Simulations on Batching in Video-on-Demand
Transmissions*

Juan Segarra and Vicent Cholvi

Departament de Llenguatges i Sistemes Informatics,
Universitat Jaume I, 12071 Castell6, Spain
{jflor,vcholvi}@lsi.uji.es

Abstract. One of the methods for taking advantage of multicast ser-
vices is the use of batching. With this method, several request of the
same video are grouped and transmitted together, using only the band-
width required for one transmission. This method is commonly used in
transmission of streamed data. In this paper we analyze the system per-
formance with explicit constant batching, and demonstrate that a system
without explicit batching performs better in terms of delays. We also pro-
pose a dynamic batching policy which improves the system performance
both in mean and in maximum serving times.

1 Introduction

With the advancement of broadband network technology, Video-on-Demand
(VoD) services are becoming commonplace, specially in local residential areas. A
VoD system is typically implemented by a client-server architecture supported
by certain transport networks. Among the many issues that have attracted the
attention of researchers, optimizing the network channel demand is considered a
major one. In order to solve that problem, VoD systems usually serve multiple
clients at the same time by means of artificially delaying several requests for
the same video [BJ6J11[13] and serving them together. This method is known as
batching.

However, these artificially introduced delays may not be always necessary or
even convenient. For instance, in a system with low load, all video requests could
be served immediately, and the use of batching would be clearly inefficient, since
it only introduces an unnecessary delay. Moreover, the amount of bandwidth
used in a high load period is much bigger than in low ones, and since these
networks have to afford this requirement, in low load periods this resource is
mostly underutilized despite of offering Internet connections or other similar
services. Thus, bandwidth is not always a critical resource.

In this paper we focus on the convenience of using explicit batching. We
will evaluate, by means of some simulations, how the use of batching improves
(or reduces) the overall performance of the system described in Section 2. We

* This study is partially supported by the CICYT under grant TEL99-0582 and Ban-
caixa under grant P1-1B2000-12.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 453-H62] 2003.
© Springer-Verlag Berlin Heidelberg 2003

454 J. Segarra and V. Cholvi

consider the serving time (the time between a video request and the beginning
of its transmission) as the metric to evaluate the system performance.

First, we use a Constant Explicit Batch-Time Policy with different delays.
Whereas this policy is the most widely used, we show that, in general, it provides
improvements on bandwidth, but it does not provide any delay improvement
against a system without explicit batching (but still with implicit batching).
Then, we introduce a new batching policy which varies dynamically following
the system load. Even though such a policy has a better performance in starting
delays than previous ones, it only provides a low improvement when the system
is highly saturated.

The rest of our paper is organized as follows. In Section 2 we describe our
video-on-demand delivery system and the considered scenario. In Section 3 we
show our comparison between constant batching policies and in Section 4 we
present our approach and results with dynamic batching. Finally, our conclusions
are presented in Section 5.

2 System

For our study, we use a quite simple network architecture consisting of a cen-
tral server, storing all videos. Users are connected to that server by means of
a common link which has a bandwidth of 1.5 Gbps downstream. A moderate
bandwidth is also needed upstream in order to send user requests to the central
server. We consider that this is a VoD dedicated networ, therefore our goal
is to obtain the best results using the available resources. We use a configu-
ration consisting of 1000 videos and 15000 users. Each video information has
been constructed making variations over the example presented in [12], result-
ing in videos of a mean duration of about 85 minutes and a mean bandwidth
requirements of about 1850 Kbps in fragments ranging from 96 to 4 608 Kbps.
With this configuration we ensure that the link will become saturated (i.e. it
will reach an utilization of 100%) at some period of time, being non-saturated
during the remaining time. That will allow us to analyze the system behavior in
both situations.

On the other hand, transmitting real-time VBR flows is not a trivial matter
because a different amount of bandwidth will be needed during the transmis-
sion [38]. One of the methods to improve these transmissions is the smoothing [T,
9l12] of streams before their transmission. This way peaks and rate variability
requirements are minimized. We use an approach similar to [12], which develops
a transmisston plan consisting of time periods so that, in each period, the trans-
mission may be performed by using a constant-bit-rate (CBR) network service.
Thus, each video is characterized by a collection of tuples (time,rate), whose
first parameter denotes a time period and whose second one is the CBR rate
associated with such a time period.

! Usually these networks offer more services, but dedicating a concrete amount of
bandwidth to each service is also usual.

Simulations on Batching in Video-on-Demand Transmissions 455

0.0024 T T T T T
Simulated Distribution
0.0022 - Statistical Distribution ----- b

0.002 [‘ e
0.0018 - 1A
0.0016 N
0.0014 -
0.0012 -

0.001 [
0.0008 -

0.0006 -

Rate each user (requests per minute)

0.0004

1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 22 24
Time of day (hours)

Fig. 1. Request rate distribution in a 24 hour period.

In our approach to the video transmission problem we study the performance
in a 24 hour period. Previous studies on video demand rates [2JT0] have deter-
mined the behavior of these rates in this period, and our simulations work with a
rate distribution according to these studies. We also consider that a user makes
a request only if he or she is not waiting nor receiving a video (i.e. nobody can
receive more than one transmission at a time). In Fig.[Il we can see the statistical
request rate and the request rate distribution obtained in a simulation having
one request per day for each user. This is what we assume in our study (actual
VoD trials show that the average number of user request per week is between 2
to 3).

Furthermore, each video has a popularity, which represents the probability of
being requested according to Zipf’s law [4]. This distribution has been found to
statistically fit video program popularities estimated through observations from
video store statistics [IJ.

In order to guarantee that, once a video is accepted (maybe after some start-
up delay), it will be delivered without interruption to the final user(s), it is
necessary to use a reservation algorithm to manage video requests. It works as
follows: when a video request is received, we test (for each video-part) if it is
already planned for transmission at the same time. If so, that request is added to
the multicast transmission of this video-part without any additional bandwidth
requirements. Otherwise, we check if there is enough bandwidth during the slots
of the transmission. In that case, bandwidth is reserved by adding the new video-
part rate to the bandwidth used. See Fig. 2l for details.

As it can be seen, this reservation algorithm guarantees that all requests
will be served, maybe after some start-up delay. Moreover, users can know the
exact time when the transmissions will begin, so we assume that there are no
cancellations.

456 J. Segarra and V. Cholvi

Step #1: A user requests a video.

Step #2: If that video has been already requested and it has not started yet,
the start time of the new request will be the same as the previous one.
Otherwise, the new request will start after an explicit batch-time.

Step #3: The system calculates the exact time when each video-part has to be
transmitted.

Step #4: For each video-part do

If there is a reserve for this video-part at the same time, add our
request as a multicast. Otherwise, reserve the bandwidth needed for
this video-part during the required time slots.

Step #5: Accept video for transmission or go to Step #3 in the next time slot
(in which case, all reserves and multicasts for this request performed in
Step #4 are canceled).

Fig. 2. Algorithm for the acceptance of video requests.

An important feature of the reservation algorithm is the fact that, in satura-
tion periods, all new request will have to wait to be served. So, even in the case
where the there is not explicit batch-time, the reservation algorithm will still
induce an implicit batching that, as we will show in the next sections, provides
a very good system’s performance.

3 Constant Batching Policies

Using a constant explicit batching scheme is currently the most used policy
maybe because of its simplicity. Basically it consists of taking a constant batch-
time delay throughout the whole system execution.

In this section, we analyze the performance of our system when taking explicit
batch-time values of 0, 10, 20 and 30 minutes (despite we have tested more values,
for clarity we only present results for these four values, since we found the rest
follow the same pattern). Fig. [3] shows the starting delays in a 24 hour period.

First of all, it can be readily seen that, when the request rate is low (from
approximately Oh to 19h), the more we increase the batch-time the more the
starting delay increases. On the other hand, Fig. [3 also shows that during the
time period when the request rate is high (from approximately time 19h to 24h)
starting delays are all following the high audience peak independently of the
batch-time used. This behavior can be explained if we look at the reservation
algorithm in Fig. @ This algorithm tries to allocate transmissions as soon as
possible after their batch-time. However, in the time interval where the system
is saturated, the delay necessary to start transmitting is higher than the batching
delay. Consequently, since the system gets saturated in a short time interval (a
few minutes), at the very end, all policies operate in the same way most of this
time period, confirming what has been observed in Fig. Bl

In Fig. Elwe can see that, in the low load period, bandwidth usage never gets
saturated. Therefore, since there is enough bandwidth to serve immediately all

Simulations on Batching in Video-on-Demand Transmissions 457

25

20 - .]

l
Vo " :n vl
,.,m,\, ,\M i 1=t) \m\ | ,\ ’u“ ‘\ﬂ’) ",,lfy,
v wvr .)n,um i (AT
! iy 1

W \N o (\“
g ey
15

Y l

10 -

Starting delay (minutes)

5 Batch—time 00 ——

Batch—time 10 -~
Batch—time 20 -----
Batch—time 30 - - - -

0 2 4 6 8 10 12 14 16 18 20 22 24
Time of day (hours)

Fig. 3. Mean starting delays during a 24 hour period.

requests, adding a batch-time will only increase their starting delays. In turn,
taking smaller batch-times will increase the used bandwidth. However, here we
are assuming that the whole bandwidth is completely dedicated to our video-on-
demand system. On the other hand, it can be seen that with very high explicit
batch-times it is possible to avoid saturation. However, it also prevents from
obtaining better starting delays.

4 Dynamic Batching

We have demonstrated, in the previous section, that a policy without explicit
batching performs better in delay terms than with constant batch-times. In
this section we present a dynamic batching approach to the problem. Such an
approach consists of obtaining a batch-time that adjusts itself according to the
current system load.

Our idea is the following. Think that the system receives a video request in
the instant ¢, and the objective is to compensate the load we will have in the
instant ¢ + At. This compensation is done using batching over the requests in
the current time ¢. The batch-time we assign to a request on time ¢ is defined as
follows:

batchy = loadyy a¢ adjust

where load;+ A+ represents the number of videos awaiting for transmission in
the time slot ¢t + At and adjust is a function that will be used to adjust the load
with the batch-time. In order to make load independent of the system, loads; At
has been normalized so that a value of 1 indicates the saturation point.

458 J. Segarra and V. Cholvi

1.5 T T T

Batch—time 00 —— Coroa Y
1.4 Batch—time 10 ------ ; -
Batch—time 20 ----- oo Wk
Batch—time 30 - - - - co)

_ =
[N~} w

=
=

Bandwidth usage (Gbps)
e o 9
=~ o © =

o
o

o
<)

. ‘ ‘ ‘ :
0 2 4 6 8 10 12 14 16 18 20 22 24
Time of day (hours)

Fig. 4. Bandwidth usage during a 24 hour period.

To define adjust, think in a system which is continuously receiving requests
and immediately serving those requests at the same rate. This system has, in
addition, a list of video requests waiting for being served. Therefore, when a
request for a given video is received it may happen that that video is also in
the list waiting for being served. Thus, both requests would be transmitted
as a multicast and the additional load list would decrease in one video. If this
procedure is used until all waiting videos in the list are transmitted, at that time
we would have eliminated the additional load list. Let us call EliminationTime
the time where the additional load is eliminated.

1

EliminationTime = Additional Load
iminationTime itionalLoad 5 =

where Additional Load is the additional load list (normalized as above) we
have to eliminate, and ProbCoincidence is the probability of having a coinci-

dence when requesting a video for transmission, that is, the probability of the
requested video being in the load list.

For our work, we choose batch; = FEliminationTime. Since we have that

loadi4 A = Additional Load, then adjust = m. Therefore,
ZOG,dH_At
batchy =
ave ProbCoincidence

A detailed description of load;4 A and ProbCoincidence can be found in the
Appendix.

Simulations on Batching in Video-on-Demand Transmissions 459

16 T T T T

Batch—time 0 ——
| Dynamic batching -~

Starting delay (minutes)
o

0 | | i | i | | i | | |
0 2 4 6 8 10 12 14 16 18 20 22 24

Time of day (hours)

Fig. 5. Starting delays during a 24 hour period.

Results

Now, we show a comparison between this policy and one without explicit batch-
ing (which has been shown in the previous section to provide better results than
using any explicit constant batching policy).

Fig. [5] shows the starting delays both without explicit batching and with
a dynamic batching policy. During the low load period, both policies perform
very similarly and between 0 and 1 minute. When the high load period begins,
the dynamic policy responds adding artificial delays for grouping requests. This
action produces a sooner increase in starting delays but this prevents starting
delays from increasing so much as without explicit batch-time when these delays
are higher. That is because the dynamic policy has a look ahead component,
whereas the batch 0 policy has no information about the future system load.

The mean starting delay during a 10 days period with the dynamic policy in
this case is 4 min 21 sec, and its maximum delay has been 27 min 22 sec. These
values are about a 0.4% and a 4.7% lower than without explicit batch-time.

Bandwidth usage with these configurations is presented in Fig. 6] Whereas
the bandwidth usage is almost the same, with the dynamic policy the added
batching produces a delay in saturation. The reason is the same as above,
grouped requests are transmitted together in multicast transmissions and they
use less bandwidth.

5 Conclusions

In this paper we have studied the effect of using batching in the transmission
of video on demand. Instead of using cost functions, this study presents results

460 J. Segarra and V. Cholvi

15 ‘ ‘ ‘ ‘ ok o
Batch—time 0 —— "’\'k
Dynamic batching ------ ;

Bandwidth usage (Gbps)

1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 22 24
Time of day (hours)

Fig. 6. Bandwidth usage during a 24 hour period.

based on the delays between video requests and the beginning of their trans-
mission. Firstly, we have demonstrated that, without using explicit batching
techniques, the overall system performs better than using a constant explicit
batch-time. Furthermore, to improve the system performance, we have proposed
a method for statistically calculate the system load, and use the resulting value to
adjust the batch time dynamically. With this method we have reduced around
0.4% the mean starting delay and around 4.7% the maximum starting delay
compared with a system without batching.

These results demonstrate that, unless a constant explicit batch-time is
needed for some specific reason, it is better not using it. In case of needing a
more optimized system, we also demonstrate that our dynamic batching method
is better than using a batch-time 0 policy. However, the improvements are rel-
atively small and require additional computation, so a policy without explicit
batching could also be considered as a good option due to it performs well and
it is the simplest batching policy. The reasons of the good performance are that
without explicit batching there is no artificial delay introduced in the system,
and this policy has a good adaptation to the current load, since it allocates the
transmissions as soon as possible.

References

1. A. Dan and D. Sitaram and D. Shahabuddin. Dynamic Batching Policies for an
On—Demand Video Server. Multimedia Systems, 4:112-121, 1996.

2. Bell Atlantic. Fact Sheet: Results of Bell Atlantic Video Services. Video—On—
Demand Market Trial. Trial Results, 1996.

Simulations on Batching in Video-on-Demand Transmissions 461

3. L. Berc, W. Fenner, R. Frederick, and S. McCanne. Rpt payload format for jpeg-
compressed video. Request for Comments 2035, Network Working Group, October
1996.

4. Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching
and Zipf-like distributions: Evidence and implications. In Proceedings of the IN-
FOCOM 99 conference, March 1999.

5. Shueng-Han Gary Chan and Fouad Tobagi. Providing on-demand video services
using request batching. IEEE Int. Conf. Communications (ICC’°98), pages 1716—
1722, June 1998.

6. Asit Dan, Dinkar Sitaram, and Perwez Schahabuddin. Scheduling policies for an
on-demand video server with batching. ACM Multimedia, pages 15-23, 1994.

7. W. Feng, F. Jahanian, and S. Sechrest. An optimal bandwidth allocation strategy
for the delivery of compressed prerecorded video. Multimedia Systems, 5(5):297—
309, 1997.

8. D. Gall. Mpeg: a video compression standard for multimedia applications. Com-
munications of the ACM, 34(4):46-58, April 1991.

9. Jeniffer Rexford and Don Towsley. Smoothing Variable-Bit—Rate Video in an
Internetwork. IEEE/ACM Transactions on Networking, pages 202-215, April 1999.

10. PG de Haar et al. DIAMOND Project: Video-on-Demand System and Trials. Eur
Trans Teleccommun (8)4: 337-244, 1997.

11. Juan Segarra and Vicent Cholvi. Distribution of video—on—demand in residen-
tial networks. 8" International Workshop on Interactive Distributed Multimedia
Systems, September 2001. Lecture Notes in Computer Science 2180.

12. Arun Solleti and Kenneth J. Christensen. Efficient transmission of stored video
for improved management of network bandwidth. International journal of network
management, 10:277-288, 2000.

13. Constantinos Vassilakis, Michael Paterakis, and Peter Triantafillou. Video place-
ment and configuration of distributed video servers on cable TV networks. Multi-
media Systems, 8:92-104, 2000.

Appendix: Description of Dynamic Batching Parameters

Definition 1 We define the real load in a time slot t as:

|(Awaiting;—1 U Requested;) — Served;|

rioad, = ServingCapacity

where Served;, Requested; and Awaiting; respectively denote the set of
different videos served, requested and awaiting for transmission in the time slot
t, and ServingCapacity is the mean number of different videos served in a time
slot using all bandwidth.

Nevertheless, this definition is not usable in practice, because it needs both
which videos are awaiting for transmission and which of them will be served
in each time slot. Obviously, it is not known in advance which videos will be
requested, nor which ones will serve the system since that depends on the batch-
time assigned to each request. Therefore, we need to obtain a (statistical) load
value independent of the batching algorithm. All probability operations below
are done using the Zipf’s distribution, which offers probability values based on
popularity.

462 J. Segarra and V. Cholvi

Definition 2 We define the statistical load in a time slot t as:

NewR ts; — ServingC it
sload, — maz <07 sload, 1 + ewRequests; ervingCapaci y)

ServingCapacity

In this equation, we calculate the load in a time slot ¢ by adding the load gen-
erated by the new requests to the load of the previous time slot and subtracting
the amount of load transmitted, which is 1 because of the normalizatior?.

The NewRequests; parameter is the number of new requests in the time slot
t, and it is calculated as:

NewRequests; = ProbNewReq(ReqInSlot(t), sload;—1 ServingCapacity)
RegInSlot(t)

where RegInSlot(t) is the number of requests in the time slot ¢ obtained sta-
tistically using the request distribution and ProbNewReq(new,awaiting) is
the probability of that new requests not being included in awaiting requests.
Statistically ProbNewReq(new,awaiting) is calculated as P(Videos(new) |
Videos(new) ¢ Videos(awaiting)), being Videos(z) a set of Videol Ds ob-
tained statistically from the repository using Zipf’s law.

However, obtaining this statistical load value has a computation cost of
O(MaxVideos™™) in the step ProbNewReq(new, awaiting), so an approxima-
tion is needed. We obtain this approximation supposing that the proportion
of different requests in each time slot is a constant k, and the sload;_; videos
awaiting for transmission are the most popular ones. The first simplification is
reasonable when the number of requests in each time slot is not very differ-
ent and in our case it is less than one order of magnitude. The second one is
reasonable having in mind that Zipf’s law popularity implies exponential prob-
abilities of request, so the most popular videos are much more requested than
the others. The usable ProbNewReq(new,awaiting) definition would be the
probability of not requesting the awaiting most popular videos. Statistically:
k P(x|x > awaiting), where k is the proportion of distinct elements in a group
of Videol Ds requested in each time slot.

The remaining definition is ProbCoincidence, but it is exactly the opposite
of ProbNewReq(), so its calculation is immediate.

The simulation parameters can be easily obtained. ServingCapacity is ob-
tained dividing the link capacity by the product of the mean bandwidth usage
of all videos each minute and the mean video duration. The resulting value was
9.42 videos. The parameter k is obtained using the mean value from a complete
simulation. The resulting value was k = 0.77.

To obtain the best value of At, we have simulated our system with At rang-
ing from 0 to 10 hours. Depending on the pursued objective this value can be
adjusted closely, in our case we take a value of 60 minutes, which offers good
results both for mean delay and maximum delay.

2 Actually, we do not know the value representing the transmitted videos, so we assume
the system is serving at full capacity (1 because of the normalization) and then use
the max operation to prevent the system from getting load values lower than 0.

	1 Introduction
	2 System
	3 Constant Batching Policies
	4 Dynamic Batching
	5 Conclusions
	References
	Appendix: Description of Dynamic Batching Parameters

