
Fast Interpolation Using Kohonen
Self-Organizing Neural Networks

Olivier Sarzeaud1 and Yann Stéphan2

1 ECTIA, 1 rue de la Noë, BP 92119, 44321 Nantes cedex 3, France,
Olivier.Sarzeaud@ectia.ec-nantes.fr,

http://www.ec-nantes.fr/ectia
2 EPSHOM - CMO, 13 rue du Chatellier, BP 426,

29275 Brest cedex, France

Abstract. This paper proposes a new interpolation method based on
Kohonen self-organizing networks. This method performs very well, com-
bining an accuracy comparable with usual optimal methods (kriging)
with a shorter computing time, and is especially efficient when a great
amount of data is available. Under some hypothesis similar to those used
for kriging, unbiasness and optimality of neural interpolation can be de-
monstrated. A real world problem is finally considered: building a map of
surface-temperature climatology in the Mediterranean Sea. This example
emphasizes the abilities of the method.

1 Introduction

Physical data interpolation is a common issue in Geosciences. For many variable
of interest, the measurements are often sparse and irregularly distributed in time
and space. Analyzing the data usually requires a numerical model, which samples
the data on a regular grid. Mapping irregular measurements on a regular grid is
done by interpolation, which aims to generalize, but not to create, information.
A popular method to map geophysical data is kriging [1].

This method, based on the hypothesis that the measurements are realizations
of a random variable, has been proven to be optimal under certain conditions.
It requires to solve a system of linear equations at each point where the inter-
polation must be done, which might be computationally heavy.

This paper proposes an original interpolation method based on Kohonen self-
organizing networks. The method is applied on the problem of building a surface-
temperature climatology in the Mediterranean Sea. The method performs very
well, combining an accuracy comparable with usual kriging methods with a much
shorter computing time, and is especially efficient when a great amount of data
is available.

The paper is organized as follows. Section 2 recalls the backgrounds of kri-
ging techniques. Section 3 describes the adaptation of self-organizing maps to
the spatial interpolation problem. The results of actual data interpolation in
an oceanographic problem are presented and discussed. The last section draws
conclusions and perspectives.

J. van Leeuwen et al. (Eds.): IFIP TCS2000, LNCS 1872, pp. 126–139, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Fast Interpolation Using Kohonen Self-Organizing Neural Networks 127

2 Optimal Interpolation

A model of a physical variable aims at predicting its value anywhere at any time.
The simplest model is a numerical one, that is a discrete representation of the
variable. To be efficient, this representation must be done under two constraints:
on the one hand no information must be missed, on the other hand a reasonable
amount of storage capacity is required. It must also be done on a regular grid,
in order to be usable by most analyzes tools (plotting a map of the variable,
computing Fourier Transform, ...).

2.1 Definition of Interpolation

Considering n values (obtained by measurements) of a variable Zi at locations
xi, 1 ≤ i ≤ n, interpolation aims at building a numerical model of the variable
on a regular pre-defined grid. A straightforward way to interpolate data on a
specific location (a point of the grid) is to make a linear combination of the data:

Z∗ =
n∑

i=1

λiZi (1)

where Z∗ is the estimated value. The problem is to compute the weights λi in
order to minimize the estimation error. Practically, this is not feasible, because
the true values are not known. It is thus necessary to make assumptions on the
behavior of the variable to define the optimality.

The simplest methods give higher weights to the nearest data. The weights
are somehow inversely proportional to the distance. This corresponds to an impli-
cit assumption of continuity of the variable, which seems reasonable for physical
variables. Anyway, it is possible to do better, taking into account the spatial
correlation of the data. In this case, the weights are the solutions of a system
of linear equations, that can be obtained by writing the minimization of the
estimation error. This is kriging.

2.2 Kriging

Kriging is based on a statistical interpretation of the measures. Indeed, it assumes
that the data are realizations of a random variable, that is: Zi = Z(xi). Some
hypothesis are required on the behavior of this random variable, usually that
the expectation of an increment is null, and its variance only depends on the
distance (intrinsic random variable [5]):

E[Z(x + h) − Z(x)] = 0 (2)
V ar[Z(x + h) − Z(x)] = C(h) (3)

Therefore, on each point x0 where the interpolation is to be done, it is possible to
write analytically the expectation and variance of the estimation error Z∗(x0)−
Z(x0).

128 O. Sarzeaud and Y. Stéphan

Unbiasness. The nullification of the expectation (ensuring that the estimation
is not biased) leads to a constraint on the weights λi:

n∑
i=1

λi = 1 (4)

Optimality. The minimization of the variance (that is the optimality of the
estimation) under the constraint of Eq. 4 leads to a system of linear equations,
with coefficients depending on a model of the variance of the increment of the
data [5]:

C11 . . . C1n 1
.
Cn1 . . . Cnn 1
1 . . . 1 0

λ1
. . .
λn

µ

 =

C10
. . .
Cn0
1

 (5)

where Cij = V ar[Z(xi) − Z(xj)] = E[(Z(xi) − Z(xj))2] and µ is a Lagrange
multiplier.

Estimation Error. Once the weights are found, it is also possible to compute
the (residual) variance of the estimation error at each point where an estimation
is performed:

V ar[Z∗(x0) − Z(x0)] =
1
2

n∑
i=1

λiCi0 (6)

This approach is also called objective analysis.

When a great amount of data is available, kriging at each point cannot be
performed using all data, because it would lead to huge systems that may not
be handled. Instead, it is necessary to choose a few data around the point where
to interpolate. Furthermore, these data have to be chosen to avoid singularity of
the system, which is usually done with the help of many geometric parameters
in kriging products. Anyway, it remains that a system of linear equations must
be solved on each point of the final grid, which is computationally heavy.

The main advantage of kriging is that it relies on strong theoretical backgro-
unds, which demonstrate that the interpolation is unbiased and optimal. The
main drawbacks are:

– The hypothesis done on the random variable are strong. It is possible to
relax them (allowing a determinist drift on the data for example), but the
kriging system is then more complex. In any case, a model of variance of the
increment of the variable must be computed, which can be very long when
a lot of data is available.

– It is difficult to ensure that a system built with some data, even carefully
chosen, will be regular. Therefore, especially with big data sets, it is possible
to have wrong estimates. Very wrong estimates can usually be detected,
because they simply are out of the range of the variable. Anyway, it remains

Fast Interpolation Using Kohonen Self-Organizing Neural Networks 129

the possibility to have wrong estimates that are not far enough from the
expected value to be detected.

– To make a numerical model on a grid, it is necessary to interpolate, that is
to solve the system of equations, on each point of the grid. This again might
be very long, depending on the desired resolution of the model.

3 Neural Interpolation

Kohonen networks are artificial neural networks. Some work has already been
done and is presented elsewhere [8][9] on their use for adaptive meshing. It was
shown that a simple modification of the basic Kohonen self-organizing algorithm
(to constrain the peripheral neurons of the network to stay on the border of the
domain) allows to produce valid meshing, with some advantages over classical
methods. The use of Kohonen networks for neural interpolation also relies on a
slight modification of the basic self-organizing algorithm.

3.1 Kohonen Self-Organizing Networks

In their widely used form, Kohonen networks consist of a matrix of neurons, each
neuron being connected to its four nearest neighbors through fixed connexions
(this form is called a map). All neurons are also excited by the same input, a
vector of any dimension, through weighted connexions (figure 1). The role of the
fixed connexions is to create a competition process between the neurons, so that
the one whose weights are the closest to the current input produces the higher
output. This competition is usually simulated by a simple computation of the
distances between the input and all the neurons, and selection of the neuron
with the smallest distance. This neuron is called the cluster of the network.

weighted connexions

xp1x

Fig. 1. Structure of a self-organizing map.

130 O. Sarzeaud and Y. Stéphan

Kohonen has proposed a learning rule, that modifies the weights of the net-
work, so as to produce interesting representations of the input space [4]. Indeed,
at the end of the learning process:

– each neuron is sensitive to a particular zone of the input space;
– neighbor neurons are sensitive to near zones;
– the neurons distribution tends to approximate the probability density of the

inputs presented during learning.

For these reasons, the usual representation of a self-organizing map is done by
plotting the neurons, linked by their fixed connexions, using the weights as co-
ordinates in the input space (see figure 2).

Learning Rule. Let:

– p be the dimension of the input space;
– x(t) = (x1(t), x2(t), ..., xp(t)) be the input vector at time t;
– wk(t) = (wk

1 (t), wk
2 (t), ..., wk

p(t)) be the weight vector of neuron k at time t.

At each time step t, the cluster c(t) of the network is searched:

c(t) = c
({wk(t)}, x(t)

)
= k/‖wk(t) − x(t)‖ ≤ ‖wl(t) − x(t)‖ ∀l (7)

where the norm is usually the euclidian distance. The weights of the neurons are
then adapted with the following rule:

wk(t + 1) = wk(t) − α(t)h(k, c(t))(wk(t) − x(t)) (8)

where α(t) is a time-decreasing gain factor, and h(k, c(t)) a neighboring function.
This function depends on the topologic distance, measured on the map, between
the neuron k and the cluster c(t). It takes a maximum value of 1 if the distance
is null (neuron k is the cluster), and decreases when the distance increases. The
topologic distance between two neurons is the distance between their row and
column indices in the map.

This algorithm is very robust, and numerous constraints can be applied to the
neurons without changing its properties. For example:

– Initializing the network as a regular grid in the whole space considerably
reduces the computation time.

– Constraining the peripheral neurons of the network to slide on the border
of the domain allows the production of naturally adapted meshing [9]. The
right part of figure 2 gives an illustration of such a meshing, produced with
the same parameters as the left part, except the constraint.

Fast Interpolation Using Kohonen Self-Organizing Neural Networks 131

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Fig. 2. Two maps organized using data chosen randomly on the black squares of a
chess. The only difference between the two is that peripheral neurons are constrained
to slide on the border of the domain on the right.

3.2 Neural Interpolation Algorithm

At each time step t, the input x(t) of the network is a three-dimensional vector,
the first two dimensions giving the location of the measure, and the third one
its value. We will note this decomposition: x(t) = (xloc(t), xval(t)) (loc = 1, 2
and val = 3). Each neuron k thus has a three-dimensional weight vector wk(t).
The only required modification of the basic self-organizing algorithm is that the
selection of the cluster c(t) be performed on the first two dimensions only:

c(t) = c(wk
loc(t), xloc(t))

= k/‖wk
loc(t) − xloc(t)‖ ≤ ‖wl

loc(t) − xloc(t)‖ ∀l (9)

This means that the cluster is chosen in the geographical space, according to
the data location only, and is completely independent from the measure value.
The idea is to trust the locations rather than the measures, allowing thus very
different values measured on close points to be combined. Once the cluster is
found, the weight modification applies on all three weights of the neurons, as
presented in Eq. 8.

In this approach, the interpolation points cannot be chosen beforehand. In-
stead, they are determined during the learning process, and correspond to the
final locations of the neurons. Therefore, at the end of the algorithm, we still
do not have the values on a regular grid, and a post-processing is required. The
question is thus: what is the advantage of the final irregular distribution of the
neurons over the initial irregular distribution of the data? If the number of neu-
rons is lower than the number of measures, complexity is reduced without loss of
information. The neurons set is the best representation in space of the data set
[6]. If the associated values are optimal, it is then possible to re-grid the values
with a simple interpolation method, with no loss of precision.

132 O. Sarzeaud and Y. Stéphan

At any time step t, it can easily be shown that the weight vector of a neuron k
is a combination of the input vectors presented until then and of its initial value:

wk(t) =
t∑

i=1

ak(i)
t∏

j=i+1

(1 − ak(j))x(i) +
t∏

i=1

(1 − ak(i))wk(0) (10)

where ak(i) = α(i)h(k, c(i)) . The initial value wk
val(0) can always be set to 0

without loss of generality. The weights of the combination do not depend on
the third dimension (value) of the input and neuron weight vectors, but rather
on the gain factor and on the locations of the input and neuron. Therefore, the
third weight of the neuron is at any time a true linear combination of the data
presented until then:

wk
val(t) =

t∑
i=1

λkt(i)xval(i) with λkt(i) = ak(i)
t∏

j=i+1

(1 − ak(j)) (11)

Is this linear combination optimal? We will show this in the same way as for
kriging. We first assume that the data are realizations of a random variable
Y . But this time, this variable is not stationary, and is the sum of an intrinsic
random variable (the Z variable used in kriging) and a determinist linear drift
m:

Y (x) = Z(x) + m(x) (12)

We can first make the following analogies with kriging notations:

xi = xloc(i) Y (xi) = xval(i)
x0 = wk

loc(t) Y ∗(x0) = wk
val(t)

λi = λkt(i)

With these notations, the formula of Eq. 11 can be rewritten:

Y ∗(x0) =
t∑

i=1

λiY (xi) (13)

If t is sufficiently big, the second term of Eq. 10 (influence of the initial weight
vector of the neuron) can be neglected, therefore leading to:

x0 =
t∑

i=1

λixi (14)

Unbiasness. The expectation of the estimation error at point x0 can be written:

E[Y ∗(x0) − Y (x0)] = E

[
t∑

i=1

λiZ(xi) − Z(x0)

]
+

t∑
i=1

λim(xi) − m(x0) (15)

This expression has a first probabilist term and a second determinist term. Each
of them must be nullified to ensure unbiasness. The second term is naturally

Fast Interpolation Using Kohonen Self-Organizing Neural Networks 133

null, because the drift is linear and the final location x0 of the neuron is a linear
combination of the location of the data presented (Eq. 14):

m(x0) = m(
t∑

i=1

λixi) =
t∑

i=1

λim(xi) (16)

We can thus say that moving the neurons filters the drift.
Nullity of the first term requires the same condition as for kriging: the sum

of the λi must be 1. Let us note At this sum. Developping At using Eq. 11 leads
to:

At = 1 −
t∏

i=1

(1 − ak(i)) (17)

At tends to 1 when t increases iff the log of the product tends to minus infinity.
A first order development gives:

log(
t∏

i=1

(1 − ak(i))) = −
t∑

i=1

ak(i) + o(ak(i)2) (18)

If the gain factor α(t) follows a decreasing law of the type 1/tβ with 0 ≤ β ≤ 1,
which is the usual convergence condition of Kohonen networks [7], then the sum
goes to infinity, and At converges to 1.

Optimality. To show the optimality, that is the minimization of the variance
of the estimation error, is much more difficult. Indeed, the neural interpolation
algorithm never uses an explicit knowledge of the variance of the increment of
the random variable. Therefore, an assumption is needed on how this variance
is taken into account in the algorithm. We suppose first that the variance only
depends on the distance between data points in the representation space of the
map instead of the input space. Furthermore, we suppose that the neighboring
function is a good representation of this variance:

Cij = C0(1 − h(c(i), c(j)) (19)

where C0 is a normalisation factor. This assumption is intuitively true for very
big data sets. Indeed, in this case, measurements were made where variations
were expected rather than where the variable was known to be stable. The
resulting distribution thus reflects the variability of the measures.

The (determinist) drift naturally disapears when writing the variance of the
estimation error. Optimality is therefore ensured under the same condition as
for kriging (first n lines of the system of Eq. 5):

t∑
i=1

λiCij = Cj0 ∀j (20)

where Cj0 = C0(1 − h(c(j), k)), k being the considered neuron. Under the hy-
pothesis of a unitary neighborhood, λi is non zero only when c(i) = k, thus
when Cij = Cj0. The sum of the λi being 1 as shown above, this demonstrates
optimality.

134 O. Sarzeaud and Y. Stéphan

Estimation Error. If a model of variance of the increments is available, the
variance of the estimation error can be iteratively computed during the learning
process. An updating rule similar to the one of Eq. 8:

Ck(t + 1) = Ck(t) − α(t)h(k, c(t))(Ck(t) − Ct0) (21)

would lead to the following result:

Ck(t) =
t∑

i=1

λiCi0 (22)

which is simply twice the variance of the estimation error defined in Eq. 6.
However, as no model of variance is required for neural interpolation, we

would prefer not to have to compute one at all. This model is an analytic re-
presentation of the mean of the squared increments between data, function of
their distance. Neural interpolation being a stochastic process, we propose to
use at each time step the squared increment between the data presented and
each neuron, instead of a model of what this value should be. This leads to the
following new updating rule:

Ck(t + 1) = Ck(t) − α(t)h(k, c(t))(Ck(t) − (wk
val(t) − xval(t))2) (23)

This rule allows a better understanding of the local variability of the measures.
Outliers can be more easily detected on the resulting map, because the local
error they produce is not smoothed, as would be the case with a general model
of variance. The error map rather reflects the variability of the data than their
density.

4 Comparison

4.1 Algorithmic Complexity

It is important to compare the algorithmic complexity of kriging and neural
interpolation, according to the numbers of data n, interpolation points m and
iterations t.

Concerning kriging, two steps are required: computation of the model of
variance first, and estimation itself. The first step needs a constant number of
operations a for all n2 couples of data points. The second step consists in solving
a system of p linear equations with p unknowns, where p is the number of data
points considered. Remember that when the data set is big, all data cannot
be considered to build the system of equations. We do not take into account
the time needed to cleverly choose these p points. The resolution needs bp3/10
operations, where b is a constant depending on the chosen method, the same
order as a. For m estimation points, kriging complexity is thus: an2 + bmp3/10.

Concerning neural interpolation, two steps are also required at each time
step. First, the distance between the considered data point and all neurons is

Fast Interpolation Using Kohonen Self-Organizing Neural Networks 135

computed (we consider that we have m neurons). The cluster can be found in
constant time, under some simple hypothesis [10]. Then, all neurons are updated
according to their distance to the cluster. These two steps require cmt operations,
where c is the same order as a and b.

Neural interpolation and kriging have a comparable cost if the number of
iterations t is the same order as the maximum of n2/m and p3/10. Clearly, when
very few data points are available, kriging is faster, while when a lot of data
points are available neural interpolation is faster. Two numerical examples are
given in table 1. The number p of points used to build the systems of equations
for kriging is 20. Although quite low when compared to the number of data
points available, it is often sufficient. The number t of iterations for neural inter-
polation is chosen from our experience to allow convergence of the algorithm.The
last column gives (an order of) the number of operations required for neural in-
terpolation, while the one before gives this number for kriging. Remember that
the problem of choosing the right p points for kriging is not taken into account
to evaluate the number of operations.

Table 1. Numerical examples of the algorithmic complexity of each method.

n m p t # op. kriging # op. neur. int.
100 1,000 20 1,000 810,000 1,000,000

10,000 1,000 20 10,000 100,800,000 10,000,000

4.2 Practical Results

The neural interpolation method has been used on synthetic and real data sets.
The results are available in [10]. The synthetic data sets aimed at controlling
the optimality of the results, and were therefore not too big. Some criteria were
defined to assess the mean bias and optimality of the interpolations for all the
neurons of a network. It was shown that the bias is nearly null if there are enough
modifications of the weights, that is if the number of iterations and the gain are
sufficiently high. Optimality is ensured with a very low relative error (less than
3%), and requires the same conditions as nullity of the bias. The residual relative
error must be compared with the error between the experimental variance and
the model used in kriging, which is generally about 8%.

Kriging has been used during the european project MEDATLAS to make an
atlas of the temperature climatology field over the Mediterranean sea [2]. The
aim was to produce a series of maps of the temperature climatology state of the
sea, for each month and at some 29 standard depths (that is 348 maps). The
number of data available was related to the depth considered, from about 260,000
in surface to less than 1,000 at the bottom. The domain to model was the whole
Mediterranean basin on a grid of about 25 km step, which makes more than
15,000 grid points. To achieve this goal in a reasonable computation time, the

136 O. Sarzeaud and Y. Stéphan

kriging approach was based on an adapted meshing of the data set, that allowed
to select the points where it was worth computing. For the chosen points, a
universal kriging method was used, based on a regional model of variance. The
results were then re-gridded on a regular grid using a weight-distance linear
combination of the 4 closest estimated values. An example of temperature map
is given in figure 3.

A real data set was taken from the MEDATLAS project, and aimed at sho-
wing the computing time gain. The data set contained about 25,000 measures.
The interpolation was required on a 204x72 points grid. The result was checked
using cross validation. With this aim, the regular estimation and error grids
were first reinterpolate to the data points using a classical bilinear interpolation.
Then, the error between the value used to build the map and the value given by
the map at each data point was computed. The mean error on all data points
was found to be -0.02, which is close enough to 0 to say that the estimation
is unbiased. Finally, the error on each point was compared with the predicted
error. The mean value was found to be 0.82, which is close enough to 1 to say
that the error map is coherent with the estimation. However, there can be cases
where the estimation is very bad, although not biased, and coherent with the
error computed. Therefore, it was necessary to make a graphical comparison
between the maps. The map built by neural interpolation compared well with
the MEDATLAS one (figure 4). The neural interpolation method required less
than 1 minute of computing time, while the method used in MEDATLAS (which
hopefully limited the number of points where to interpolate with the help of an
adapted meshing) required more than four hours.

5 Conclusion

An original method for fast interpolation of big data sets is presented in this
paper. The method relies on some basic modification of the standard Kohonen
algorithm. Its unbiasness and optimality are demonstrated under hypothesis si-
milar to those used in kriging. The method has been applied on several synthetic
and actual data sets. In every cases, the results compare perfectly well with those
obtained by kriging. However, the method is much faster than kriging when the
data set is large, which is practically the case for actual problems. Future work
will deal with taking into account an error on each data point, what kriging can
do. Other studies will deal with the use of the Kohonen algorithm for data fusion
and assimilation.

Acknowledgment: This work was funded by the Service Hydrographique et Océ-
anographique de la Marine (SHOM) under contract 98.87.054. The authors wish
to thank Didier Jourdan (CMO) for helpful comments and for making available
a part of the MEDATLAS data set.

Fast Interpolation Using Kohonen Self-Organizing Neural Networks 137

13

15
.5

16
16

.5
16

.5

17

17

17

17.5

17
.5

18

18

18

18

18

18.5

18
.5

18.5

19

19.5

19.5

20.5

G
M

T
Ju

n
27

 1
5:

49
M

ED
A

TL
A

S

8˚
W

8˚
W

4˚
W

4˚
W

0˚0˚

4˚
E

4˚
E

8˚
E

8˚
E

12
˚E

12
˚E

16
˚E

16
˚E

20
˚E

20
˚E

24
˚E

24
˚E

28
˚E

28
˚E

32
˚E

32
˚E

36
˚E

36
˚E

40
˚E

40
˚E

32
˚N

32
˚N

36
˚N

36
˚N

40
˚N

40
˚N

44
˚N

44
˚N

48
˚N

48
˚N

2.
5

3.
5

4.
5

5.
5

6.
5

7.
5

8.
5

9.
5

10
.5

11
.5

12
.5

13
.5

14
.5

15
.5

16
.5

17
.5

18
.5

19
.5

20
.5

21
.5

22
.5

23
.5

24
.5

25
.5

26
.5

27
.5

28
.5

de
g.

C

Fig. 3. MEDATLAS map of May at 10 m immersion [3].

138 O. Sarzeaud and Y. Stéphan

11.5

12.5

12.5

12
.5

12
.5

13.5 13
.5

13.5

13.5

13.5
13.5

13
.5

13
.5

14
.5

14
.5

14.5

14.5

14.5

14.5

14
.5

14
.5

14
.5

15
.5

15
.5

15.5

15.5

15
.5

15.5

15
.5

15
.5

15.5

15.5

15
.5

15
.5

16
.5

16
.5

16.5

16.5

16.5

16
.5

16.5

16.5

16.5

16.5

16
.5

16.5

16
.5

16.5

16
.5

16.5

16
.5

16.5

16.5

16
.5

16.5

16.5

17.5

17
.5

17
.5

17
.5

17.5

17
.5

17
.5

17.5

17
.5

17.5

17
.5

17
.5

17
.5

17
.5

17
.5

17
.5 17

.5
17

.5
17

.5

17
.5

17.5

18
.5

18
.5

18
.5

18.5

18
.5 18.5

18
.5

18
.5

18
.5

18
.5

18
.5

18
.5

19
.5

19.5

19
.5

19
.5

19
.5

20
.5

20.5

8˚
W

8˚
W

4˚
W

4˚
W

0˚0˚

4˚
E

4˚
E

8˚
E

8˚
E

12
˚E

12
˚E

16
˚E

16
˚E

20
˚E

20
˚E

24
˚E

24
˚E

28
˚E

28
˚E

32
˚E

32
˚E

36
˚E

36
˚E

40
˚E

40
˚E

32
˚N

32
˚N

36
˚N

36
˚N

40
˚N

40
˚N

44
˚N

44
˚N

48
˚N

48
˚N

2.
5

3.
5

4.
5

5.
5

6.
5

7.
5

8.
5

9.
5

10
.5

11
.5

12
.5

13
.5

14
.5

15
.5

16
.5

17
.5

18
.5

19
.5

20
.5

21
.5

22
.5

23
.5

24
.5

25
.5

26
.5

27
.5

28
.5

de
g.

C

Fig. 4. Map of the Med data set produced by neural interpolation.

Fast Interpolation Using Kohonen Self-Organizing Neural Networks 139

References

1. David, M., Crozet, D., Robb, J.M.: Automated mapping of the ocean floor using
the theory of intrinsic random functions of order k. Marine Geophysical Researches
8 (1986) 49–74

2. Jourdan, D., Balopoulos, E., Garcia-Fernandez, M.-J., Maillard, C.: Objective Ana-
lysis of Temperature and Salinity Historical Data Set over the Mediterranean Basin.
OCEANS’98, IEE/OES Ed. (1998) vol. 1, 82–87

3. Jourdan, D.: Bilan du projet MEDATLAS. Technical report 02P98, Service Hydro-
graphique et Océanographique de la Marine (1998)

4. Kohonen, T.: Self-organizing maps. Springer-Verlag (1995)
5. Matheron, G.: The intrinsic random functions and their applications. Advances in

Applied Probability 5 (1973) 439–468
6. Ritter, H., Schulten, K.: On the stationnary state of Kohonen’s self-organizing sen-

sory mapping. Biological Cybernetics 54 (1986) 99–106
7. Ritter, H., Schulten, K.: Convergence properties of Kohonen’s topology conserving

maps: Fluctuations, stability, and dimension selection. Biological Cybernetics 60
(1988) 59–71

8. Sarzeaud, O.: Les réseaux de neurones, contribution à une théorie. Ouest Editions
(1994)

9. Sarzeaud, O., Stéphan, Y., Le Corre, F., Kerleguer, L.: Neural meshing of a geogra-
phical space in regard to oceanographic data location. OCEANS’94, Brest, France
(1994)

10. Sarzeaud, O.: Interpolation optimale et assimilation de données par réseaux de
Kohonen. Technical report OS/99003 (1999)

	Introduction
	Optimal Interpolation
	Definition of Interpolation
	Kriging

	Neural Interpolation
	Kohonen Self-Organizing Networks
	Neural Interpolation Algorithm

	Comparison
	Algorithmic Complexity
	Practical Results

	Conclusion

