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Abstract. In many M.D. simulations the simulated system consists of
a single macromolecule in a solvent. Usually, one is not interested in
the behaviour of the solvent, so, the CPU time may be minimized by
minimizing the amount of solvent. For a given molecule and cut-off radius
this may be done by constructing a computational box with near minimal
volume. In this article a method is presented to construct such a box,
and the method is tested on a significant number of macromolecules. The
volume of the resulting boxes proves to be typically 40% of the volume of
usual boxes, and as a result the simulation time decreases with typically
60%.

1 Introduction

Much CPU time is spent nowadays on the molecular dynamics (M.D) simu-
lation of bio-macromolecules, notably proteins, with the goal to gain insight
in the functioning of biophysical processes. Of these simulations a considerable
part consists of the simulation of a single macromolecule m surrounded by a
solvent, in most cases water. To prevent finite system effects, most M.D. simu-
lations are done under periodic boundary conditions (PBC) which means that
the computational box B is surrounded by an infinite number of replica boxes in
a regular, space filling manner. In 3D there are five convex space filling shapes
namely the triclinic box, the hexagonal prism, the dodecahedron, the elongated
dodecahedron and the truncated octahedron, see figure 1.

Let s be the system formed by a computational box containing m and the
water surrounding m, and let S be the infinite system formed by tessellating
space with an infinite number of replica’s of s, see figure 2. In M.D. simulations,
interactions over a distance rco are truncated. Moreover, in M.D. simulations
replica’s of m should not interact with each other. That means that in S no two
replica’s of m should be closer than rco. This may be reformulated by introducing
a shape M , see figure 2, defined as m dilated by a layer of width 1

2rco. Then,
stating that in S no two replica’s of m should be closer than rco is equivalent
with stating that in S no two replica’s of M should overlap.
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Fig. 1. The five box types used as computational box in current M.D. simulations
with periodic boundary conditions. With each type, space may be tessellated in a space-
filling way. From left to right: the triclinic box, the hexagonal prism, the dodecahedron,
the elongated dodecahedron and the truncated octahedron

During an M.D. simulation m rotates in an erratic way, resulting in a number
of full rotations during a typical simulation. Besides rotational motion m may
also show conformational changes. Often these changes are of major interest and
should not be restrained in any way. In current M.D. practice the computa-
tional box B is constructed by enclosing M by one of the five regular spacefillers
such that m may rotate freely in B and may show some conformational change
without leaving B. Often the additional space in B allowing for conformational
changes of m is created by taking the width of the layer around m a bit larger
than 1

2rco.
Let the space outside m and inside B be called C, so, C = B−m, and let the

space outside M and inside B be called D, so, D = B −M , see figure 2c. After
B has been constructed m is placed in B, and C is filled with water molecules.
From the foregoing it will be clear that the water in D does not contribute
to the simulation. Yet, per unit volume, simulating it takes approximately the
same CPU effort as simulating the atoms in M , so, denoting the volume of D

by vol(D), we spend ≈ vol(D)
vol(B) of our CPU time on the simulation of irrelevant

water.

Fig. 2. a: A molecule m. b: m surrounded by a layer of width 1
2
rco, giving M . c: A

PBC box containing M . d: Part of an infinite M.D. system S, formed by tessellating
space with a PBC box s. e: The lattice defined by the boxes in d.

In this article we present a technique to construct a near-minimal-volume
PBC box around M , resulting in a significant decrease of vol(D), so, resulting
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inÿaÿsignificantÿdecreaseÿofÿsimulationÿtime.ÿForÿaÿnear-minimal-volumeÿM.D.
simulationÿtwoÿingredientsÿareÿessential:

1.ÿA ÿmethodÿtoÿrestrainÿtheÿrotationalÿmotionÿofÿmÿduringÿtheÿsimulationÿwith-
outÿaffectingÿtheÿconformationalÿchangesÿofÿm.

2.ÿA ÿmethodÿtoÿconstructÿaÿPBCÿboxÿofÿwhichÿvol(D)ÿisÿnearlyÿminimal.

Fortunately,ÿweÿdoÿnotÿhaveÿtoÿtakeÿcareÿofÿtheÿfirstÿrequirement.ÿSomeÿtimeÿago
suchÿaÿmethodÿhasÿbeenÿdevelopedÿ[1],ÿamongstÿothersÿwithÿtheÿgoalÿtoÿenable
minimalÿvolumeÿsimulations.ÿTheÿsecondÿrequirementÿwillÿbeÿtakenÿcareÿofÿin
thisÿarticle.

Theÿstructureÿofÿthisÿarticleÿisÿasÿfollows.ÿInÿsectionÿtwoÿweÿshowÿthat,ÿinstead
ofÿ focussingÿonÿtheÿ shapeÿofÿ theÿ computationalÿbox,ÿweÿ shouldÿ focusÿonÿ the
latticeÿdefinedÿbyÿboxÿpositionsÿinÿS.ÿInÿthisÿwayÿtheÿproblemÿofÿfindingÿaÿbox
withÿminimalÿvolumeÿisÿreformulatedÿasÿtheÿproblemÿofÿfindingÿtheÿdensestÿlattice
packingÿofÿM . ÿWeÿintroduceÿaÿmethodÿtoÿcalculateÿthisÿpacking.ÿInÿsectionÿthree
implementationÿ issuesÿareÿtreated,ÿandÿ inÿ sectionÿ fourÿourÿ implementationÿ is
testedÿonÿsomeÿbio-macromolecules.

2ÿ Boxes, Their Related Lattices and Calculating Lattice
Packings

Asÿmentionedÿearlier,ÿthereÿareÿfiveÿtypesÿofÿconvexÿspace-fillingÿboxes.ÿWhenÿs
isÿsuchÿaÿboxÿandÿSÿisÿformedÿbyÿtessellatingÿspaceÿwithÿs,ÿaÿlatticeÿLÿisÿdefined
[2].ÿHere,ÿaÿlatticeÿLÿisÿtheÿsetÿofÿpointsÿLÿ=ÿiÿ∗ a ÿ+ÿ j ÿ∗ b ÿ+ÿ k ÿ∗ c ÿi,ÿj,ÿkÿ integer,
andÿa,ÿbÿandÿcÿareÿtheÿlatticeÿvectors.ÿSo,ÿinÿSÿatÿeveryÿpointÿofÿLÿaÿboxÿsÿis
situated.ÿLetÿtheÿtriclinicÿboxÿspannedÿbyÿtheÿlatticeÿvectorsÿa,ÿbÿandÿcÿbeÿcalled
sT . Now, instead of forming S by tessellating space with s, S may be formed
just as well by tessellating space with sT . So, a minimal volume simulation may
be set up by devising a densest lattice packing of M . Let s∗T be the triclinic box
spanned by the lattice vectors of the densest lattice packing of M . Then S may
be formed by tiling space with s∗T . This observation is essential for our method.

Having reformulated the minimal-volume box problem as a densest lattice
packing problem we have to look for a method which determines for a given body
M the densest lattice packing. For polyhedral convex M such a method exists
[3]. However, for most bio-macromolecules m and typical layer widths around
m, the shape of M is non-convex. For non-convex M there exists no densest
lattice packing algorithm, and in the computational geometry community this
problem is considered as hard, so, in the foreseeable future, very probably, no
such algorithm will be devised. For that reason we have to work with a heuristic
method to find an approximation of the densest lattice packing of M , which we
will call the near-densest lattice packing (NDLP) of M . The NDLP heuristic is
based on the incorrect assumption that M is convex, and a check is added to
filter out incorrect packings due to the non-convexity of M .

In principle, the NDLP method works for 3D bodies in general. However, to
avoid discussions about degenerate problem instances, in this article we assume
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that the volume of M is non-zero and that M has no points at infinity. The first
step in the NDLP algorithm is to construct the contact body of M , designated by
N . It is constructed using the Minkowski sum [4]. The Minkowski sum R = P⊕Q
of two bodies P and Q is another body R defined as R ≡ {a+b : a ∈ P,b ∈ Q}.
Defining −M as the body M inverted in the origin, N is given by

N ≡ M ⊕−M. (1)

It can be shown easily that N is symmetric, and centered at the origin. Denoting
by Ma the body M translated over the vector a, N has the following property.
The boundary of N consists of all points a for which holds that M and Ma touch
without overlapping. See figure 3.

Fig. 3. 2D example of a body M (a), its contact body N (b), and N used to construct a
situation where three copies of M touch each other (c). Note that N is point-symmetric.

Let us now explain how the NDLP heuristic works. We want to position M
and three of its translates Ma, Mb and Mc in such a way that the volume of the
triclinic cell spanned by a, b, c is minimal, without overlap between M , Ma, Mb
and Mc . In principle, for this we have to search through all combinations of a, b,
c, so, in principle we are dealing with a nine dimensional minimization problem.
The key property of our NDLP method is that we reduce this nine dimensional
problem to a three dimensional problem by making the following choice. We only
search through those combinations of a, b, c for which holds that every body of
the set {M , Ma, Mb, Mc} is touched by the three other ones. That this choice
leads to a three dimensional minimization problem can be seen as follows. M
is placed at an arbitrary location. For Ma a is chosen on the boundary of N ,
so, M and Ma touch. Because a is chosen on the boundary of N there are two
degrees of freedom in choosing a. Now we calculate the intersection of N and
Na, which is a curve in 3D. On this curve we choose b. So, Mb touches M and
Ma. Because b is chosen on a curve there is one degree of freedom in choosing
b. Finally we choose c on the intersection of N , Na and Nb, which is a small
set of points, for typical M ranging from 2 to 10. So, the number of degrees of
freedom in choosing c is zero. Herewith the number of degrees of freedom of the
search problem proves to be 2 + 1 + 0 = 3.
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Now let us assume that we are searching through all combinations of a, b
and c, according to our NDLP heuristic, with an appropriate search granularity
to be discussed later. For every combination of a, b and c we have to calculate
|det(a,b, c)| and store the a, b, c that give minimal |det(a,b, c)|. Obviously,
Ma, Mb and Mc do not overlap M . However, for non-convex M , possibly there
exist one or more lattice points d = i ∗ a + j ∗ b + k ∗ c i, j, k integer, for
which M and Md overlap. That this may happen is not obvious to understand,
there is no 2D analogy. To filter out these cases, for every a, b, c with minimal
volume |det(a,b, c)| we have to perform an additional test. That M and Md
overlap means that there are i, j, k not all 0, such that the lattice point d =
i ∗ a + j ∗ b + k ∗ c i, j, k integer, is in the interior of N . So we have to test for
all lattice points within a range 1/2 diam(N) of the origin whether they fall in
the interior of N , where diam(N) is the diameter of N .

Having found a minimal volume box spanned by a, b, c that also passes the
test that no lattice point lies in N , we have to put m in the triclinic box BT

spanned by a, b, c. The location of m in BT is completely free but the obvious
choice is to locate m in the middle of BT . Sometimes m will not fit entirely in
BT , it sticks out no matter where it is located in BT . That does not matter,
we simply locate m somewhere in the middle of BT . See figure 4. Now for every
atom of m protruding BT it holds that it can be shifted over some lattice vector
d such that it falls in BT . For every protruding atom such a vector is calculated
and the atom is translated over this vector. Now all atoms of m are in BT but
m is possibly fragmented. That is no problem because, when BT containing a
fragmented m is used to tessellate space, giving the infinite M.D. system S, in S
complete molecules are formed from these fragments. Finally, all voids in BT are
filled with water molecules. Herewith we have constructed the near-minimum-
volume triclinic system s∗T . Summarizing, the complete NDLP algorithm outline
is as follows.

from m and r_co construct M;
from M construct N;
forall a on boundary of N do
forall b on intersection of N, N_a do
forall c on intersection of N, N_a, N_b do

if |det(a,b,c)| < old_det_abc and not
point_of_L_inside_N then store(a,b,c);

end // c loop
end // b loop

end // a loop
put m in box a,b,c

Let us briefly comment on our choice only to search through those combina-
tions of a, b, c for which holds that every body of the set {M , Ma, Mb, Mc} is
touched by the three other ones. It is shown that, for some convex bodies, there
are other contact situations giving minimal volume [3]. Very probably this also
holds for non-convex bodies, but little is known about that. However, search-
ing through these situations would take much more CPU time than searching
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Fig. 4. a: 2D example of a minimal volume triclinic box BT containing a protruding
molecule m. b: The protruding parts of m have been reset in BT by shifting them
over lattice vectors, resulting in a fragmented molecule in BT . c: Part of the infinite
M.D. system formed by tessellating space with BT with fragmented m. In the infinite
system, whole molecules are formed by fragments from various boxes.

through the situations of our choice, probably without finding a considerably
denser packing.

3 Implementation

In this section we explain how we transformed the NDLP algorithm into an
efficient and robust program. In the previous section we did not specify how
m, M , and N are represented. In the implementation m and M are point sets,
and N is polyhedral. We start with a macro-molecule m from some library, for
example from the Proteine Data Bank (PDB) [5]. For us, m is simply a point
set, where every point represents an atom. In m we include all atoms of the
macromolecule, so hydrogen atoms are included. From m we have to construct
M . Recall that m dilated with a layer of width 1

2rco gives M . We assume that
rco has been chosen big enough to allow for conformational changes. Now we
construct a spherical point set ball by distributing ≈ 50 points more or less
evenly on the boundary of a sphere with radius rco. The point set M is obtained
by taking the Minkowski sum of m and ball, so, M ≡ m ⊕ ball. Obviously, the
number of points in M is fifty times the number of points in m. Of M we only
need boundary points, so we delete interior points. This strongly reduces the
number of points in M .

From M we construct the contact body N by taking the Minkowski sum of
M and −M , so, N ≡ M ⊕−M . The number of points in N is the square of the
number of points in M . We use only part of these points by deleting all interior
points of N and part of the boundary points. We want to have control over
the number of remaining boundary points, which is done by using a grid-based
selection method, that is, we construct a rectangular grid of 32 ∗ 32 ∗ 32 cells,
covering N , and determine of each point of N the cell it falls in. All points in
interior cells are deleted, and of the points in a boundary cell only the one nearest
to the boundary is kept. In this way the boundary is defined by typically 3000
points. Now we switch from the point set representation of N to a polyhedral
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representation of N . For this we use the α-hull surface reconstruction algorithm
[6]. The α-hull algorithm takes as input a set of points and constructs an outer
hull around these points. Whether a point is considered as a boundary point
or an interior point depends on the value of the parameter α. For α = ∞ the
outer hull is the convex hull of the point set, for α = 0 every point is considered
as an interior point. We choose α so that the overall shape of the polyhedral
approximation is practically identical to the shape of the point set. Besides
constructing a polyhedral hull, the α-hull algorithm also generates a Delaunay
triangulation of this hull, so, the result of the α-hull algorithm is a collection of
triangles defining the hull of N .

In the NDLP method not only N but also translates of N are used. Translat-
ing N over some vector a is done by adding a to every coordinate of N , giving
Na. To calculate the intersection curve of N and Na, represented by N ∩Na, we
use the OBBTree algorithm [7]. This algorithm calculates of two sets of triangles
in 3D which pairs of triangles intersect. For each pair of intersecting triangles we
calculate the line segment that is in both triangles, so, the resulting set of inter-
section segments forms the intersection curve N∩Na. Subsequently we calculate
the intersection of N ∩Na and Nb.

As explained before, the NDLP method is in essence a search problem in
three continuous parameters. To make the method practicable the parameter
space has to be transformed into a finite set of discrete points, i.e. the granularity
of the search process has to be determined. In our implementation the search
granularity is dictated by the granularity of the triangulation of N . More precise,
the vector a runs through all of the centers of the triangles of N . In the same
way, b runs through all of the centers of the line segments of N ∩ Na. As the
triangulation of N depends on the number of points returned by the grid-based
selection method, the search granularity may be controlled by the number of
grid-cells.

We implemented the NDLP method in C++ using the computational geom-
etry library CGAL[8], the α-hull algorithm and the OBBTree algorithm.

4 Results

We tested the NDLP method on seventeen macromolecules from [5]. The shape
of these molecules ranges from almost spherical to complex, see figure 5. Every
molecule was packed in two ways: with GROMACS [9] in the conventional way
in a dodecahedron, and with the NDLP method. Subsequently, every molecule
was simulated for 25000 timesteps of 2fs in two different triclinic boxes. To
keep the comparison fair we did not do the simulation in the octahedron but
in the triclinic box defined by the lattice of the octahedron, i.e. every molecule
was simulated in two different triclinic boxes; one calculated via the truncated
octahedron and one calculated by the NDLP method. We used the GROMACS
M.D. simulation package, using rotational restraining for the simulation in the
NDLP box. The simulations were done on one AMD Athlon 600 Mhz. In table
1 the molecules are given, the volume of their simulation boxes, the number
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of water molecules in the box, and the simulation time. From this table it is
clear that on average boxes calculated with the NDLP method have a volume of
≈40% of the corresponding GROMACS dodecahedron, and the speedup of the
simulation is ≈ 2.2.

Macro-molecules Dodecahedron NDLP triclinic box

nr PDB nr of volume nr of water simulation volume nr of water simulation speedup
code atoms [nm3] molecules time [hr:min] [nm3] molecules time [hr:min] factor

1 1A32 1102 577.82 18610 06:51 118.93 3474 01:25 4.83
2 1A6S 805 142.43 4366 01:45 80.08 2254 00:58 1.81
3 1ADR 763 167.25 5137 01:59 80.73 2266 00:55 2.16
4 1AKI 1321 233.54 7027 02:48 93.99 2454 01:07 2.50
5 1BW6 595 130.27 3904 01:29 66.32 1874 00:45 1.97
6 1HNR 485 124.31 3865 01:29 59.30 1717 00:41 2.17
7 1HP8 686 177.10 5522 02:09 77.57 2203 00:53 2.43
8 1HQI 982 218.77 6764 02:38 103.71 2947 01:12 2.19
9 1NER 768 147.91 4498 01:45 85.35 2403 00:58 1.81
10 1OLG 1808 468.93 14537 05:37 203.44 5781 02:25 2.32
11 1PRH 11676 1337.80 38715 16:27 611.67 14554 07:47 2.11
12 1STU 668 190.32 5973 02:16 73.41 2074 00:50 2.72
13 1VCC 833 152.69 4612 01:48 69.77 1905 00:49 2.20
14 1VII 389 99.74 3093 01:08 46.96 1348 00:32 2.12
15 2BBY 767 159.26 4868 01:53 80.78 2271 00:56 2.01
16 1D0G* 1052 645.92 20805 07:42 112.78 3168 01:19 5.84
17 1D4V* 3192 1319.21 42202 15:51 451.23 13215 05:29 2.89

Table 1. Seventeen macro-molecules packed in simulation boxes, and simulated with
GROMACS. Every molecule is packed in two ways: by the standard method of the M.D.
simulation program GROMACS using the the dodecahedron, and using the NDLP
method. In the NDLP method the width of the layer around m is 10Å. Subsequently,
every molecule is simulated in two different triclinic boxes, namely the one defined by
the lattice vectors of the space tessellation with the dodecahedron and the one calcu-
lated with the NDLP method. In both simulations rco = 14Å. Every box and molecule
is simulated for 25000 timesteps of 2fs using the simulation package GROMACS run-
ning on a single 600 Mhz. AMD Athlon. For every box and molecule the box volume
is given, the number of water molecules surrounding the macro-molecule and the sim-
ulation time. In the last column the speedup of the simulation time is given. The main
result of this article is that on average the volume of the simulation box calculated
with the NDLP method is ≈ 40% of the volume of the dodecahedron calculated with
the current method of GROMACS, and that the average speedup of the simulation
using the NDLP box is ≈ 2.2.

5ÿ DiscussionÿandÿConclusion

–ÿ InÿtheÿNDLPÿmethod,ÿcalculatingÿNÿ takesÿtypically 1
3 of the total time, and

the actual search process takes typically 2
3 of the total time. On our system
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Fig. 5. The NDLP method applied to molecule 1a32 from the PDB, consisting of 1102
atoms. The molecule is shown as a set of atoms, and M and N are shown as polyhedrals.
The scaling of the figures varies. Top left: The molecule m. Top right: The body M ,
obtained by dilating m with a layer of width 10Å . Bottom left: The contact body N ,
defined as N ≡ M ⊕−M. Bottom right: The NDLP of M . The four copies of M in the
NDLP configuration touch each other. Calculating N took 6 minutes, calculating the
the NDLP took 9 minutes, done on a Pentium III 500 mhz. with 128 MB.

itÿtakesÿ15ÿ− 45ÿminutesÿtoÿcalculateÿtheÿNDLPÿofÿaÿmolecule,ÿdependingÿon
theÿcomplexityÿofÿitsÿshape.

–ÿTheÿNDLPÿmethodÿisÿonlyÿusefulÿwhenÿcombinedÿwithÿrotationalÿrestraining.
–ÿTheÿoverheadÿinÿCPUÿtimeÿintroducedÿbyÿtheÿrotationalÿrestrainingÿisÿneg-

ligibleÿw.r.t.ÿtheÿspeedup.
–ÿTheÿNDLPÿmethodÿworksÿforÿaÿsingleÿmacromoleculeÿandÿforÿmultipleÿmacro-

moleculesÿwithÿmoreÿorÿlessÿfixedÿrelativeÿpositions.ÿInÿtableÿ1ÿtheÿmolecules
16ÿandÿ17ÿareÿofÿtheÿlatterÿtype.

–ÿWeÿonlyÿcomparedÿtheÿNDLPÿmethodÿwithÿtheÿGROMACSÿpackingÿmethod,
notÿwithÿotherÿM.D.ÿsimulationÿpackages.ÿHowever,ÿbecauseÿotherÿpackages
useÿtheÿsameÿmethodsÿasÿGROMACSÿtoÿcalculateÿtheÿcomputationalÿboxÿwe
expectÿthatÿforÿotherÿpackagesÿaÿsimilarÿgainÿinÿefficiencyÿcanÿbeÿachieved.
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–ÿWeÿwillÿmakeÿtheÿNDLPÿmethodÿavailableÿasÿanÿinternetÿserviceÿonÿaÿpage
ofÿtheÿM.D.ÿgroupÿinÿGroningen.

–ÿTheÿmainÿconclusionÿofÿthisÿarticleÿisÿthatÿtheÿspeedÿofÿM.D.ÿsimulations
usingÿboxesÿconstructedÿwithÿtheÿNDLPÿmethodÿisÿonÿaverageÿ2.2ÿtimesÿthe
speedÿofÿsimulationsÿusingÿboxesÿconstructedÿwithÿconventionalÿmethods.
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