A(e′, L + {e, e′}),
f1 = (y11, y21), f2 = (y12, y22), f3 = (y11, y22), f4 = (y12, y21),
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where we set f1 = f3 and e′ = f2 = f4 if y21 = y22, and

A(fi) =
{A(fi, L + {f1, f2}) if 1 ≤ i ≤ 2
A(fi, L + {f3, f4}) if 3 ≤ i ≤ 4.

Note that e, e′, fi 6∈ E(L), 1 ≤ i ≤ 4. We have the following two cases.
Case I: A(e) ∩ A(e′) = ∅; Case II: A(e) ∩ A(e′) 6= ∅ (that is, A(e) = A(e′)).
For Case I, we are going to show that there are two edges f, f ′, with V (f)∪

V (f ′) = V (e) ∪ V (e′), such that

A(e) ∪ A(e′) ⊆ A(f, L + {f, f ′}) = A(f ′, L + {f, f ′}).

That is, we can add two edges so that one (σ + 1)-component containing A(e)∪
A(e′) may be obtained. Finding and adding such a pair of edges f, f ′ is called
edge-interchange (with respect to V (e1) ∪ V (e2)).

Suppose that A(e) ∩ A(e′) = ∅. Note that y21 6= y22 in this case. Let K
be any fixed (A(e),A(e′))-cut of L + {e, e′}, and let Bi, 1 ≤ i ≤ 2, denote
the two sets of vertices in L + {e, e′} such that B1 ∪ B2 = V , B2 = V − B1,
K = (B1, B2;L + {e, e′}), A(e) ⊆ B1 and A(e′) ⊆ B2. |K| = σ = λ(y1, y2;L′′)
for any yi ∈ Bi, 1 ≤ i ≤ 2, where L′′ denotes L, L + e, L + e′ or L + {e, e′}. K
is a (y1, y2)-cut of L. Suppose that f and f ′ satisfy either (i) or (ii):

(i) f = f1, f ′ = f2, or (ii) f = f3, f ′ = f4,
where {f, f ′} ∩ E(L) = ∅ .

The next proposition shows a property of edge-interchange.

Proposition 8. If A(e) ∩ A(e′) = A(f1) ∩ A(f2) = ∅ then A(f3) ∩ A(f4) 6= ∅,
that is, A(f3) = A(f4).

Let {f, f ′} denote the following pair of edges:

{e, e′} if A(e) = A(e′) (the case with V (e) ∩ V (e′) = ∅ is included);

{f1, f2} if A(e) ∩ A(e′) = ∅ and A(f1) = A(f2);

{f3, f4} if A(e) ∩ A(e′) = A(f1) ∩ A(f2) = ∅.
Clearly, {f, f ′}∩E(L) = ∅. Such a pair f, f ′ are called an augmenting pair (with
respect to {y11, y12, y21, y22}) of L.

Corollary 2. Let L′ = L + {f, f ′} for any augmenting pair f, f ′. Then L′ − f ′

has no σ-cut separating V (f ′) from V (f). That is, if L′ − f ′ has a σ-cut K
separating a vertex of V (f ′) from V (f) then K separates the two vertices of
V (f ′).

From Corollary 2, other important properties (Proposition 9–11) of edge-
interchange are obtained.
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Fig. 5. The two (σ+1)-components A(f1, G+{f1, f2}) and A(g1, G+{g1, g2}) produced
by two augmenting pairs {f1, f2} and {g1, g2}, respectively.

Proposition 9. Suppose that G has six leaves Yi ∈ LF (G) (1 ≤ i ≤ 6), and
choose yi ∈ Yi as a representative of each Yi. Suppose that {f1, f2} is an aug-
menting pair with respect to {yi|1 ≤ i ≤ 4} of G. If A(f1, G + {f1, f2}) is a leaf
then, for each i ∈ {1, 2}, there is an augmenting pair {g1, g2} with respect to
V (fi) ∪ {y5, y6} of G such that A(g1, G + {g1, g2}) is not a leaf (see Fig. 5).

By Proposition 9, we obtain the following procedure that is a modified
version of the procedure given in [15]. It finds a sequence of edges e1, . . . , er

(r = d|LF (G)|/2e ≥ 1) by repeating edge-interchange operation, where hand-
ling the case with |LF (G)| = 2 is included. Note that edges with which we are
concerned are those connecting vertices belonging to distinct leaves. If an edge
g connects a vertex in a leaf Yi and another vertex in a leaf Yj (i 6= j) then, for
simplicity, we say that g connects Yi and Yj .

Procedure FIND EDGES;
begin

1. G1 ← G; π ← LF (G); i← 1; E′
1 ← ∅;

2. while π 6= ∅ do
begin

3. if |π| = 2 then
4. fi ← an edge connecting the two leaves of π; E′′

i ← {fi};
5. else if |π| ≤ 5 then
6. Find an augmenting pair E′′

i = {fi, f
′
i} by Proposition 8;

7. else /* |π| ≥ 6 */
8. Find an augmenting pair E′′

i = {fi, f
′
i} by Proposition 9;

9. E′
i+1 ← E′

i ∪ E′′
i ; Gi+1 ← Gi + E′′

i ; π ← π − {Y (v)|v ∈ V (E′′
i )}; i← i + 1;

end
end;

Proposition 10. Gi+1 has a leaf containing A(fi, Gi+1) if and only if |LF (Gi)|
= 5 just after the execution of Step 9 in FIND EDGES.
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Note that executing Step 6 or Step 8 once can be done in O(|VR|) by using a
structural graph F (G), and we can construct F (G) in O(σ2|V | log(|V |/σ)+ |E|)
time (see [7]). The details are omitted here.

The next proposition holds for the edge set E′ produced by FIND EDGES.

Proposition 11. Let Z(σ + 1) = {e1, . . . , er} (r = b|LF (G)/2c) be given by
FIND EDGES. Then Z(σ+1) is a minimum attachment such that λ(G′) = σ+1,
where G′ = G+Z(σ+1). Furthermore the procedure runs in O(σ2|V | log(|V |/σ)+
|E|+ |VR|2) time.

5 (σ + 1)ECA(S,SA) for G Having Less Than 2σ + 6
Leaves

We denote LF (G) = {Yi|1 ≤ i ≤ q} (q = |LF (G)|), Y (G) = {y1, . . . , yq} and
VR = {v1, . . . , vq}, where each yi is represented as vi in R(G). First we consider
the case where G has two or three leaves.

Proposition 12. If q = 2 then the following (1) or (2) holds.

(1) If Y1χY2 then |M| = 1, there are two vertices yi ∈ Yi, i = 1, 2, such that
E′ = {(y1, y2)} is a solution, and OPT (S) = OPT (M) = 1.

(2) If Y1χY2 then |M| = 0, there are three vertices yi ∈ Yi (i = 1, 2), x ∈
V − (Y1 ∪ Y2) such that E′ = {(y1, x), (y2, x)} is a solution, and OPT (S) =
2 = OPT (M) + 1.

Proposition 13. If q = 3 and there exist two leaves Y1, Y2 with Y1χY2 then
|M| = 1, there are distinct edges e1, e2 such that E′ = {e1, e2} is a solution, and
OPT (S) = OPT (M) = 2.

Next we consider the remaining case where 3 ≤ q < 2σ + 6. For each e′ =
(x′, y′) ∈M, we can choose two vertices x ∈ Y (x′), y ∈ Y (y′), and let e = (x, y)
be an edge, which is not included in E. We fix such an edge e for each e′ ∈ M,
and let

E′
0 = {e = (x, y) | (x′, y′) ∈M}.

Proposition 14. |E′
0| = |M| and E′

0 ∩ E = ∅.
In the rest of this section, we consider the graph G+E′

0. First we define two
sets L1 and K1 as follows.

Let G1 = G+E′
0 and let L1 be the set of new leaves of G1 created by adding

E′
0 to G. Clearly |L1| ≤ |M|. Let K1 = LF (G + E′

0) − L1 (⊆ LF (G)). Since
M is a maximum matching of R(G), Proposition 3 shows that each leaf in K1

consists of only one vertex and that the set of vertices K′
1 = {x | {x} ∈ K1}

induces a complete graph of G and of G + E′
0.

We are going to propose an O(σ2|V | log(|V |/σ) + |E| + |VR|2) time algo-
rithm such that it finds an optimum solution if |L1| ≤ |K1| and such that
a 3

2 -approximate solution if |L1| > |K1|. Note that we have |L1| ≤ |K1| if
|M| ≤ b|VR|/3c.
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Proposition 15. Let {y′
1}, {y′

2} ∈ K1 (y′
1 6= y′

2) and Y1, Y2 ∈ L1 (Y1 6= Y2). If
{(y1, y

′
1), (y2, y

′
2)} is not an augmenting pair with y1 ∈ Y1 and y2 ∈ Y2 then there

are y3 ∈ Y1 and y4 ∈ Y2 such that {(y4, y
′
1), (y3, y

′
2)} is an augmenting pair and

(y4, y
′
1), (y3, y

′
2) 6∈ E (See Fig. 6).

K ∩ K′

y′
1

y2

y3

y′
2

K ∩ K′

K ∩ K′K ∩ K′

y1

y4

Y1

Y2

Fig. 6. A situation for Proposition 15

}

}y′
2

y2

y′
3

y3

A(f1, G1 + {f1, f2}

L1

y′
1

y1

f2 f1

K1

Y2 Y1 Y3

Fig. 7. A(f1, G + {f1, f2}) in the
proof of Proposition 16

We obtain the next proposition by Propositions 9 and 15.

Proposition 16. Assume that |L1| ≥ 3 and |K1| ≥ 3. Then there exists an
augmenting pair {f1, f2} such that f1 = (y1, y

′
1) 6∈ E∪E′

0, f2 = (y2, y
′
2) 6∈ E∪E′

0,
{{y′

1}, {y′
2}} ⊆ K1 (y′

1 6= y′
2), L1 has two distinct sets Y1, Y2 with y1 ∈ Y1, y2 ∈ Y2

and A(f1, G+{f1, f2}) is not a leaf. Furthermore L1∪K1−{{y′
1}, {y′

2}}, Y1, Y2}
is the set of all leaves in G1 + {f1, f2}. (See Fig. 7)

Next we are going to discuss the case where |L1| ≤ 2 or |K1| ≤ 2.

Proposition 17. Suppose that |L1| ≤ 2 and |L1| ≤ |K1|. Then there exists a
set E′

2 = {f1, . . . , f|K1|} such that λ(G1 + E′
2) ≥ σ + 1 and E′

2 ∩ (E ∪ E′
0) = ∅.

It remains to consider the cases (|L1| ≥ 3 and |K1| ≤ 2) and (|L1| ≤ 2 and
|L1| > |K1|), for which the next proposition holds.

Proposition 18. Suppose that one of the following (1)–(3) holds: (1) |L1| ≥ 3
and |K1| ≤ 2; (2) |L1| = 2 and |K1| = 1; (3) |L1| = 2 and |K1| = 0. Let
q1 = |LF (G1)| and r1 = d q1

2 e. Then there exists a set E′′
2 = {f1, . . . , fr1} such

that λ(G1 + E′′
2 ) ≥ σ + 1 and E′′

2 ∩ (E ∪ E′
0) = ∅.

The discussion from Propositions 16 through 18 is summarized in the follo-
wing procedure FIND EDGES2.
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Procedure FIND EDGES2;
begin

1. G0 ← G; π ← LF (G); E′
0 ← ∅; ρ← ∅;

2. Find an edge set E′
0 as in Proposition 14; G1 ← G0 + E′

0;
Determine L1 and K1; i← 1;

3. while Ki 6= ∅ do
begin

4. if |Li| ≥ 3 and |Ki| ≥ 3 then
Find an augmenting pair {f, f ′} by Proposition 16, E′′

i ← {f, f ′};
5. else if |Li| ≤ 2 and |Li| ≤ |Ki| then

Find an edge set E′′
i by Proposition 17;

6. else
Find an edge set E′′

i by Proposition 18;
7. Construct Ki+1 and Li+1; E′

i ← E′
i−1 ∪ E′′

i ; Gi+1 ← Gi + E′′
i ; i← i + 1;

end;
8. if λ(Gi) = σ then/* the case with |Li| 6= 0 */

Find an edge set E′′
i by Proposition 18; E′

i+1 ← E′
i−1 ∪ E′′

i ;
end;

Proposition 19. FIND EDGES2 produces an optimum solution if |L1| ≤ |K1|.

Proposition 20. FIND EDGES2 gives a 3
2 -approximate solution if |L1| > |K1|.

Remark 1. Let M be any maximum matching of R(G). If |M| ≤ b |LF (G)|
3 c

then |L1| ≤ |K1| and we can find an optimum solution in polynomial time. If
b |LF (G)|

3 c < |M| ≤ b |LF (G)|
2 c then |L1| ≤ |K1| or |L1| > |K1|. Since the proof

of NP-completeness of kECA(S,SA) in [10] is given for the case with |M| =
b |LF (G)|

2 c, we consider approximate solutions if |L1| > |K1|.

Theorem 1. Suppose that |LF (G)| ≤ 2σ+6. Then FIND EDGES2 can find an
optimum solution if |L1| ≤ |K1|, or a 3

2 -approximate solution if |L1| > |K1|, in
O(σ2|V | log(|V |/σ) + |E|) time.

6 (σ + 1)ECA(S,SA) for G Having at Least 2σ + 6 Leaves

In this case, Proposition 5(3) shows that any maximum matching M of R(G)
has |M| = b |LF (G)|

2 c. First, some basic results on nonadjacent pairs and edge
interchange operation are going to be given.

Proposition 21. Suppose that there are a nonadjacent pair of leaves Y1, Y2 ∈
LF (G) and two vertices yi ∈ Yi, i = 1, 2, with (y1, y2) 6∈ E, such that G′ =
G+{(y1, y2)} has a leaf S containing Y1∪Y2. Let L′ = {Y ⊆ S|Y ∈ ΓG(σ +1)},
X = Y1 ∪Y2 and Z =

⋃
Y ∈LF (G)−{Y1,Y2} Y . Then |(X, Z;G)| ≤ σ− 1 if |L′| ≥ 3.
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The next proposition can be proved by using Propositon 21.

Proposition 22. Suppose σ ≥ 3 and let M′ = {(v2i−1, v2i)|1 ≤ i ≤ m} ⊆ M
for some m ≤ |M|, and put Yj = Y (vj) for each vj ∈ VR.

(1) If |M′| ≥ 2 and there are distinct indices i, j with 1 ≤ i, j ≤ m such that
{Y2i−1, Y2i} 6 |{Y2j−1, Y2j} then (i) and (ii) hold.

(i) These leaves are partitioned into a D-combination {{L′
1, L

′
2}, {L′

3, L
′
4}}

having four vertices yt ∈ L′
t, t = 1, 2, 3, 4, such that G+{(y1, y2), (y3, y4)}

has a (σ + 1)-component S containing all L′
t, t = 1, 2, 3, 4.

(ii) The (σ+1)-component S′ of G+{(y1, y2)} such that L′
1∪L′

2 ⊆ S′

is not a leaf.
(2) If |M′| ≥ dσ/2e + 1 and no such pair of indices as in (1) exist then, for

each (v2i−1, v2i) ∈ M′, there are vertices y2i−1 ∈ Y2i−1 and y2i ∈ Y2i such
that G′ = G + {(y2i−1, y2i)} is a simple graph having a (σ + 1)-component
X which is not a leaf and which contains Y2i−1 ∪ Y2i.

Proposition 23. Suppose that there is a set M′ = {(v2i−1, v2i)|1 ≤ i ≤ m} ⊆
M for some m with σ + 2 ≤ m ≤ |M|, and put Yi = Y (vi) for each vi ∈ VR.
Then there is an edge (v2h−1, v2h) ∈M′ with {Y1, Y2}6 |{Y2h−1, Y2h}.

By combining Propositions 9, 22 and 23, we obtain the following proposition.

Proposition 24. Suppose that there is a set M′ = {fi = (v2i−1, v2i)|1 ≤ i ≤
m} ⊆ M for some m with σ+3 ≤ m ≤ |M|, and put Yi = Y (vi) for each vi ∈ VR.
Then there exists an augmenting pair {e′

1, e
′
2} with respect to Y1, Y2, Y2j−1, Y2j

such that G+{e′
1, e

′
2} is simple and has no leaf S with Y1∪Y2∪Y2j−1∪Y2j ⊆ S,

where {f1, fj} ⊆ M′.

Based on Proposition 24, the next procedure FIND EDGES3 is obtained.

Procedure FIND EDGES3;
begin

1. G1 ← G; π ← LF (G); i← 1; E′
0 ← ∅;

2. while π 6= ∅ do
begin

3. if |π| ≤ 3 then
4. Find an edge set E′′

i as E′in Proposition 12(1) or 13;
5. else

begin /* |π| ≥ 4 */
6. Find a matchingM′′ = {(v2p−1, v2p)|1 ≤ p ≤ m′} of R(Gi),

where if |π| ≤ 2σ + 6 then m′ ← bπ/2c, otherwise m′ ← σ + 3;
7. if |π| ≤ 2σ + 6 then

begin
Choose E′

s ⊆ E′
i with |E′

s| = σ + 3−m′ appropriately;
M′ ←M′′ ∪ {(v, w) ∈ ER|(v′, w′) ∈ E′

s, v
′ ∈ Y (v), w′ ∈ Y (w)};
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/* M′ is a matching on R(G) in the case.*/
end;

else
M′ ←M′′;

8. Find an augmenting pair E′′
i as {e′

1, e
′
2} in Proposition 24

by choosing f1 ∈M′′; /* Note that |M′| = σ + 3. */
9. if fj ∈M′ −M′′ for fj of Proposition 24 then

begin /* In the case with |π| ≤ 2σ + 6 */
E′

i ← E′
i − {(y2j−1, y2j)}, Gi ← Gi − {(y2j−1, y2j)}, where

y2j−1 ∈ Y2j−1 and y2j ∈ Y2j ;
end;

10. E′
i+1 ← E′

i ∪ E′′
i ; Gi+1 ← Gi + E′′

i ;
π ← π − {Y (v)|v ∈ V (E′′

i )}; i← i + 1;
end;

end;

Proposition 25. Any set final E′
i obtained at the termination of FIND EDGES3

is a minimum attachment such that λ(G′) = σ + 1, where G′ = G + E′.

Theorem 2. If G has at least 2σ + 6 leaves then the algorithm FIND EDGES3
correctly finds a solution E′ to (σ+1)ECA(S,SA) for any given G with λ(G) = σ
in O(σ2|V | log(|V |/σ) + |E|+ |VR|2) time.

7 Concluding Remarks

The paper has proposed

(1) an O(σ2|V | log(|V |/σ)+ |E|+ |VR|2) time algorithm for finding an optimum
solution if G has at least 2σ + 6 leaves or if |L1| ≤ |K1| and G has less than
2σ + 6 leaves,

(2) an O(σ2|V | log(|V |/σ)+ |E|) time one for a 3
2 -approximate solution if |L1| >

|K1| and G has less than 2σ + 6 leaves.

We can improve the first algorithm to an O(σ2|V | log(|V |/σ)+ |E|) time one
by devising how to check whether or not {f1, f2} is an augmenting pair, and
whether or not A(f1, G + {f1, f2}) is a leaf in Proposition 9.
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