
1 Introduction 

The software systems of today are rapidly growing in size, complexity, amount of dis- 
tribution, and numbers of users. We have recently witnessed a rapid increase in the 
speed and capacity of hardware, a decrease in its cost, the emergence of the Internet as 
a critical resource, and a proliferation of hand-held consumer electronics devices. In 
turn, this has resulted in an increased demand for software applications, outpacing our 
ability to produce them, both in terms of their sheer numbers and the sophistication 
demanded of them. One can now envision a number of complex software development 
scenarios involving fleets of mobile devices used in environment monitoring, freeway- 
traffic management, damage surveys in times of natural disaster, and so on. Such sce- 
narios present daunting technical challenges: effective understanding of existing or 
prospective software configurations; rapid composability and dynamic reconfigurabil- 
ity of software; mobility of hardware, data, and code; scalability to large amounts of 
data, numbers of data types, and numbers of devices; and heterogeneity of the software 
executing on each device and across devices. Furthermore, software often must exe- 
cute on "small" devices, characterized by highly constrained resources such as limited 
power, low network bandwidth, slow CPU speed, limited memory, and small display 
size. We refer to the development of software systems in the described setting as ~ o -  
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gramming-&z-the-small-and-many (Prism), in order to distinguish it from the com- 
monly adopted software engineering paradigm of pogramming-in-the-large (PitL) [6]. 

Recent studies [I 1,16,33] have shown that a promising approach to developing 
software systems in the Prism setting is to employ the principles of software architec- 
tures. Software architectures provide abstractions for representing the structure, behav- 
ior, and key properties of a software system [29]. They are described in terms of 
software components (computational elements) [36], software connectors (interaction 
elements) [19], and their configurations (also referred to as topologies) [18]. 

Software architectures provide design-level models and guidelines for composing 
software systems. For these models and guidelines to be truly useful in a development 
setting, they must be accompanied by support for their implementation [15,28]. This is 
particularly important in the Prism setting: Prism systems may be highly distributed, 
decentralized, mobile, and long-lived, increasing the risk of architectural drift [25] 
unless there is a clear relationship between the architecture and its implementation. 

This paper describes the design and evaluation of Prism-1Mn/, a middleware devel- 
oped to support the implementation of software architectures in the Prism setting. We 
say that the middleware is architectural because it provides programming language- 
level constructs for implementing software architecture-level concepts such as compo- 
nent, connector, configuration, and event. This allows software developers to directly 
transfer architectural decisions into implementations, thus distinguishing Prism-MW 
from existing middleware solutions. 

Another key contribution of Prism-MW is its highly modular design that employs 
an extensive separation of concerns. This results in a middleware that is flexible, effi- 
cient, scalable, and extensible. The middleware is flexible in its support for indepen- 
dent selection, variation, and composition of implementation-level concerns. The 
middleware is efficient in its size, speed, and overhead added to an application. The 
middleware is scalable in the numbers of components, connectors, events, execution 
threads, and hardware devices. Finally, the middleware is easily extensible to support 
new development concerns and situations in the Prism setting. 

These properties of Prism-MW have been successfully evaluated using a series of 
example applications, benchmark tests performed both within our group and by exter- 
nal users, and a large-scale feasibility study conducted in collaboration with an indus- 
trial organization. At the same time, our evaluations of Prism-MW have suggested 
several areas of improvement, including an entirely novel approach to designing archi- 
tectural middleware. We intend to explore these issues in our future work. 

The rest of the paper is organized as follows. Section 2 presents our objectives for 
Prism-MW. Section 3 presents the design and implementation of Prism-MW's core 
capabilities, and evaluates them with respect to the objectives. Section 4 discusses the 
extensibility of Prism-MW and presents several specific extensions completed to date. 
Section 5 describes our tool support. Section 6 presents additional evaluation of the 
middleware conducted in collaboration with external users. The paper concludes with 
overviews of related and future work. 

2 Middleware Objectives 

As discussed above, there are a number of significant challenges faced by software 
developers in the Prism setting. We believe those challenges to fall within four general 
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categories, comprising our objectives for Prism-MW. Three of the four objectives 
directly derive from the "Prism" acronym: support for pogramming (i.e., develop- 
ment) of Prism applications on many small computing platforms. We consider these 
three to be the core objectives. The fourth objective reflects the variation and constant 
evolution of development situations in the Prism setting. Each objective is further dis- 
cussed below. 

Architectural abstractions - A key observation guiding this research is that an effec- 
tive way of supporting the development of Prism applications is to explicitly focus 
on software architectures [I 1,16,33]. Prism-MW should thus provide direct imple- 
mentation-level support for architectural abstractions (components, connectors, 
communication events, and so on). 
Efficiency - Prism-MW should impose minimal overhead on an application's execu- 
tion. Our current goal is to enable efficient execution of applications on platforms 
with varying characteristics (e.g., speed, capacity, network bandwidth). The ultimate 
goal is to extend this support to include efficient access to and sharing of hardware 
resources (e.g., battery, peripheral devices). 
Scalability - Prism-MW should be scalable in order to effectively manage the large 
numbers of devices, execution threads, components, connectors, and communication 
events present in Prism systems. 
Extensibility - There are several additional capabilities that may be required for dif- 
ferent (classes of) Prism applications. These include awareness, mobility, dynamic 
reconfigurability, security, real-time support, and delivery guarantees 
[2,3,7,11,12,24]. Prism-MW should be easily extensible to provide support for (arbi- 
trary combinations of) these capabilities. 

3 Middleware Core 

In this section we discuss the design, implementation, and evaluation of Prism-MW's 
core capabilities. The discussion is organized around the three core objectives. 

3.1 Architectural Abstractions 

Prism-MW's core supports architectural abstractions by providing classes for repre- 
senting each architectural element, with methods for creating, manipulating, and 
destroying the element. These abstractions enable direct mapping between an architec- 
ture and its implementation. Figure 1 shows the class design view of Prism-MW. The 
shaded classes constitute the middleware core, with dark gray classes being relevant to 
the application developer. Our goal was to keep the core compact, reflected in the fact 
that it contains only eight classes and six interfaces. Furthermore, the design of the 
core (and the entire middleware) is highly modular: the only dependencies among 
classes are via interfaces and inheritance; the only exception is the Architecture class, 
which contains multiple Bricks for reasons that are explained below. 

3.1.1 Middleware Core S Design 

Brick is an abstract class that encapsulates common features of its subclasses 
(Architecture, Component, and Connector). The Architecture class records the config- 
uration of its constituent components and connectors, and provides facilities for their 
addition, removal, and reconnection, possibly at system runtime. A distributed applica- 
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Fig. 1. UML class design view of Prism-MW. Middleware core classes are highlighted 

tion is implemented as a set of interacting Architecture objects. Components in an 
architecture communicate by exchanging Events, which are routed by Connectors. In 
order to support different topologies, each component may be attached to an arbitrary 
number of connectors. In order to support the needs of dynamically changing 
applications, each Prism-MW connector is capable of servicing varying numbers of 
components [21]. This property of connectors, coupled with event-based interaction, 
has proven to be a highly-effective mechanism for addressing system reconfigurability. 

Each subclass of the Brick class has an associated interface. The IArchitecture 
interface exposes a weld method for attaching components and connectors to one 
another. The IComponent interface exposes send and handle methods used for 
exchanging events. We have implemented several versions of this interface to support 
asynchronous, synchronous unicast, and synchronous multicast of events. The Icon- 
nector interface provides a handle method for routing of events. To address the needs 
of different applications in the Prism setting, we have implemented two versions of 
this interface, supporting both symmetric (i.e., peer-to-peer) and asymmetric (i.e., 
request-response) interaction. Each Architecture object implements both IConnector 
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and /Component interfaces, thus allowing construction of complex components and 
connectors with internal architectures. 

Finally, Prism-MW's core associates the /Scaffold interface with every Brick. Scaf- 
folds are used to schedule events for delivery (via the IScheduler interface) and pool 
threads (via the IDispatch interface) in a decoupled manner. Prism-MW's core provides 
default implementations of IScheduler and IDispatch: FIFO and round-robin, respec- 
tively. The novel aspect of our design is that this separation of concerns allows us to 
select the most suitable event scheduling policy independently of the dispatching pol- 
icy for a given application. Additionally, dispatching and scheduling are decoupled 
from the Architecture, allowing one to easily compose many sub-architectures (each 
with its own scheduling and dispatching policies) in a single application. /Scaffold also 
directly aids architectural awareness [2] by allowing probing of the runtime behavior of 
a Brick. 

To date, Prism-MW's core has been implemented in Java JVM and KVM [35], 
C++ and Embedded Visual C++ (EVC++). Each implementation of the middleware 
core is quite small, averaging 1,750 SLOC, which aids Prism-MW's understandability 
and ease of use.' 

3.1.2 Using Prism-MW 

Prism-MW's core provides the necessary support for developing arbitrarily complex 
applications, so long as they rely on the provided default facilities (e.g., event schedul- 
ing, dispatching, and routing) and stay within a single address space. The first step a 
developer takes is to subclass from the Component class for all components in the 
architecture and to implement their application-specific methods. The next step is to 
instantiate the Architecture class and define the needed instances of thus created com- 
ponents, and of connectors selected from the reusable connector library.2 Finally, 
attaching component and connector instances into a configuration is achieved by using 
the weld method of the Architecture class. This process can be partially automated 
using our tool support described in Section 5. 

For illustration, Figure 2 shows a simple usage scenario of the Java version of 
Prism-MW. The application consists of two components communicating through a sin- 
gle connector. The DemoArch class's main method instantiates components and con- 
nectors and composes (welds) them into a configuration. Figure 2 also demonstrates 
event-based communication between the two components. Component A creates and 
sends an event, in response to which Component B sends a response event. An event 
need not identify its recipient components; they are uniquely defined by the topology 
of the architecture and routing policies of the employed connectors [16]. 

3.2 Efficiency 

Since Prism applications frequently run on resource-constrained devices, with low 
amounts of memory (e.g., 256 KB on the Palm Pilot) and slow processing speed, we 
have performed several optimizations on Prism-MW's core. While there are common 
techniques for ensuring efficient implementations of distributed systems, Prism-MW 

' The interfaces used in Prism-MW7s core are directly supported in Java. In C++ and EVC++ they have been 
implemented using abstract classes with pure virtual functions. 

* Recall that Prism-MW's core provides several connectors through the implementations of the IConnector 
interface. 
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presented unique challenges in this regard because of its objective of directly support- 
ing architectural abstractions in highly resource-constrained settings. Some of the opti- 
mization techniques we applied are novel, while others have been adapted from 
existing work. A contribution of our work on optimizing Prism-MW lies in their com- 
bination: it results in a highly efficient architectural middleware that introduces mini- 
mal overhead in terms of dynamic memory usage and shows good performance. In the 
remainder of this section we describe these optimizations and provide a series of 
benchmark results that evaluate them. 

3.2.1 Initial Implementation 

In our initial implementa- 
tion of Prism-MW's core, 
each component main- 
tained dynamically allo- 
cated queues of its 
incoming and outgoing 
events. Each component 
also owned an internal 
thread of control that was 
used to process incom- 
ing events and place out- 
going events on the 
queue (as implemented in 
/Component's send and 
handle methods, respec- 
tively). The encompass- 
ing Architecture's 
dispatcher then ensured 
that the outgoing events 
are routed to their desti- 
nations. Furthermore, the 
Architecture's implemen- 
tation of the /Scheduler 
interface was trivial since 
all the scheduling was 
handled at the individual 
component level. How- 

Architecture initialization 
class DemoArch { 

statlc public vold main(Str1ng argv[]) { 
Architecture arch = new Architecture ("DEMO " ) ;  

/ /  create components ?ere 
ComponentA a = new ComponentA ("A"); 
ComponentB b = new ComponentB ("B") ; 

/ /  create connectors here 
Connector conn = new Connector("Conn"); 

/ /  add components and connectors to the architect1 
arch.addComponent(a); 
arch.addComponent(b); 
arch.addConnector(confl; 

/ /  establish the interconnections 
arch.weld (a, conn) ; 
arch.weld (b, conn) ; 
arch. start ( ) ; 

I 

Component A sends an event 
e = new Event ("Event-a") ; 
e. addparameter ("paramplW, pl) ; 
send (e); 

Component B handles the event and sends a response 
public void handle (event e )  
{ 

if (e . equals ( "Eventpa") ) { 
0 . .  

event el= new Event ("Xesponse to a") ; 
el.addParameter("response", respj; 
send (el) ; 

1 . .  . 

Fig. 2. Illustration of application implementation fragments. 

ever; this implementation had several problems, including unacceptable application 
size and speed. Prism-MW's highly modular design allowed us to significantly 
improve efficiency by radically altering the manner in which events are exchanged and 
processed. At the same time, we were able to confine our modifications to the imple- 
mentations of /Component (specifically, its send method), /Scheduler, and /Dispatch. 
These modifications are discussed below. 

3.2.2 Optimizing for Size and Speed 

We observed that a large amount of dynamic system memory usage was a result of the 
exchange of events among components and connectors. We minimized the required 
memory for event passing by exchanging read-only events in the same address space 
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by reference, rather than by copy. We further optimized memory usage by adopting a 
fixed-sized, circular array for storing all events in a single address space. This reduced 
overall memory usage by a factor of 20 or more over the initial solution described 
above 11 51. 

 noth her modification addressed event processing. A pool of shepherd threads 
(implemented in Prism-MW core's RoundRobinDispatcher class) was introduced to 
handle events sent by any component in a given address space. The size of the thread 
pool is parameterized and, hence, adjustable. It should be noted that the concurrency 
management of the circular array used to implement the event queue slightly impacts 
the speed of processing by applying a producer-consumer algorithm to keep event pro- 
duction under control, and supply shepherd threads with a constant stream of events to 
process. 

TO process an event, a Thread POOI 

shepherd thread removes the 
event from the head of the ..,,,,.,, camp 

queue. For local communica- 
tion, the shepherd thread is 
run through the connector 
attached to the sending com- 
ponent; the connector dis- 
patches the event to relevant 
components using the same 

c 

thread (see Figure 3). If a 
recipient component gener- Fig. 3. Event dispatching in Prism-MW for a single 
ates further events, they are address space. Steps (1)-(7) are performed by a single 

added to the tail of the event shepherd thread. 

queue; different threads are 
used for dispatching those events to their intended recipients. An alternative design, 
which required modification of only the /Dispatch interface's implementation, allows 
separate threads to be used for dispatching an event from the connector to each 
intended recipient component (steps 3-6 in Figure 3). This increases parallelism, but 
also resource consumption, in the architecture. We are currently implementing and 
evaluating this design. 

Prism-MW uses the same basic mechanism for communication that spans address 
spaces as it does for local communication: a shepherd thread transports the event from 
the queue to its recipients via a connector. However, in this case the connector is a spe- 
cialized Distributionconnector (further discussed in Section 4. I), which manages a set 
of network (e.g., socket or infrared) connections. Thus, instead of routing the event 
through the components attached to the connector (steps 3-6 in Figure 3), the shepherd 
thread simply deposits the event on all communication ports managed by the Distribu- 
tionconnector. As the event is propagated across the network, the DistributionConnec- 
tor on each recepient device uses its internal thread to retrieve the incoming event from 
the communication port and place it on its local event queue. 

This solution represents an adaptation of an existing worker thread pool technique 
[3 11 that results in several unique benefits: 
1. By leveraging explicit architectural topology an event can be routed to multiple desti- 

nations using a single shepherd thread. This minimizes resource consumption, since 
events need not be tagged with their recipients; 
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We further optimize resource consumption by using a single event queue for storing 
both locally and remotely generated events; and 
Since Prism-MW does not process local and remote events differently, and all routing 
is accomplished via the multiple and explicit software connectors, Prism-MW also 
allows for easy redeployment and redistribution of existing applications onto differ- 
ent hardware topologies. 

3.2.3 Evaluation 

The above optimizations have resulted in very light-weight Prism-MW implementa- 
tions that have shown several orders of magnitude in performance improvement over 
the original implementation described above. More importantly, the performance of 
Prism-MW is now comparable to solutions using a plain programming language (PL): 
each Prism-MW event exchange causes five PL-level method invocations and, a com- 
paratively much more expensive, context switch if the architecture is instantiated with 
more than one shepherd thread (roughly corresponding to steps 1-4 and 7 in Figure 3); 
analogous functionality would be accomplished in a PL with two invocations and, 
assuming concurrent processing is desired, a context switch. It should also be noted 
that it is unlikely that a plain PL could support a number of development situations for 
which Prism-MW is well suited (e.g., asynchronous event multicast) and due to which 
it introduces its performance overhead in the first place. 

For illustration, we describe 
the results from one series of 
evaluations used to measure the 
size and performance of the Java 
Prism-MW implementation.3 The 
benchmarking applications con- 
sisted of n (n = 1, 10, and 50) 
identical components communi- 
cating via a connector with a sin- 
gle component, but not with each 
other (Figure 3 shows such a sce- 
nario for n = 2). The applications N" 

used a pool of 10 shepherd 'Om 

threads and a queue of 1000 
events (q-size). Between 1 and Fig. 4. The results of the performance benchmark 

100,000 simple (parameter-less) 
events were sent asynchronously by the single component to the n components, result- 
ing in between 1 and 5,000,000 handled events for the three applications. The results 
of this benchmark are shown in Figure 4. 

Memory usage of Prism-MW core (mwmem), recorded at the time of architecture 
initialization, is 4.6 KB. The overhead of a "base" Prism component (compmem), 
without any application-specific methods or state, is 0.8 KB. Memory overhead of cre- 
ating and sending a single event (evtmem) can be estimated using the following for- 
mula, obtained empirically: 

evt-mem (m 1<B) = 0.16 + 0.24 * num-of-parameters 

The benchmarks presented throughout the paper were performed on an Intel Pentium I11 700 MHz proces- 
sor with 256 MB of RAM running JDK 1 . I  .8 on Microsoft Windows 2000. 
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The formula assumes that the parameters do not contain complex objects, but may 
contain simple objects (e.g., Java Integer or Therefore, for example, the max- 
imum memory overhead (assuming the event queue is full) induced by using Prism- 
MW in the largest benchmark application described above is approximately 

mw-mem + num-comps * comp-mem + q-size * evt-mem = 

4.6 + (51 * 0.8) + (1000 * (0.16 +(0.02 * 0))) = 205 I<B 

3.3 Scalability 

Prism-MW's modularity and separation of concerns directly aid its scalability in the 
numbers of supported devices, components, connectors, threads, and events. Prism- 
MW's support for large numbers of devices is a consequence of its support for large 
numbers of connectors. Similarly, its scalability in the number of events is fostered by 
scalability in the number of threads. The below discussion reflects these relationships. 

3.3.1 Connectors and Devices 

Unlike the existing middleware platforms (e.g., CORBA [40], LIME [12], .NET [20]), 
which support a single, implicit connector in a system, Prism-MW supports an arbi- 
trary number of connectors. Prism-MW's explicit, flexible connectors allow an archi- 
tecture to be deployed onto an arbitrary number of hosts, by repeated splitting of the 
connectors using the technique described in [ 5 ] .  In a highly degenerate case, this 
would result in some devices serving only as routers, without containing any compo- 
nents. For this reason, the number of devices supported by Prism-MW is unlimited in 
principle. It should be noted, however, that the deployment choice directly affects effi- 
ciency: the performance gain of using the centralized event queue is achieved only if 
the components are residing in the same address space. 

3.3.2 Components 

Realistically, the number of compo- 
nents on a given device is limited and 
can be estimated using the following 
simple formula: n = (M - his) / ACS, 
where M is the available memory on 
the device, MS is the memory occupied 
by Prism-MW, and ACS is the average 
component size. Recall from 
Section 3.2 that the impact of MS and 
the middleware-induced portion of 
ACS on the device's memory con- 
sumption is very low. We have per- 
formed a series of benchmarks in order 
to assess the behavior of Prism-MW in 
cases where lar e numbers of compo- B nents is used. Figure 5 shows the 

- 
Number of comDonents 

Fig. 5. The results of the scalability 
benchmark. 

In this sense, the measure represents minimum event overhead. Use of complex objects as event parame- 
ters is independent of the middleware, hut is an application-level decision. 

We have run benchmark tests with up to 1,000,000 components. 
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results of a test in which a varying number of identical components (n) communicated 
with a single component through a connector. 100 parameter-less events were sent 
asynchronously by the single component to all other components, resulting in n*100 
events being handled. We have also performed a benchmark test with two end-point 
components that communicated using a "chain" consisting of 100,000 components 
that simply forward incoming events through 100,001 connectors. The total round-trip 
time for a single event was 2.7 seconds. 

3.3.3 Threads and Events 

Prism-MW supports as many threads as the underlying platform supports. Finally, the 
number of events supported by Prism-MW is not limited by the middleware itself, but 
by the properties of the underlying hardware platform. This limit can be characterized 
by the following two parameters: ( I )  the maximum number of events that can simulta- 
neously be present in a system and (2) the rate of event delivery. The maximum num- 
ber of events is limited by the available memory on a given host (or set of hosts) and 
event size (recall Section 3.2), while the rate of event delivery depends on the CPU 
speed, the number of threads servicing the event queue, the ratio of event production to 
consumption by the components, and the network bandwidth for events that traverse 
machine boundaries. 

4 Middleware Extensions 

The design of Prism-MW's core provides extensive separation of concerns both via its 
explicit architectural constructs and its pervasive use of interfaces. The design is 
highly extensible. The unshaded classes and interfaces in Figure 1 show various exten- 
sions to the Prism-MW core we have built to date. These include support for architec- 
tural awareness, real-time, distributability, security, heterogeneity, data compression, 
delivery guarantees, and mobility [2,3,7,11,12,24]. In this section we describe our 
approach to supporting these extensions. Our experience indicates that other exten- 
sions can be easily added to the middleware in the same manner. 

Our support for extensibility is built around the objective that Prism-MW's core 
remains unchanged. Instead, the core constructs (Component, Connector, and Event) 
are subclassed via specialized classes (ExtensibleComponent, Extensibleconnector, 
and ExtensibleEvent), each of which composes a number of interfaces. Each interface 
can have multiple implementations, thus enabling selection of the desired functionality 
inside each instance of a given Extensible class. If an interface is installed in a given 
class instance, that instance will exhibit the behavior realized inside the interface's 
implementation. Multiple interfaces may be installed in a single Extensible class 
instance. In that case, the instance will exhibit the combined behavior of the installed 
interfaces. 

Below we describe four classes of extensions supported by Prism-MW, with an 
explicit focus on the extensions we have completed to date. Further details on these 
extensions may be found in [2 11. With the exception of Prism-MW's support for distri- 
bution (see below as well as Sections 5.2 and 6.3), we do not discuss the efficiency 
aspects of these extensions for two reasons. First, our primary goal to date has been to 
assess the extensibility of Prism-MW, and we have not optimized our implementations 
of many of its extensions. Secondly, in most cases our implementations employed 
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known algorithms and techniques, such that any performance measures would be a 
function of those algorithms and techniques rather than the inherent properties of 
Prism-M W. 

4.1 Connector Extensions 

In order to address different aspects of interaction the ExtensibleConnector class com- 
poses a number of interfaces that support various interaction services. In turn, each 
interface can have multiple implementations. 

Figure 1 shows five different interfaces we have implemented thus far. The IDistri- 
bution interface has been implemented in two classes, one supporting socket-based 
and the other infrared port-based inter-process communication (IPC). We refer to an 
ExtensibleConnector with instantiated IDistribution interface as DistributionConnec- 
tor. A single DistributionConnector can be attached to an arbitrary numbers of remote 
hosts, as well as local components and connectors. Similarly to the "base" Prism-MW 
connector discussed in Section 3.1.1, a DistributionConnector is capable of supporting 
runtime addition and removal of local components and connectors, as well as remote 
devices. The base size of the (more frequently used) socket-based DistributionConnec- 
tor is 1.27 KB. In addition to this, each socket connection adds 2.7 KB on average. 
Finally, the PL's support for IPC introduces additional overhead. In Java this overhead 
is 9.5 KB for loading the j ava . n e t  package. 

The ISecurity interface has several implementations that perform combinations of 
authentication, authorization, encryption, and event integrity. These services are 
implemented using three major cryptographic algorithms: symmetric key, asymmetric 
key, and event digest function. The IConnDeliveryGuarantees interface supports event 
delivery guarantees. We have implemented this interface to support at most once, at 
least once, exactly once, and best effort delivery semantics. In order to support com- 
munication across PLs, we have added the IXMLConversion interface and imple- 
mented XML encodingldecoding of events inside the XMLConverter class. Finally, we 
have added the ICompression interface with the goal of minimizing the required net- 
work bandwidth for event dispatching. To this end, we have implemented the Huffman 
coding technique [27] inside the Compression class. 

Addition of a new interface to the ExtensibleConnector requires adding a pointer to 
the interface and performing method calls on it inside ExtensibleConnector's handle 
method. The change to the ExtensibleConnector class is minimal, averaging three new 
lines of code for each new interface. However, it is important to know the right order- 
ing of method calls to achieve the desired behavior. For example, when combining ISe- 
curity and IXMLConversion interfaces, IXMLConversion's convert method is invoked 
before ISecurity's encrypt method when sending the event; on the receiving end, the 
ISecurity7s decrypt method is invoked before IXMLConversion7s reconstitute method. 

The overhead introduced by this solution is that an ExtensibleConnector instance 
may have many null pointers, corresponding to interfaces that have not been installed. 
The values of these pointers will be checked each time the handle method is invoked. 
An alternative solution, which would trade-off the extensibility for efficiency, is to 
subclass the Connector class directly and to have the references only to the desired 
interfaces. We are planning to implement a tool that would perform this task automati- 
cally, given a specification of features that a connector should support. 
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4.2 Component Extensions 

To support various aspects of architectural awareness and middleware-level reflection, 
we have provided the ExtensibleComponent class that composes several interfaces. 
Additionally, ExtensibleComponent contains a reference to /Architecture, allowing its 
instances to act as meta-level components and to effect runtime changes on the sys- 
tem's architecture. To date, we have augmented the ExtensibleComponent class with 
two interfaces. The IAdmin interface is used for performing component deployment 
and mobility (see Section 5.2). The IRuntimeAnalysis interface is used for analyzing 
the architectural descriptions and assessing proposed architectural changes during the 
application's execution. We have recently implemented several versions of this inter- 
face that encapsulate different subsets of our DRADEL [17] environment (see 
Section 5.1). 

4.3 Event Extensions 

To support various facets of event delivery we have provided the ExtensibleEvent class 
that can compose multiple interfaces. To date, we have created three interfaces inside 
the ExtensibleEvent class. The IDeliveryGuaranteesEvent interface is used to assign a 
delivery guarantee policy to an event (i.e., at most once, at least once, exactly once, 
best effort). This interface is used in tandem with the IConnDeliveryGuarantees inter- 
face of the ExtensibleConnector class. The IRealTimeEvent interface is used to assign 
a real-time deadline to an event. We have implemented this interface to support both 
aperiodic and periodic real-time events. In support of real-time event delivery we have 
additionally provided three classes that implement the /Scheduler and /Dispatch inter- 
faces, discussed below. Finally, to support communication across PL boundaries the 
IXMLRepresentation interface provides XML-based representation of an event. 

4.4 Other Extensions 

In addition to the IDistribution interface inside the ExtensibleConnector class, to sup- 
port distribution and mobility we have implemented the Serializable interface inside 
each one of the Extensible classes. This allows us to send data as well as code across 
machine boundaries. 

In support of real-time event delivery we have provided two additional implemen- 
tations of the IScheduler interface. EDFScheduler implements scheduling of aperiodic 
events based on the earliest-deadline-first algorithm, while RateMonotonicScheduler 
implements scheduling of periodic events. 

5 Tool Support 

We augment Prism-MW with tools for architectural modeling, analysis, deployment, 
and run-time monitoring and evolution. These tools themselves have been imple- 
mented using Prism-MW. As such, the tools provide additional evaluation of Prism- 
MW. 
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5.1 Modeling and Analysis 

In adding support for architecture modeling and analysis to Prism-MW, we have inte- 
grated xADL 2.0 [4], a highly extensible XML-based architecture description lan- 
guage (ADL) [18], into our existing analysis environment, DRADEL [17]. Our 
support for architectural description is reasonably general: we model interacting com- 
ponents simply as collections of provided and required services whose semantics are 
represented in first-order logic. DRADEL's TopologicalConstraintChecker and 
Typechecker components use this information to ensure architectural consistency. 
While the details of DRADEL have been reported elsewhere [17], DRADEL is rele- 
vant in this context because it has been reengineered using Prism-MW: it consists of 
nine components and four connectors, comprising 13,000 Java SLOC, not counting 
Prism-MW itself. Furthermore, DRADEL's CodeGenerator component generates 
Prism-M W compatible application skeletons from xADL descriptions, directly aiding 
the transfer of architectural decisions into application code. 

5.2 Deployment and Run-Time Monitoring 

Our support for deployment and run-time monitoring directly leverages Prism-MW's 
services. We have integrated and extended the COTS MS Visio tool to develop Prism- 
DE, the deployment environment for Prism applications, shown in Figure 6. Prism-DE 
contains several toolboxes (left side of Figure 6). The top toolbox enables an architect 
to specifL a configuration of hardware devices by dragging their icons onto the canvas 
and connecting them. The next toolbox enables the specification of processes that will 
be executing on each device. The remaining toolboxes supply the software compo- 
nents and connectors that may be placed inside the processes. The Connectors toolbox 
is populated with connector types that represent various combinations of Extensible- 
Connector interface implementations we have built to date. The Components tool- 
boxes have to be populated with application components for each new application. 
This task only requires specifLing the location of each component's implementation 
(either a collection of Java classes or a C++ DLL). Prism-DE actively analyzes the 
specified configurations, ensuring that each architectural element has a container pro- 
cess and a valid instance name, and that C++ modules are not be in the same process as 
Java modules. Additionally, Prism-DE contains a pluggable DRADEL Topological- 
ConstraintChecker to ensure conformance of a desired set of topological rules. Our 
future goal is to integrate DRADEL's entire modeling and analysis capabilities inside 
Prism-DE. 

Once a desired software configuration is created in Prism-DE, it can be deployed 
onto the depicted hardware configuration with a simple button click. In order to deploy 
the desired architecture on a set of target hosts, we assume that a skeleton configura- 
tion is preloaded on each host. The skeleton configuration consists of Prism-MW's 
Architecture object that contains a DistributionConnector (recall Section 4.1) and an 
ExtensibleComponent with instantiated IAdmin interface (referred to as AdminCompo- 
nent below), that is attached to the connector. The skeleton configuration is extremely 
lightweight. For example, in our Java implementation, the skeleton uses under 11 KB 
of dynamic m e m ~ r y . ~  Since Prism-MW itself, the Architecture object, and Distribu- 

This figure does not include the additional overhead discussed in Section 4.1: 9.5 KB needed to load the 
j ava . n e t  package and 2.7 KB per socket connection. 
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Fig. 6. The Prism-DE deployment and run-time monitoring environment. 

tionConnector are also used at the application level, the actual memory overhead of 
our basic deployment support (i.e., the Admin Component) is only around 5 KB. 

As shown in Figure 1, the ExtensibleComponent on each device contains a pointer 
to its Architecture object and is thus able to effect run-time changes to its local sub- 
system's architecture: instantiation, addition, removal, connection, and disconnection 
of components and connectors with the help of DistributionConnectors. Admin Com- 
ponents are able to send and receive from any device to which they are connected the 
events that contain application-level components (sent between address spaces using 
the Serializable interface). 

Prism-DE supports run-time monitoring of connectivity between application pro- 
cesses. If communication between two DistributionConnectors is disabled for any rea- 
son ( e g ,  failed connection or failed container process), that information is propagated 
via an event to Prism-DE, which, in turn, highlights the disconnection (dotted line in 
Figure 6). A future enhancement to the run-time monitoring aspects of Prism-DE will 
include discovery of alternate paths between the disconnected nodes and automatic 
reconfigurations to enable their continued communication. 
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6 Further Evaluation and Experience 

Over twenty applications have been implemented using Prism-MW to date, involving 
traditional desktop platforms, PalmOS- and WindowsCE-compatible devices, digital 
cameras, and motion sensors. Several of these applications were developed in the con- 
text of three graduate-level courses at USC. They include distributed digital image cap- 
ture and processing, map visualization and navigation, location tracking, and instant 
messaging for hand-held devices. We do not provide additional details of these appli- 
cations here due to space constraints; several of them are described in [23]. Instead, in 
this section we focus on experiences resulting from a project involving multiple teams 
of graduate students and our collaborations with two industrial organizations. The stu- 
dent-led project assessed Prism-M W's ease of use and resulted in different implemen- 
tations of a dynamic service discovery capability. The first external collaboration 
resulted in a large-scale military application in support of one organization's specific 
needs in the ground vehicle domain. The second collaboration resulted in an extensive 
further evaluation of Prism-MW in the context of the other organization's distributed 
airborne system. 

6.1 Dynamic Service Discovery 

Eight teams, each consisting of three graduate students, were tasked with developing a 
distributed application, called dynamic service discovery (DSD), using the Java imple- 
mentation of Prism-MW. The application was to be deployed on a set of Compaq iPAQ 
PDAs running WindowsCE and connected into a wireless LAN. In DSD, each host 
provides and requires a set of services. The goal of the application is to satis@ the 
greatest number of service requests in the shortest amount of time given the below 
requirements. In order to allow the students to focus on the important aspect of the 
project, the services were simple arithmetic and trigonometric operations provided by 
Java ( e g ,  +, -, sin, cos, and so on). 

DSD assumes that the sets of provided and required services will vary across hosts. 
Furthermore, the sets of provided and required services on each host may change at 
any time. Each host is connected to and has access to only a subset of other hosts. 
However, a host may use one of its neighbors as a "relay" to indirectly access the 
desired host. The connectivity among the hosts may be altered at any time during the 
application's execution. New hosts may enter the network at any time, while existing 
hosts may leave and reenter the network at any time. 

The eight student teams implemented DSD's requirements by extending the Prism- 
MW with implementations of IDistribution interface that allows monitoring of the net- 
work for new devices and for changes in connectivity among existing devices. Each 
team also implemented meta-level components in support of the varying set of services 
requested. 

DSD was a reasonably simple application, but one that had some interesting prop- 
erties representative of the Prism setting. The functionality described above was devel- 
oped over a ten-week period. While just under one half of the students had exposure to 
Java prior to starting the project, only one student was somewhat familiar with a previ- 
ous version of Prism-MW, four students had some experience with component-based 
software development, three had experience with developing for WindowsCE, and 
none had any experience with the Compaq iPAQ. The students were asked to estimate 
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the amounts of time spent on the various aspects of the project, including "Under- 
standing/Learning Prism-MW". The teams reported that this aspect of the project 
required between 8% and 21% of the total project time, with 15% being the average. 
While many addtional case studies are required to draw definitive conclusions, we 
view these results as indicative of Prism-MW's understandability, particularly in light 
of the fact that the students were not only asked to use Prism-MW, but also to mod& 
it, as described above. 

6.2 Military Deployment 

Figure 7 depicts the 
application for distrib- 
uted military troops 
deployment and battle 
simulations (TDS). A 
computer at Headquar- 
ters gathers information 
from the field and dis- 
plays the current battle- 
field status: the locations 
of friendly and enemy 
troops, vehicles, and 
obstacles such as mine 
fields. The headquarters 
computer is networked 
via secure links to a set 
of PDAs used by Com- 
manders in the field. The 
commander PDAs are connected directly to each other and to a large number of Sol- 
dier PDAs. Each commander is capable of controlling his own part of the battlefield: 
deploying troops, analyzing the deployment strategy, transferring troops between com- 
manders, and so on. In case the Headquarters device fails, a designated Commander 
assumes the role of Headquarters. Soldiers can only view the segment of the battle- 
field in which they are located, receive direct orders from the commanders, and report 
their status. Figure 6 shows the partial architecture of TDS consisting of single Head- 
quarters, Commander, and Soldier subsystems, while Figure 7 shows one possible 
deployment with single Headquarters, four Commanders, and 36 Soldiers. 

TDS has provided an effective platform for demonstrating a number of Prism-MW 
services and assessing its scalability in a real application setting. TDS has been 
designed, analyzed, implemented, deployed, monitored, and dynamically evolved 
using the techniques described in this paper. It has been implemented in four dialects 
of two programming languages: Java JVM and KVM, C++ and EVC++, with on-going 
plans to integrate it with legacy software implemented in Ada. TDS has been deployed 
to 105 mobile devices and mobile device emulators running on PCs, with plans for fur- 
ther scaling it up to 1,000 devices. The dynamic size of the application is approxi- 
mately 1 MB for the Headquarters subsystem, 600 KB for each Commander, and 90 
KB for each Soldier subsystem. The devices on which TDS has been deployed are of 
several different types (Palm Pilot Vx and VIIx, Compaq iPAQ, HP Jornada, NEC 

Adaptable Architectural Middleware for Programming-in-the-Small-and-Many 177



Mobilepro, Sun Ultra, PC), running four OSs (PalmOS, WindowsCE, Windows 2000, 
and Unix). The performance of TDS has been acceptable, easily surpassing user reac- 
tion time after the initial delay caused by application deployment. We are currently in 
the process of designing tests to quantifL that performance. 

6.3 Airborne System 

In order to assess the maturity and suitability of Prism-MW for use in one of their key 
distributed airborne systems, our second industrial collaborator conducted a series of 
benchmark tests. The tests were designed to be representative of usage scenarios in the 
reference system's existing implementation. Once it was established that application 
speed using Prism-MW was ~atisfactory,~ our collaborator became particularly inter- 
ested in the overhead induced on application size by Prism-MW. One example test 
involved exchanging 100,000 records of proprietary structure (totalling over 13 MB) 
between Prism-MW components distributed over a LAN (i.e., using Prism-MW's Dis- 
tributionconnectors discussed in Section 5.2). The base, unoptimized implementation 
of Prism-MW resulted in a 20% increase of the amount of exchanged data in compari- 
son to the reference implementation. A relatively simple specialization of the Distribu- 
tionConnector class (modifjhg the implementation of two methods of the 
/Distribution interface), without any other modifications to the middleware, reduced 
that overhead down to 5%. As a result, our collaborator has deemed Prism-MW "very 
efficient and flexible" and is planning on adopting it. 

7 Related Work 

Our work on Prism-MW has been primarily influenced by two research areas: archi- 
tectural styles and middleware. Architectural styles were discussed in the Introduction. 
Below we discuss two most closely related approaches in the middleware arena. Addi- 
tionally, we briefly discuss a preliminary comparison of Prism-MW with several repre- 
sentative middleware solutions. 

ArchJava [ l ]  is an extension to Java that unifies software architecture with imple- 
mentation, ensuring that the implementation conforms to architectural constraints. 
ArchJava currently has several limitations that would likely limit its applicability in 
the Prism setting: communication between ArchJava components is achieved solely 
via method calls; ArchJava is only applicable to applications running in a single 
address space; it is currently limited to Java; and its efficiency has not yet been 
assessed. 

Aura [33] is an architectural style and supporting middleware for ubiquitous com- 
puting applications with special focus on user mobility, context awareness, and context 
switching. Aura is only applicable to certain classes of applications in the Prism set- 
ting. Similarly to Prism-MW, Aura has explicit, first-class connectors. Aura also pro- 
vides a set of components that perform management of tasks, environment monitoring, 
context observing, and service supplying. This suggests that the Aura style could be 
successfully supported using Prism-MW augmented with a set of Aura-specific exten- 
sions. This would eliminate the need for performing optimizations of Aura's current 

We were not appraised of the details of the tests assessing the application speed, only of their outcome. 
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implementation support, which has to date only been tested on traditional, desktop 
platforms. 

We have performed a preliminary comparison of Prism-MW with several represen- 
tative middleware solutions with respect to the objectives identified in Section 2. The 
results of these comparisons are shown in Table 1.' TAO and OrbixIE do well in sup- 
porting scalabi~ity,~ security, and delivery guarantees, but do so at the expense of the 
middleware size. Jini, .NET, XMIDDLE, RCSM, and LIME do well in supporting 
awareness and mobility, while all of them lack support for delivery guarantees. Finally, 
none of the representative middleware solutions support explicit architectural abstrac- 
tions, thus clearly distinguishing them from Prism-MW . 

8 Conclusions and Future Work 

This paper pre- 
sented the 
design, imple- 
mentation, and 
evaluation of 
Prism-MW, a 
middleware tar- 
geted at applica- 
tions in highly 
distributed, 
resource con- 
strained, hetero- 
geneous, and 
mobile settings. 
The key proper- 
ties of the mid- 
dleware are its 
native, and flexi- 

Table 1: Comparison of existing middleware solutions. ? denotes 
unavailable data; denotes extensive support; JJ  denotes solid 
support; J denotes some support; empty cells denote no support. 

a. Number of events per .second (lop) and nzenzory usage (hotlonl) 

ble, support for architectural abstractions, eficiency, scalability, and extensibility. 
These properties were enabled by Prism-MW's extensive separation of concerns that 
spans several dimensions: 

By adopting an explicit architectural perspective, Prism-MW has inherited the sepa- 
ration of computation (handled by components) from interaction (handled by con- 
nectors) intrinsic to software architectures. 
Furthermore, Prism-MW's extensive use of interfaces and complete lack of direct 
dependencies among its classes also allows tailoring implementation-level concerns 
(e.g., the ability to select different schedulers independently of dispatchers or to 
compose distribution, XML encoding, and compression facilities for network-based 
interactions). 

The results of performance benchmarks are taken from the available online documentation. The hardware 
platforms on which these benchmarks were ran are comparable, but the OSs and PLs used are different. 
However, since both OrbixE and TAO are implemented in C++ running on Linux, we expect that their per- 
formance results would not significantly improve when run on Windows2000 using Java (the test platform 
for Prism-MW). 
Recall from Section 3.3  that an aspect of the existing middlew-are platforms which hampers their scalabil- 
ity is their support for only one software connector. 
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The middleware also separates an application's conceptual architecture from its 
implementation: each component may be implemented in multiple PLs; those imple- 
mentations are fully interchangeable if ExtensibleConnectors with the appropriate 
implementations of the IXMLConversion interface are used. 
Finally, the Prism-DE environment enables the complete separation of an applica- 
tion's architecture from its deployment. 

In turn, this separation of concerns across multiple dimensions enables easy selection 
and tailoring of the exact middleware features needed for each development situation 
in the Prism setting. 

While our experience thus far has been very positive, a number of pertinent issues 
remain unexplored. One such issue is the role Prism-MW may play in supporting dif- 
ferent architectural styles (e.g., client-sewer, push-based, peer-to-peer) [25,29], per- 
haps even in the same application. We are also in the process of further evaluating 
Prism-MW by applying it in the mobile robotics domain in collaboration with USC's 
Center for Robotics and Embedded Systems. Our future work will span issues such as 
adding configuration management support to Prism-MW and automatically generating 
an optimized version of Prism-MW given a desired set of features (i.e., eliminating the 
need to store and check interface pointers even when they are not used in a given 
Prism-MW class implementation). Another alternative we are considering to address 
the latter problem is to parameterize Prism-MW's variation points instead of using 
interfaces. We are not aware of any comparable attempts at parameterizing middleware 
to this extent, and consider this to be an interesting research challenge. 
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