
ProtoMol: A Molecular Dynamics Research
Framework for Algorithmic Development

T. Matthey1, A. Ko2, and J.A. Izaguirre2

1 Department of Informatics
University of Bergen
5020 Bergen, Norway

Thierry.Matthey@ii.uib.no
2 Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN, USA 46556-0309

izaguirr@cse.nd.edu

Abstract. This paper describes the design and evaluation of ProtoMol, a high
performance object-oriented software framework for molecular dynamics (MD).
The main objective of the framework is to provide an efficient implementation
that is extensible and allows the prototyping of novel algorithms. This is achieved
through a combination of generic and object-oriented programming techniques
and a domain specific language. The program reuses design patterns without
sacrificing performance. Parallelization using MPI is allowed in an incremental
fashion. To show the flexibility of the design, several fast electrostatics (N -body)
methods have been implemented and tested in ProtoMol. In particular, we show
that an O(N) multi-grid method for N -body problems is faster than particle-
mesh Ewald (PME) for N > 8, 000. The method works in periodic and non-
periodic boundary conditions. Good parallel efficiency of the multi-grid method
is demonstrated on an IBM p690 Regatta Turbo with up to 20 processors for
systems with N = 102, 104 and 106. Binaries and source code are available free
of charge at http://www.nd.edu/˜lcls/protomol.

1 Introduction

Molecular dynamics (MD) is an important tool in understanding properties and function
of materials at the molecular level, including biological molecules such as proteins and
DNA. The challenge of MD is related to the multiple length and time scales present in
systems. For example, biological molecules have thousands of atoms and time scales
that span 15 orders of magnitude. The MD research community continually develops
multiscale integrators, fast N -body solvers, and parallel implementations that promise
to bring the study of important systems within reach of computational scientists.

Although there are many programs for MD, most are very complex and several
are legacy codes. This makes it harder for algorithm developers to incorporate their
algorithms and disseminate them. The complexity usually arises from parallelization
and other optimizations.

ProtoMol has been designed to facilitate the prototyping and testing of novel
algorithms for MD. It provides a domain specific language that allows user prototyping of

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 50–59, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://www.nd.edu/~lcls/protomol

ProtoMol: A Molecular Dynamics Research Framework 51

MD simulation protocols on the fly, and it sacrifices neither performance nor parallelism.
Its sequential performance is comparable to NAMD 2 [1], one of the fastest MD programs
available, and it has good scalability for moderate numbers of processors.

ProtoMol combines techniques from generic and object-oriented design in C++,
but the lessons are applicable to other object oriented languages. It uses several design
patterns, including some for simulations of dynamics of particles. These design pattern
implementations have been sufficiently general to be reused in another framework
called CompuCell, which models morphogenesis and other processes of developmental
biology at the cellular and organism level [2].

ProtoMol has been used in several applications, including simulation of ionic
crystals, magnetic dipoles, and large biological molecules. It has also been used in
courses on scientific computing simulations. As a proof of its flexibility, the design
of ProtoMol has allowed the prototyping of several new algorithms and effective
implementation of sophisticated existing ones, cf. [3]. Substantial portions of this paper
are in [4]. However, parallel results for multi-grid methods are reported here for the first
time.

2 Physical and Mathematical Background

In classical MD simulations the dynamics are described by Newton’s equation of motion

mi
d2

dt2
xi(t) = F i(t), (1)

where mi is the mass of atom i, xi(t) the atomic position at time t and F i(t) the instant
force on atom i. The force F i is defined as a gradient of the potential energy

F i = −∇iU(x1, x2, . . . ,xN) + F extended
i , (2)

where U is the potential energy, F extended
i an extended force (e.g., velocity-based friction)

and N the total number of atoms in the system. Typically, the potential energy is given
by

U = U bonded + U non-bonded (3)

U bonded = U bond + U angle + U dihedral + U improper (4)

U non-bonded = U electrostatic + ULennard-Jones. (5)

The bonded forces are a sum of O(N) terms. The non-bonded forces are a sum of
O(N2) terms due to the pair-wise definition. U bond, U angle, U dihedral and U improper define
the covalent bond interactions to model flexible molecules. U electrostatic represents the
well-known Coulomb potential and ULennard-Jones models a van der Waals attraction and
a hard-core repulsion.

2.1 Numerical Integrators

Newton’s equation of motion is a second order ordinary differential equation. Its
integration is often solved by the numerical leapfrog method, which is time reversible

52 T. Matthey, A. Ko, and J.A. Izaguirre

and symplectic. Despite its low order of accuracy, it has excellent energy conservation
properties and is computationally cheap.

A complete MD simulation is described by Algorithm 1. It consists basically of
the loop numerically solving the equation of motion, the evaluation of forces on each
particle, and some additional pre- and post-processing.

Algorithm 1. Pseudo-code of an MD simulation

2.2 Force Evaluation

Force evaluation in MD typically consists of bonded and non-bonded interactions.
Bonded interactions (U bond) are short-range and comparable cheap to compute. Non-
bonded interactions are of a long-range nature and determined at run-time. They are the
most computationally expensive. Thus, most MD program optimizations happen here.

One of the most common optimizations for non-bonded force computations is the
use of cutoffs to limit the spatial domain of pairwise interactions. Closely related to this
is the use of switching functions to bring the energy and forces smoothly to zero at the
cutoff point. Furthermore, cutoff computation can be accelerated through the use of cell
lists or pair lists to achieve O(N). ProtoMol implements generic facilities supporting
all these optimizations.

For systems with partial charges or higher multipoles, the electrostatic interactions
play a dominant role, e.g., in protein folding, ligand binding, and ion crystals. Fast
algorithms for electrostatic force evaluation implemented in ProtoMol are described in
Sects. 2.2–2.2. In particular, we describe the parallel implementation of a novel multi-grid
summation method (MG) for O(N) fast electrostatics in periodic boundary conditions
or vacuum.

Ewald Summation. A general potential energy function U of a system of N particles
with an interaction scalar function φ(xij + n) and periodic boundary conditions can be
expressed as an infinite lattice sum over all periodic images. For the Coulomb potential
energy this infinite lattice sum is only conditionally convergent.

The Ewald sum method separates the electrostatic interactions into two parts: a short-
range term handled in the direct sum and a long-range smooth varying term handled
approximately in the reciprocal sum using Fourier transforms. This splitting changes

ProtoMol: A Molecular Dynamics Research Framework 53

the potential energy from the slowly and conditionally convergent series into the sum of
two rapidly converging series in direct and reciprocal space and a constant term.

This algorithm scales like O(N2) unless some optimizations are performed. The
splitting parameter β, which determines the relative rates of convergence between the
direct and reciprocal sums, can be adjusted to reduce the computational time to O(N3/2),
cf. [5].

Particle Mesh Ewald. Using the discrete Fast-Fourier transforms (FFT), the mesh-
based Ewald methods approximate the reciprocal-space term of the standard Ewald
summation by a discrete convolution on an interpolating grid. By choosing an
appropriate splitting parameter β, the computational cost can be reduced from O(N

3
2)

to O(N log N). The accuracy and speed are additionally governed by the mesh size and
the interpolation scheme, which makes the choice of optimal parameters more difficult.
This problem has been addressed by MDSimAid, a recommender system that proposes
possible optimal choices for a given system and a required accuracy [6].

At present, there exist several implementations based on the mesh-based Ewald
method, but they differ in detail. Smooth particle-mesh Ewald (SPME) [7] is imple-
mented in ProtoMol. The mesh-based Ewald methods are affected by errors when
performing interpolation, FFT, and differentiation [5]. Accuracy increases when the
interpolation order or the number of grid points increase.

Multi-grid Summation. Multi-grid summation (MG) has been used used to solve the
N -body problems by [3,8]. MG imposes a hierarchical separation of spatial scales and
scales as O(N). The pair-wise interactions are split into a local and a smooth part.
The local parts are short-range interactions, which are computed directly. The smooth
part represents the slowly varying energy contributions, approximated with fewer terms
– a technique known as coarsening. MG uses interpolation unto a grid for both the
charges and the potential energies to represent its smooth – coarse – part. The splitting
and coarsening are applied recursively and define a grid hierarchy (Fig. 1). For the
electrostatic energy, the kernel is defined by G(r) = r−1 and r = ||y − x||. G(r)
is obviously not bounded for small r. The interpolation imposes smoothness to bound
its interpolation error. By separation, the smoothed kernel (smooth part) for grid level
k ∈ {1, 2, . . . , l} is defined as

Gk
smooth(r) =

{
Gsk

(r) : r|| < sk

G(r) : otherwise.
(6)

Here, sk is the softening distance at level k and Gsk
(r) is the smoothing function with

Gsk
(sk) = G(sk). We define sk = ak−1s, typically a = 2. Corrections of the energies

are required when the modified, smoothed kernel is used instead of the exact one.

3 Framework Design

MD programs may substantially differ in design, but they are essentially all based on
Algorithm 1. Four main requirements were addressed during the design of the framework:

54 T. Matthey, A. Ko, and J.A. Izaguirre

−1l

(1)

(1) (3)

(4)

(2)

(1) (3)

(4)

(4)

(3)

Potential values Point Charges

l

1

0

Fig. 1. The multilevel scheme of the MG algorithm. (1) Aggregate to coarser grids; (2) Compute
potential energy induced by the coarsest grid; (3) Interpolate energy values from coarser grids;
(4) Local corrections

1. Allow end-users to compose integrators and force evaluation methods dynamically.
This allows users to experiment with different integration schemes. MTS methods
require careful fine-tuning to get the full benefit of the technique.

2. Allow developers to easily integrate and evaluate novel force algorithms schemes.
For example, the force design allows the incorporation of sophisticated multiscale
algorithms, including mesh-based methods and MG.

3. Develop an encapsulated parallelization approach, where sequential and parallel
components co-exist. This way, developers are not forced to consider the distributed
nature of the software. Parallelism itself is based on range computation and a
hierarchical master-slave concept [9].

4. Provide facilities to compare accuracy and run-time efficiency of MD algorithms
and methods.

For the design of the component-based framework ProtoMol, three different
modules were identified. These are shown in Fig. 2 and are described next. The front-
end provides components to compose and configure MD applications. The components
are responsible for composing and creating the actual MD simulation set up with its
integration scheme and particle configuration. This layer is strongly decoupled from the
rest to the extent that the front-end can be replaced by a scripting language.

libparallel, libforces
libbase, libtopology

libintegrators

libfrontendComponent

Framework

Class Library

Middle Layer

Front−end

Back−end

Fig. 2. The component-based framework ProtoMol

ProtoMol: A Molecular Dynamics Research Framework 55

The middle layer is a white-box framework for numerical integration reflecting a
general MTS design. The back-end is a class library carrying out the force computation
and providing basic functionalities (see Sect. 3.1). It has a strong emphasis on run-time
efficiency.

The discussion of the framework has a strong emphasis on the design of force
algorithms, since considerable time was spent to design and implement new force
algorithms (e.g., standard Ewald summation, SPME, MG, etc.). The front-end is mainly
the pre- and post-processing in Algorithm 1 and is not detailed in this paper, whereas the
middle layer is briefly explained to give an overview of the collaboration of integrators
and their associated forces. A complete domain analysis of the integrator library used
in ProtoMol is in [10], and some references to novel integrators developed and
implemented using the program are [11,12].

3.1 Force Design

The forces are designed as separate components and part of the computational back-end.
From an MD modeling point of view and from performance considerations, five different
requirements (or customizable options) are proposed. These are discussed below:

R1 An algorithm to select an n-tuple of particles to calculate the interaction.
R2 Boundary conditions defining positions and measurement of distances in the system.
R3 A Cell Manager component to retrieve efficiently the spatial information of each

particle. This has O(1) complexity.
R4 A function defining the force and energy contributions on an n-tuple.
R5 A switching function component to make the force and energy terms smoother.

Force Interface. In order to address these requirements, several design approaches can
be chosen. To avoid an all inclusive interface with mammoth classes, we use multiple
inheritance and generic programming. We combine templates and inheritance in the
Policy or Strategy pattern [13, pp. 315-323]. This pattern promotes the idea to vary the
behavior of a class independent of its context. It is well-suited to break up many behaviors
with multiple conditions and it decreases the number of conditional statements.

The algorithm to select the n-tuples (R1) is customized with the rest of the four
requirements (R2-R5). This allows the simultaneous evaluation of different types of
forces with the same algorithm. Complex force objects stem from non-bonded forces.
For example, to define an electrostatic force, we may choose a cutoff algorithm
(R1) that considers only the closest neighboring atoms. To find the closest atoms in
constant time, we use a cell manager based on a cell list algorithm (R3), defining
some boundary conditions (R2), a function defining the energy and force contributions
between two arbitrary atoms. We may even modify the energy and force by specifying a
switching function. The forces are designed with a common interface, a deferred feature
called evaluate(...) that does the evaluation of the force contributions based on its
parameterization and policy choices.

56 T. Matthey, A. Ko, and J.A. Izaguirre

Force Object Creation. Once the forces are designed and implemented, we need to
create (or instantiate) the actual force objects needed by integrators. This can be solved
by a sort of “just-in-time” (JIT) compiler that can transform a given input definition into
a real force object.

The requirements of object creation are satisfied by the Abstract Factory [13, pp. 87-
95] and the Prototype [13, pp. 117-126] patterns. The Abstract Factory pattern delegates
the object creation, and the Prototype pattern allows dynamic configuration.At the end of
the process, a fully featured force object with set parameters is created by the prototype.
In order to make the dynamic configuration and the actual object creation independent,
and the factory globally accessible, the force factory uses the Singleton pattern [13,
pp. 127-134].

3.2 Performance Monitoring

Since one of the requirements of the framework is the ease to evaluate and compare
different force algorithms, functionalities were added to the framework for this purpose.
At present, pairs of forces can be compared to determine energy and force errors of new
force methods. The comparison is performed on-the-fly, such that the reference force
does not affect the current simulation. For example, one can compare a fast electrostatics
method such as PME using two grid sizes, such that the more accurate one serves as an
accuracy estimator. This is important to validate and verify a simulation.

For the benchmarking of forces, a timer function was implemented to measure the
total and average time spent in dedicated force methods. Comparisons can be nested to
evaluate accuracy and run-time performance simultaneously. The comparison of force
pairs is based on the Count Proxy pattern [13, pp. 207-217] to link two forces together
and calculate the actual errors.

4 Performance Evaluation

We describe the performance evaluation of the fast electrostatic methods implemented in
ProtoMol and described in this paper. Figure 3 shows parallel scalability of ProtoMol
applied on Coulomb Crystal systems [14,15], which are defined by a – computationally
dominating – electrostatic part and an electric field with linear work complexity. The
full electrostatics are solved by MG. The simulations were performed on an IBM p690
Regatta Turbo. Note that the sequential speedup for N = 106 is of order 102 or more
compared to the direct method, and for lower accuracy a speedup of order 103 was
observed.

Our initial parallel implementation of MG is based on global communication using
MPI for the smooth part defined at particle level. In Fig. 1 the work of the anterpolation
(1), the interpolation (3), the direct part (4) and the correction at grid level (4) can
be estimated and distributed perfectly among the slaves at each level, given the grid
dimensions, the softening distance and the number of particles. Accurate work estimates
enables us to assign the work without any synchronization (i.e., a master node), and to
reduce the idle cycles to a minimum when performing a global update of the local
contributions at the grid levels. For the direct part at particle level (4) the work is

ProtoMol: A Molecular Dynamics Research Framework 57

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Processors

S
pe

ed
up

N=1,000,000
N=10,000
N=100

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

10
3

Processors

P

ro
ce

ss
or

s
×

T
im

e
pe

r
st

ep
 [s

]

N=1,000,000
N=10,000
N=100

Fig. 3. Parallel scalability applied on Coulomb Crystal systems using MG electrostatic solver with
relative error of order 10−5 or less; performed on an IBM p690 Regatta Turbo

distributed dynamically, since the work for a given spatial sub-domain can not be
predicted statically, due to the fact that the distribution of particles is in general non-
uniform. The master assigns ranges of work on demand to balance the work, which
represents the force decomposition scheme with master-slave distribution. Additionally,
the ranges of work are sent in pipeline to avoid slaves waiting for their next range. In
general, a work range represents a collection of terms of a term of the sum U in Eq. (3).
The ranges are based on the possible splittings provided by the force objects defined by
the sum U . Furthermore, the work distribution can be performed using either a master-
slave, as described above, or a static scheme. The static scheme distributes the work
in a linear manner, which performs well for small number of nodes or uniform density
systems.

Figure 4 compares the run-time of MG, which is extended to periodic boundary
conditions for the first time here, and the smooth PME. The experiments are based on
the TIP3 water model with atoms ranging from 1,000 to 100,000. The Ewald method is

0.1

1

10

100

1000

10000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
(s

)
pe

r
M

D
 s

te
p

Number of atoms

PME (in pbc)
MG (in pbc)

Ewald (in pbc)
MG (in vacuum)

Direct (in vacuum)

Fig. 4. Time per MD step for N -body electrostatic solvers implemented in ProtoMol with relative
error of order 10−4

58 T. Matthey, A. Ko, and J.A. Izaguirre

assumed to be the standard for comparison when the experiments are done in periodic
boundary condition while the direct method is used for comparison when the experiments
are done in vacuum. The MG method is tested both in periodic boundary conditions and
in vacuum while the PME is tested in periodic boundary conditions only. The tests
are performed using i686 Pentium processors running Linux. The CPU time and the
relative error in evaluating the potential energy for each test are measured. The same
C2-continuous switching function and switchon of 5 Å are used for all tests.

The performance evaluation facilities of ProtoMol allow us to determine the critical
size and accuracy at which MG performs better than PME. MG is superior for systems of
8,000 or more particles. An optimization was performed to find the optimal parameters
for each method at the lowest time and highest accuracy. Details on selection of optimal
parameters for these methods are beyond the scope of this paper but can be provided on
request. Some guidelines can be found in [8].

5 Discussion

The design of ProtoMol has allowed the implementation of novel MTS integrators
and fast N -body solvers. For example, the MG summation for fast electrostatic is 3-5
times faster than the particle-mesh Ewald for systems only 8,000 atoms. The parallel
version of MG scales well for moderate numbers of processors: we have tested it with up
to 20. Combination of these new methods have enabled simulations of million-particle
systems with full electrostatics described above [15]. The facilities for performance
monitoring have been very useful and general. Furthermore, the different algorithms
and the comparison facilities give a unique opportunity to choose the best algorithm for
a particular application and enable fair comparison of future novel algorithms.

The domain specific language makes our MD applications very flexible. By using
the provide “JIT” compiler, users compose their own programs without having to touch
the code. This was mainly achieved with help of the Abstract Factory pattern and the
Prototype pattern, which also improves the extendibility on the developer level.

The object-oriented design of the framework along with the use of design patterns
has eased the development of a fairly complex framework. By using object-oriented and
generic implementation of ProtoMol, we have achieved high performance without
sacrificing extendibility. The programming language C++ has allowed us to achieve the
goal of extendability, particularly we have benefited from the STL.

Acknowledgments. This research was supported by a NSF Biocomplexity Grant No.
IBN-0083653 and a NSF CAREER Award ACI-0135195 and partly by the Norwegian
Research Council. Many students have contributed to ProtoMol. A list can be found
in its webpage.

References

1. Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J.,
Shinozaki, A., Varadarajan, K., Schulten, K.: NAMD2: Greater scalability for parallel
molecular dynamics. J. Comp. Phys. 151 (1999) 283–312

ProtoMol: A Molecular Dynamics Research Framework 59

2. Chaturvedi, R., Izaguirre, J.A., Huang, C., Cickovski, T., Virtue, P., Thomas, G., Forgacs, G.,
Alber, M., Hentschell, G., Newman, S., Glazier, J.A.: Multi-model simulations of chicken limb
morphogenesis. To appear in proceedings of the International Conference on Computational
Science ICCS (2003)

3. Matthey, T.: Framework Design, Parallelization and Force Computation In Molecular
Dynamics. PhD thesis, Department Of Informatics, University of Bergen (2002)

4. Matthey, T., Cickovski, T., Hampton, S., Ko, A., Ma, Q., Slabach, T., Izaguirre, J.A.:
ProtoMol: an object-oriented framework for prototyping novel algorithms for molecular
dynamics. Submitted to ACM Trans. Math. Softw. (2002)

5. Petersen, H.G.: Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys.
103 (1995)

6. Ko, A.: MDSimAid: An automatic recommender for optimization of fast electrostatic
algorithms for molecular simulations. Master’s thesis, University of Notre Dame, Notre Dame,
IN (2002) Available from http://www.nd.edu/˜izaguirr/papers/KOthesis.pdf.

7. Essmann, U., Perera, L., Berkowitz, M.L.: A smooth particle mesh Ewald method. J. Chem.
Phys. 103 (1995) 8577–8593

8. Skeel, R.D., Tezcan, I., Hardy, D.J.: Multiple grid methods for classical molecular dynamics.
J. Comp. Chem. 23 (2002) 673–684

9. Matthey, T., Izaguirre, J.A.: ProtoMol: A molecular dynamics framework with incremental
parallelization. In: Proc. of the Tenth SIAM Conf. on Parallel Processing for Scientific
Computing (PP01). Proceedings in Applied Mathematics, Philadelphia, Society for Industrial
and Applied Mathematics (2001)

10. Izaguirre, J.A., Ma, Q., Matthey, T., Willcock, J., Slabach, T., Moore, B., Viamontes,
G.: Overcoming instabilities in Verlet-I/r-RESPA with the mollified impulse method. In
Schlick, T., Gan, H.H., eds.: Proceedings of 3rd International Workshop on Methods for
Macromolecular Modeling. Volume 24 of Lecture Notes in Computational Science and
Engineering. Springer-Verlag, Berlin, New York (2002) 146–174

11. Izaguirre, J.A., Catarello, D.P., Wozniak, J.M., Skeel, R.D.: Langevin stabilization of
molecular dynamics. J. Chem. Phys. 114 (2001) 2090–2098

12. Skeel, R.D., Izaguirre, J.A.: An impulse integrator for Langevin dynamics. Mol. Phys. 100
(2002) 3885–3891

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Massachusetts (1995)

14. Hasse, R.H., Avilov, V.V.: Structure and Mandelung energy of spherical Coulomb crystals.
Phys. Rev. A 44 (1991) 4506–4515

15. T. Matthey, J.P.H., Drewsen, M.: Bicrystal structures in rf traps of species with identical
charge-to-mass ratios. Submitted to PRL (2003)

	Introduction
	Physical and Mathematical Background
	Numerical Integrators
	Force Evaluation

	Framework Design
	Force Design
	Performance Monitoring

	Performance Evaluation
	Discussion

