

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 401–411, 2003.
© Springer-Verlag Berlin Heidelberg 2003

CORBA Based Real-Time Object-Group Platform in
Distributed Computing Environments

Su-Chong Joo1, Sung-Kwun Oh1, Chang-Sun Shin1, and Jun Hwang2

1 School of Electrical, Electronic and Information Engineering, Wonkwang University, Korea
{scjoo,ohsk,csshin}@wonkwang.ac.kr

2 Department of Computer Science, Seoul Women University, Korea
hjun@swu.ac.kr

Abstract. Recently, the distributed real-time services are developing in distrib-
uted object computing environments in a way that can support a new program-
ming paradigm of the distributed platform that requires interoperability among
heterogeneous systems. These services are based on distributed middleware and
object-oriented technologies. But we have the difficulties of managing of dis-
tributed objects and providing real-time objects with the timing constraints. For
simultaneously solving these problems, we designed a new model, a real-time
object group (RTOG) platform that can manage and group the distributed ob-
jects for reducing their own complicated managements and interfaces, and add
distributed real-time requirements to real-time objects without modifying the
ORB itself. The structure of the real-time object group we suggested contains
several components reflecting the object grouping concepts and real-time ser-
vice requirements analyzed by referring OMG CORBA specifications and real-
time properties. To construct our RTOG platform, we designed the RTOG
structure and the functional class diagram of components in a RTOG according
to the analyzed requirements, and defined the timing constraints of real-time
objects. And we explained the functional definitions and interactions among the
components from the following points of view: distributed object management
and real-time services. Finally, as results of the implemented our RTOG plat-
form, we showed the real-time executing procedures via the Scheduler and the
Real-Time Manager in RTOG platform charging with real-time services, and
verified our findings by using the EDF algorithm to see whether real-time ser-
vices can be applied to our platform.

1 Introduction and Related Works

The distributed object computing is becoming a widely accepted new programming
paradigm for distributed applications that require seamless interoperability among
heterogeneous environments. The Object Management Group (OMG) had developed
the Common Object Request Broker Architecture (CORBA) [1,2] as a standard soft-
ware specification for distributed environments. This standard software specification
specifies an Interface Definition Language (IDL) for the interface descriptions of the
functional behaviors of distributed components. It also specifies object services,

402 S.-C. Joo et al.

which facilitate standard interactions with a set of capabilities (i.e. Naming, Event,
etc.), and an Object Request Broker (ORB), which is the middleware that allows for
the seamless interactions between distributed objects with roles of clients or servers.

Many distributed real-time applications, such as automated factory controls, avion-
ics navigation and military target tracking system, have benefited from a standard ar-
chitecture like CORBA. Though many designers of distributed applications have been
adapting the CORBA specification for developing their own middleware architectures,
it is currently inadequate to support requirements for distributed real-time services.
For example, the IDL describes the interfaces of functional behaviors of distributed
components, but it is impossible to explicitly describe the timing constraints for their
real-time behaviors. Furthermore, system services provided by distributed environ-
ments offer little support for end-to-end real-time scheduling [3,6] across the envi-
ronment due to not providing services as synchronized clocks and bounded message
latencies.

Recently, the Real-Time Special Interest Group (RT-SIG) [4,7] organized in the
OMG has being propelled to examine the current CORBA standard and determine re-
quirements for supporting distributed real-time applications. Especially, this RT-SIG
is focusing on supporting the ability to express and enforce the timing constraints by
extending the current CORBA standard. The RT-SIG has produced white papers that
detail the desired capabilities for a distributed computing environment to support real-
time applications. The desired real-time capabilities specified in the CORBA/RT SIG
white paper are classified into the following three areas: desired capabilities for the
operating environment; desired capabilities for the ORB architecture and desired ca-
pabilities for the object services and facilities. But lots of researchers have been done
to only improve the system performance by using real-time CORBA itself, or modi-
fied a part of CORBA compliance. But, considering the integrated real-time CORBA
environments, we still have problems with embedding real-time applications into
CORBA implementation. For solving the above problems, it is necessary to extend
the current OMG CORBA standard so that it can meet real-time requirements and the
desired capabilities of the application without changing the CORBA standard itself.
Also, we used the concept of an object group that we have already studied [8–12].
This object group concept was suggested for providing the efficient and convenient
management of distributed objects, and for making the individual object independent
and reusable. Based on the object group concept, we designed and implemented that a
RTOG platform for not only supporting the distributed real-time properties, but also
for managing the distributed objects based on the current CORBA standard.

Our paper is organized as follows; Section 2 describes the real-time object group
model. Here, we designed the real-time object group (RTOG) and defined the timing
constraints of real-time objects. In Sect. 3, we explain the functional definitions and
interconnections of the components included in the RTOG from the following ser-
vices; distributed object management service and real-time service. In Sct.4, we de-
pict how to implement and execute components in RTOGs on our RTOG platform.
As a result, we show the executing procedures via Scheduler object and Real-Time
Manager in the RTOG charging with real-time services, and verified our findings by

CORBA Based Real-Time Object-Group Platform 403

using the EDF algorithm to see whether real-time services can be applied to our plat-
form. Finally, we discuss our conclusions and future works.

2 Real-Time Object Group

In a real-time system, first of all, the timing constraints must be met for given real-
time applications. Real-time requirements are typically derived from the practical sys-
tems interacting with the physical environment. There are two kinds of the relating
approaches suggested to adapt real-time services to CORBA. One approach has been
producing a CORBA specification or coding implementations that support faster per-
formance. The other approach taken by some vendors has been embedding their
CORBA implementations to the real-time operating system [3,5]. But, because both
approaches are insufficient for meeting the timing constraints, the supports for the
expression and system-wide enforcement of the timing constraints are also necessary.
For this reason, we suggested the real-time object group platform (called RTOG plat-
form after this).

2.1 RTOG Structure

Figure 1 below shows the RTOG structure, The RTOG we suggested consists of the
following objects; Group Manager (GM), Real-Time Manager (RTM), Object Factory,
Security, Scheduler, Timer, Object Information Repository, Service Objects (SOs),
and Sub-object groups. Here, the RTOG is logically presented as a single view system
for object management service and real-time service of SOs existing in distributed
systems connected over networks physically.

G MG M
R TMR TM

SO

Security Scheduler

Tim er

SO SO

O bject G roup

O bject
Factory

O bject
Info.

G MG M R TMR TM

Security
Scheduler

T im er

SO

O bject
Factory

O bject
In fo.

SOSO

Sub-O bject G roup

Fig. 1. RTOG structure

We suggest our RTOG for efficient management of distributed objects and the

execution of services simply reflecting the real-time properties in distributed envi-
ronments. And the major role of the components in the RTOG is categorized in two

404 S.-C. Joo et al.

classes to reduce the side effect of interoperability between the object management
and the real-time services. First, for supporting the object management services, our
RTOG consists of the Group Manager, the Security, the Object Information Reposi-
tory, and the Object Factory as components.

The Group Manager (GM) is responsible for managing all of distributed objects in
group model, and interoperating between a client and target SOs. The Object Factory
receives the object creation’s request from the Group Manager, creates the requested
new object using the information from the Object Information Repository, and then
returns the reference of the created object to the Group Manager. The Security Object
checks its own object group’s access possibility for the request of a client in another
group by searching the access control list (ACL) and the access rule. The Object In-
formation Repository stores and maintains the information related to creation of SOs
and the subgroup’s Group Manager.

Secondly, the components in the RTOG taking care of client requests for real-time
service are the Real-Time Manager, the Timer, and the Scheduler. The Real-Time
Manager transparently supports the expression of real-time requirements and simply
controls complex procedures for service calls binding between distributed objects by
interoperating with the Scheduler and the Timer. This Timer has an alarm function for
reporting the missing deadline to the requesting SO, without a reply message related
to the missing deadline from the requested SO. Finally, the Scheduler executes a
given scheduling policy. At this time, the developers can arbitrarily alter an appropri-
ate scheduling mechanism into the Scheduler according to the real-time property of
the special-purposed distributed application.

2.2 Timing Constraints

The basic flow of procedures to obtain the result returned from a client’s request is
broken into three steps; the service request step, the service process step and the result
return step. Each step has the timing constraints and must guarantee the timeliness by
explicitly outlining the timing constraint’s definition. To do this support, we define
the five timing constraints in our study as follows;

• An invocation time (IT) constraint specifies CIT (Client’s Invocation Time), as a time that
a client sends a request message to a SO and SIT(Service Object’s Invoked Time), as a
time that a SO received a request message of a client.

• A service time (ST) constraint specifies the relative time for the service execution of a SO.
• A transfer time (TT) constraint specifies the relative time required for transferring a request

from a client to a SO (SIT-CIT), or inversely.
• A service deadline (SD) constraint specifies the completed service time of a SO as an abso-

lute time.
• A request deadline (RD) constraint specifies the absolute time that a client received the re-

sult returning from a SO after a client requested a SO. Here, a RD is the timing constraint
that must be guaranteed in a distributed real-time application.

CORBA Based Real-Time Object-Group Platform 405

CIT SIT SD RD

Service Requester
(Client Object)

Service Provider
(Service Object)

STTT TT

Fig. 2. The definition of timing constraints

Figure 2 shows the definition of the timing constraints. From these timing con-
straints, we can redefine RD and SD as following expressions;

RD ≥ CIT+ST + (2 * TT) + slack time,
SD ≤ RD – TT, where TT = SIT-CIT and ST = SD – SIT.

The deadline for service execution (SD) is the sum of the client’s invocation
time(CIT), the service execution time (ST), transfer time (2*TT) and slack time. Here,
the slack time is for a constant as a factor for deciding the time of the adequate RD.
This service deadline (SD) must be smaller than and equal a time value which sub-
tracts transfer time (TT) from a client’s request deadline (RD) for guaranteeing real-
time service. In our RTOG platform, we will use the timing constraints mentioned
above for applying an Early Deadline First (EDF) algorithm.

3 Interacting with Components in RTOGs

In this section, we describe the interacting procedures between the components in a
RTOG or RTOGs on distributed platform from the following points of view; distrib-
uted object management and real-time services. And we show interacting procedures
and operations via an Event Trace Diagram (ETD).

3.1 Supporting Object Management Services in RTOGs

The Group Manager is responsible for the whole management of the components of
the RTOG. The Group Manager can create and withdraw SOs or Sub-object groups in
the RTOG itself, and also receive the reference of a SO requested by clients. In this
paper, among these object management functions, we will discuss only the proce-
dures for obtaining a SO’s reference requested from a client in order to save space. A
client must execute the object management procedures firstly before supporting real-
time service. These procedures are consisted of following several steps. A client in an
Object Group obtains the reference of the Group Manager in another Object Group
involving the desired SO via a Name Server. A client requests the SO’s reference
from the Group Manager using the Object Group’s reference obtained before. The
Group Manager invokes the Security to decide whether a client can access a SO. Af-
ter the Security checks the access control list, it returns the access right of the re-
quested a SO to the Group manager. If a client has the access right for a target SO, the
Group Manager requests the creation of it from the Object Factory. The Object Fac-

406 S.-C. Joo et al.

tory creates it by accessing information about the requested SO from the Object In-
formation Repository, and then the Object Factory returns the created SO’s reference
to the Group Manager. Finally, the Group Manager returns the SO’s reference from
the Object Factory to the client. Figure 3 shows an Event Trace Diagram (ETD) for
procedures explained above.

: Client : GM : Security : ObjectFactory : Object_Info : Service Object

1: request(object_name)
2: check_ACL()

3: Able or Nonable

4: create(object_name)
5: lookup_obj_info(object_name)

7: object creation

8: object reference
9: object reference

10: object reference

6: return

Fig. 3. The ETD for obtaining the Service Object (SO)'s reference

3.2 Supporting Real-Time Services in RTOGs

A client requests the real-time service to the SO with a reference obtained via the object
management procedures. Here, as we previously mentioned, the service request of a cli-
ent is necessary to involve the expression, that is, the RI (Real-time Information struc-
ture), about the timing constraints because of the service request with real-time property.
In addition, we assume that the Real-Time Manager (RTM) in each object group main-
tains the global time information using global time service. But, we do not focus on the
detailed global time service in our study.

When a client invokes real-time service to a SO in another object group, it passes the
deadline information to the RTM in its own object group. This deadline is for an abso-
lute time until the result message is returned. The RTM in a client’s object group stores
the current global time and the client’s request deadline, that is, requested by a client, in
RI. The RTM sets a client’s deadline to the Timer in its own object group. If this dead-
line expires, the Timer notifies the missed deadline to a client. After a sequence of pro-
cedures mentioned above in an object group including a client is completed, a client re-
quests the real-time service to SO in another object group. At this time, the RI
information having the timing constraints stored by the RTM is simultaneously sent with
the service call to a SO. A SO passes the RI received to the RTM in its own object group.
The RTM calculates the service deadline with consideration to the transfer time, and
passes the calculated service deadline to the Scheduler. The Scheduler schedules and de-
cides the priority for the service execution of the client. According to the decided prior-
ity, the RTM sets the calculated service deadline on the Timer, and this Timer can also
predict and notify the SO with the missed service deadline to a client. With setting the
Timer, the RTM sends a client’s information to a SO. After a SO performs the services,
it returns the executed results to a client, inversely, and it reports the completion of the

CORBA Based Real-Time Object-Group Platform 407

client’s request to the RTM in its own object group. Then the RTM in a SO’s object
group disarms the Timer. Also, the RTM in a client’s object group disarms Timer by
getting the result from a SO. Figure 4 shows the Event Trace Diagram for the real-
time service’s procedures described above.

: Client : RTM : Timer : Service Object : RTM : Scheduler : Timer

1: Start_Client_RTM()

2: Set_Alarm()

3: True or False
4: True or False

5: service method invocation with RI structure
6: Start_Server_RTM(RI)

7: add_subscriber ()

8: Client Priority

9: Set_Alarm()
10: True or False11: Client_ID

14: End_Server_RTM()
15: Disarm_Alarm()

18: True or False

12: return Result

20: True or False

13: End_Client_RTM()
16: Disarm_Alarm()
17: True or False19: True or False

RTOG1 RTOG2

: Client : RTM : Timer : Service Object : RTM : Scheduler : Timer

1: Start_Client_RTM()1: Start_Client_RTM()

2: Set_Alarm()2: Set_Alarm()

3: True or False3: True or False
4: True or False

5: service method invocation with RI structure5: service method invocation with RI structure
6: Start_Server_RTM(RI)6: Start_Server_RTM(RI)

7: add_subscriber ()7: add_subscriber ()

8: Client Priority8: Client Priority

9: Set_Alarm()
10: True or False11: Client_ID

14: End_Server_RTM()14: End_Server_RTM()
15: Disarm_Alarm()

18: True or False

12: return Result

20: True or False20: True or False

13: End_Client_RTM()13: End_Client_RTM()
16: Disarm_Alarm()16: Disarm_Alarm()
17: True or False17: True or False19: True or False19: True or False

RTOG1 RTOG2

Fig. 4. The ETD for the support of real-time service

To illustrate how the components in our RTOG model work together for supporting a
real-time service, the Fig. 5 is shown the expression and the real-time processing proce-
dures along with given timing constraints in RI parameter, as an example of a typical in-
teractions between Client1 and Service Object1 (SO1) by requesting real-time service.

RTMRTMRTMRTM

SchedulerScheduler TimerTimer

RTMRTMRTMRTM

Client1Client1

TimerTimer

CORBA

Start_Client_RTM(60 sec);

’

Start_Server_RTM(RI);
Pass the RI

Scheduling(); Set_Alarm();

After 60 sec

60 sec

CID : Client1

CIT : 10:00:00

RD : 10:00:60

Set_Alarm();

RI(Real-Time Info)

Get(index, RI);

Calculate the deadline
SIT : 10:00:10
TT : 10:00:10 - 10:00:00

= 10 sec
SD : RD-TT

= 10:00:60 - 10 sec
= 10:00:50

ST : RD-(CIT+(2*TT))
= 10:00:60 -

(10:00:00 + 20 sec)
= 40 sec

40 sec

’

Client1’s SD
10:00:50

’End_Server_RTM();

’End_Client_RTM();

’Unset_Alarm();

’Unset_Alarm();

Transfer time : 10 sec

RTOG1 RTOG2

Service
Object1

Fig. 5. The example of real-time service in RTOGs

We explain the procedure of real-time service shown in Fig. 5 and time-based nu-
merical analysis from our model using the timing constraints described Sect. 2.2.
Here, we assume that for convenient calculations, a unit of time is the second.

• Client1 sends the deadline information (CID, CIT, RD) to the RTM in RTOG1.
• The RTM in RTOG1 sets 60sec on the Timer and stores global time information(CID :

Client1, CIT : 10:00:00, client’s RD : 10:00:60)

408 S.-C. Joo et al.

• Client1 requests the real-time service with RI to Service Object1 (SO1) in RTOG2.
• SO1 passes the received RI to the RTM in RTOG2. And the RTM calculates the service

deadline (SD) from following expression; SD = RD- TT; Here, when let the transfer time
(TT) be 10sec, the calculated service deadline will be 10:00:50 sec. Also, the service
time (ST) is for 40 sec.

• The RTM in RTOG2 invokes the Scheduler to decide the priority of a Client1,
• And simultaneously, the RTM sets 40sec on the Timer.
• The RTM sends a Client1’s information to a SO1.
• SO1 executes the service requested from Client1 and returns the executing result to Cli-

ent1. If SO1 finishes the service within the SD (10:00:50), the RTM in RTOG2 disarms
the Timer. Also, if Client1 receives the returned result of service within the RD
(10:00:60) the RTM in RTOG1 disarms the Timer. If SO1 does not finish the service
within the SD or if Client1 does not receive the returned result of service within the RD,
the Timers in each object group alarm the missing deadline to Client1.

4 The Execution of RTOG Platform

The components of RTOG were designed and implemented to IDL for independently
supporting heterogeneous distributed computing environments, and implemented by
using Visi-broker and Visual C++ 6.0 running on Windows. In this section, we will
show only a procedure of real-time service. The supports of distributed object group
management service have already published as researching papers [9,11,12]. Hence,
we will not explain this part.

Fig. 6. The execution of the Scheduler in a RTOG

To verify the real-time execution procedures of the implemented RTOG platform,
Figs. 6 and 7 below are shown the real-time scheduling procedures on the Scheduler

CORBA Based Real-Time Object-Group Platform 409

and succeeding/missing procedures of a request deadline given from a client on the
RTM, when an arbitrary SO is requested by a number of clients over our platform.

In Fig. 6, we display that the priorities of a client have been changed according to
an arbitrary given scheduling policy of the Scheduler, as an example. Here we
adopted the EDF algorithm as an example of the scheduling policy of the Scheduler.
In this executing procedure, the service request of a client having the shorter deadline
has the higher priority by EDF policy. We can show two cases deleting clients' re-
quests from the scheduling list in the execution of the Scheduler. One is when a cli-
ent’s request does not complete within a given deadline from a SO’s service; deadline
missing. The other is when a client’s request does complete normally; deadline suc-
cess. In Fig. 7, we show as the executing procedures on the Real-Time Manager. The
deadline success rates of each client’s request are 2 per 5 (40%) in a client-1, 4 per 5
(80%) in a client-2, and 5 per 5 (100%) in a client-3, respectively. These results may
differ according to each given client’s deadline and scheduler policy. In this paper,
we only used the EDF algorithm for verifying whether the Scheduler in our model
could be operated well correctly, but not showing the improved performance, like de-
crease of deadline missing rate, of our model itself. Through this verification, we will
develop a more flexible prototypical platform that can adopt various real-time sched-
uling policies to the Scheduler in our model according to given real-time application’s
properties.

Fig. 7. The execution of the real-time manager in a RTOG

5 Conclusions

The distributed object computing technology is becoming a new program paradigm
for distributed applications requiring interoperability between heterogeneous systems.
Especially, when developing a distributed real-time software, we have to consider the
timing constraints for distributed real-time services. Therefore, for the needs of a new
paradigms and trends, we suggest the real-time object group (RTOG) platform for
providing object group concepts and real-time constraints. This platform supports

410 S.-C. Joo et al.

real-time service at the distributed application level and object management service at
the CORBA level, respectively. At the development of this platform, we first sur-
veyed and analyzed studies relating to real-time service models for distributed object-
oriented systems. From lots of researches based on the above environment, the exist-
ing researches have been attempting to only improve the performance of systems by
using real-time CORBA, or modifying the part of CORBA compliance. Up to now,
this kind of a new platform agreed to our goal has not ever tried to be developed yet.

Hence, we designed a new model of a real-time object group platform that can
support the real-time requirement without modifying the ORB. In this paper, we de-
fined the roles of the components of a RTOG, and described functions of each com-
ponent and their relationships of interoperability between the components including
in an object group. To verify the executing procedures of the implemented real-time
object group platform, we simulated the processing procedures for the real-time ser-
vice execution requested by several clients in our platform. As final results, we
showed that our real-time object group platform is able not only to manage distrib-
uted objects and/or object groups, but also to guarantee the real-time requirements of
distributed real-time applications. In this paper, we only used the EDF algorithm for
verifying whether the Scheduler in our model could be scheduled correctly, but not
showing the improved performance of our model itself.

In future, using this RTOG model, we will develop more flexible prototypical plat-
form that can variously adopt new real-time scheduling policies to the Scheduler in
our model according to given real-time application’s properties and support general-
purpose real-time services, not special-purpose real-time services. And then we want
to verify the execution power of the distributed real-time application on our platform
via various simulations for improving real-time service.

Acknowledgements. This work reported here was supported in part by Research
funds of Wonkwang University and the Brain Korea 21-Project of KRF, 2003.

References

1. OMG Real-time Platform SIG: Real-time CORBA A White Paper-Issue 1.0.
http://www.omg.org/realtime/real-time_whitepapers.html (1996)

2. OMG: The Common Object Request Broker: Architecture and Specification revision 2.2.
http://www.omg.org/corba/corbaCB.htm (1998)

3. Victor Fay Wolfe. (eds.): Expressing and Enforcing Timing Constraints in a Dynamic
Real-Time CORBA System.
http://www.cs.uri.edu/rtsorac/publication.html (1997)

4. OMG TC: Realtime CORBA Extensions: Joint Initial Submission. OMG TC, Document
orbos/98-01-09 (1998)

5. Nguyen Duy Hoa: Distributed Object Computing with TINA and CORBA. Technical Re-
port Nr. 97/7. http://nenya.ms.mff.cuni.cz/thegroup (1997)

6. Scheduling in Real-Time System.
http://www.realtime-os.com/sched_o3.html (1996)

7. Andrew S. Tanenbaum: Distributed Operating Systems. Prentice Hall (1995)
8. S.C. Joo: A Study on Object Group Modeling and Its Performance Evaluation in Distrib-

uted Processing Environments. Final Researching Report. ETRI (1997)

CORBA Based Real-Time Object-Group Platform 411

9. G.M. Shin, M.H. Kim, S.C. Joo: Distributed Objects’ Grouping and Management for Sup-
porting Real-Time in CORBA Environments. Journal of The Korea Information Process-
ing Society, Vol. 6, No. 5 (1999) 1241–1252

10. B.T. Jun, M.H Kim, S.C. Joo: The Construction of QoS Integration Platform for Real-
Time Negotiation and Adaptation Stream in Distributed Object Computing Environments.
Journal of The Korea Information Processing Society, Vol. 7, No. 11S (2000) 3651–3667

11. M.H. Kim, S.C Joo: Construction of CORBA Object-Group Model for Distributed Real-
Time Service. Journal of The Korea Information Science Society, Vol. 7, No. 6 (2001)
602–613

12. M.K. Kim, C.W Jeong, C.S Shin, S.C Joo: Design and Implementation of Distributed Ob-
ject Management Model. In Proceedings of IASTED International Conference-Parallel
and Distributed Computing and Systems. Anaheim CA, U.S.A (2001) 222–227

	1 Introduction and Related Works
	2 Real-Time Object Group
	2.1 RTOG Structure
	2.2 Timing Constraints

	3 Interacting with Components in RTOGs
	3.1 Supporting Object Management Services in RTOGs
	3.2 Supporting Real-Time Services in RTOGs

	4 The Execution of RTOG Platform
	5 Conclusions

