

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 297–306, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Performing Grid Computation with Enhanced Web
Service and Service Invocation Technologies

Gang Xue, Graeme E. Pound, and Simon J. Cox

Southampton Regional e-Science Centre
School of Engineering Sciences

University of Southampton
Highfield, Southampton, SO17 1BJ, UK
{gx,gep,sjc}@soton.ac.uk

Abstract. Exploitation of Web service technologies is being attempted in vari-
ous areas of Grid computing. In our effort to perform Grid computation tasks
based on the Web service enabled job submission system, a series of new tech-
nologies have been adopted and developed in order to achieve better function-
alities, performance, and seamless integration with existing Grid computing
environment. This paper presents work with detailed descriptions of new Web
service and service invocation technologies, as well as demonstrations of how
they are deployed in a job submission service. Experiences with these tech-
nologies are also provided, accompanied by results of tests on some of the en-
hanced service functionalities for evaluation and reference.

1 Introduction

Progress in the research and development of Grid computing has given rise to numer-
ous innovative applications of computer technologies in various science and engineer-
ing domains [1]. A significant and elementary Grid functionality often exploited in
these applications is the organisation and delivery of spare compute power from re-
source providers in heterogeneous computer environments. It is often used to solve
computationally intensive problems, in a way similar to how electrical power is deliv-
ered and consumed. Such functionality is usually implemented as job submission ser-
vices, through which computation tasks are dispatched to resource sites, performed,
monitored, and managed. Well-known examples of this technology can be found in
the GRAM system of Globus and the UNICORE system.

Early attempts of job submission services were often restricted to specific selec-
tions of programming tools and platforms, or particular usage scenarios. While the
desired functionality was still achievable, there could only be limited successes as the
basic requirement of interoperability for Grid computing was hardly met. New solu-
tions were called for, which was answered by the emergence of open-standard XML
Web service technologies in the Grid scenario.

The maturing and standardisation of the elementary Web service technologies –
XML, SOAP, XSD and WSDL – have drawn great interest from the Grid community
for their capability of standardising Grid technologies, which is essential to overcom-
ing heterogeneity in the Grid environment. Extensive and intensive investigations
were made on the applications of Web services for Grid computing, which in general

298 G. Xue, G.E. Pound, and S.J. Cox

showed that such applications are viable [2,3]. The same conclusion can also be
drawn from the announcement and acceptance of the Open Grid Service Architecture
(OGSA) [4]. In earlier work [5], we demonstrated that XML Web service technolo-
gies could be applied to the construction of job submission service with high interop-
erability. Through further attempts on putting Web service based job submission into
practical use, we identified a number of problems, which need to be solved with en-
hancement to the technologies before successful Grid computation can be performed.

One easily identifiable issue with a Web service based job submission service is
the degraded performance. Compared to binary-based messages, the network over-
head and the cost of message processing with the use of XML are significantly higher
[3,6]. While performance penalties from submission requests and resource negotia-
tions are arguably tolerable, especially for jobs with long execution times, huge costs
brought by the transmissions of large job files and result data files in SOAP and
base64 XML have caused great concerns. We believe that in order to reduce the un-
necessary performance penalties, an additional standard message format is needed to
facilitate the transmission of attachments along with SOAP messages. In our recent
work, we have attempted to apply the latest progress in the development of such tech-
nologies to our job submission service, which is described in detail in the next section.

Like all Internet based computer applications, security management is one of the
most common concerns for Grid computing and the Grid job submission service.
However, no standard security mechanism has been defined by basic Web service
technologies. In addition, in order to facilitate the use of the job submission service,
the service needs to be compatible with GSI [7], the common security infrastructure
in Grid computing. Our work demonstrates the adoption of the candidate Web service
security standard for the job submission service, and shows how GSI or other security
mechanisms can be integrated.

Experience with Grid computation through our job submission service shows that
Web service technologies, especially the service invocation technologies, need to be
improved in order to achieve the transparency and interoperability desired by Grid
computing. Currently, Web services are normally consumed in a language API style:
in most of today’s Web service tools, the common practice is to get the WSDL file of
target Web services and generate a service proxy based on it, which will then be
called in the client program just like normal language APIs. While the development
work is facilitated, the disadvantage is obvious: the service and the client are still
tightly coupled by the interface definition, and it is impossible for client applications
to consume other services with different interfaces, or adapt to changes on the service
side without undergoing major modifications. In our client tool for the job submission
service, we take advantage of the simple and standard SOAP protocol, which allows
layered processing with independent intermediaries, to develop a new service invoca-
tion mechanism, which is implemented as a chain of SOAP filters. With this tool,
client applications are provided with consistent and transparent access to Grid compu-
tation resources.

In this paper, work on performing Grid computation with Web services is de-
scribed with two parts: firstly we consider the job submission service and secondly we
discuss the implementation of the client tools. The descriptions were followed by
evaluation and practical experience with the system. In the final part, we draw our
conclusions and describe our future work briefly.

Performing Grid Computation 299

2 Enhancements to the Grid Job Submission Service

Our previous implementation of a job submission service with Web service technolo-
gies has provided users with basic functionalities for carrying out Grid computation
tasks [5]. Users can submit computation tasks with specified resource requirements,
monitor the job execution, perform basic job management operations, and retrieve job
results through the exchanges of standard XML/SOAP messages. In order to integrate
our job submission service with common Grid computing environment such as
Globus, so that standard access to general Grid systems and resources can be provided,
we have applied several recent new Web service technologies to enhance the original
system.

2.1 Exploiting DIME for Data Transmission in Web Service Interactions

Direct Internet Message Encapsulation (DIME) [8] is a MIME-like new specification
designed mainly for the transmission of SOAP messages together with additional at-
tachments, such as binary files, XML fragments, and perhaps other SOAP messages,
using standard transport protocols like HTTP and TCP. It defines a standard message
structure in which data of various types that do not fit expediently or efficiently into
the XML format can be contained and transmitted along with the SOAP messages.
Compared to data transfer with SOAP and base64 XML, using DIME will bring sig-
nificantly higher efficiency and flexibility. The DIME specification has been submit-
ted to the Internet Engineering Task Force (IETF) [9].

Just like MIME, a DIME message is comprised of a number of DIME records,
which are similar self-describing data sections with headers of binary information
used for message parsing. The structure of a DIME record is shown in Fig. 1, and
detailed descriptions of the record fields can be found in [10]. Compared with MIME,
DIME defines a simpler message format, which does not allow the inclusion of extra
metadata with custom message headers. It only contains information about the length
and encoding of the message header fields and payload. While being less flexible, this
ensures faster and more efficient processing of the messages. And when used together
with SOAP, additional information could be delivered within the SOAP message.
When applying DIME for data transfers in the job submission service, the SOAP
message signalling the data transfer operation is contained in the first DIME record.
All attached data files are contained in the subsequent records and are identified by
UUIDs (Universal Unique Identifier) in the ID fields of the corresponding DIME re-
cords. The attachments are cross-referenced in the SOAP message by the UUIDs,
with the file names and sizes also specified. This enables a check outside the DIME
protocol to make sure of the data integrity. In addition, in order to indicate the use of
DIME, extensions to the WSDL file of the job submission service have been added
with reference to the corresponding standard [11]. A sample DIME message used in
the data transfer operation and the piece of WSDL with DIME extensions can be
found in Figs. 2 and 3. In our service implementation, the layout attribute of the
DIME message is set to http://schemas.xmlsoap.org/ws/2002/04/dime/closed-layout,
which specifies that all parts of the DIME message should be referenced in the SOAP
message in proper order.

300 G. Xue, G.E. Pound, and S.J. Cox

VERSI ON MBMECF TYPE_T RESERVED OPTI ONS_LENGTH
I D_LENGTH TYPE_LENGTH

DATA_LENGTH

OPTI ONS

I D

TYPE

DATA

Fig. 1. The DIME record structure

Fig. 2. Sample DIME message for job file transfer

00001100001000000000000000000000
00000000000000000000000000101000
00000000000000000000001001011011
http://schemas.xmlsoap.org/soap/envelope
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ref="http://schemas.xmlsopa.org/ws/2002/04/reference"
>
 <soap:Body>
 <DIMEJobFileTransfer
 xmlns="http://draco.sesnet.soton.ac.uk/ComputationService2/">
 <JobID>8fa464fc-a300-424b-9827-45b3bb223127</JobID>
 <FileNames>
 <file ref:location="uuid:fd25bb9e-7fd2-4a0f-8cb4-

d6db005e443a">job.exe</file>
 <file ref:location="uuid:3c9d6fa9-50ab-4da3-b859-

db4934f3243f">library.dll</file>
 </FileNames>
 <FileSizes>
 <size>1024</size>
 <size>1048576</size>
 </FileSizes>
 </DIMEJobFileTransfer>
 </soap:Body>
</soap:Envelope>
00001000000100000000000000000000
00000000001010010000000000010111
00000000000000000000010000000000
uuid:fd25bb9e-7fd2-4a0f-8cb4-d6db005e443a
application/macbinhex40
<<1024 bytes of binary data for job.exe>>
00001010000100000000000000000000
00000000001010010000000000010111
00000000000100000000000000000000
uuid:3c9d6fa9-50ab-4da3-b859-db4934f3243f
application/macbinhex40
<<1 MB of binary data for library.dll>>

Performing Grid Computation 301

Fig. 3. WSDL extensions for DIME in the job submission service

In order to achieve a better understanding of the DIME performance, a number of
tests were carried out, comparing data transfers with HTTP, HTTP+DIME, and SOAP
with base64 XML. The results are shown in Fig. 4. The advantage of DIME over
normal SOAP data delivery is clearly demonstrated. It is mainly because the data can
be placed in DIME messages directly without additional encoding, which is unavoid-
able for SOAP because of the SOAP message encoding style.

0

5

10

15

20

25

1M 5M 10M

si ze of del i ver ed dat a (Byt e)

de
li

ve
ry

 t
im

e
(s

)

HTTP
DI ME

SOAP base64XML

Fig. 4. Test of performance in data transmission

2.2 Using WS-Security with the Grid Security Infrastructure

Since no formal security framework was defined by the basic Web service technolo-
gies such as SOAP and WSDL, security mechanisms of the job submission service
had to be built based on the underlying transport protocol – HTTP. While basic mes-
sage authentication, integrity and privacy can be assured, such solution cannot pro-
vide satisfying features for Grid computing. One reason is that in some sophisticated
operations, message exchanges may involve a route more complicated than the end-
to-end HTTP connection, and may even involve different transport protocols. Another
important reason is it does not integrate well with GSI. The Grid Security Infrastruc-

<binding name="JobSubmissionSoapDIME" type="s0:JobSubmissionSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>
 <operation name="DIMEJobFileTransfer">
 <soap:operation
 soapAction="http://draco/ComputationService2/DIMEJobFileTransfer"
 style="document" />
 <input>
 <dime:message
 layout="http:/schemas.xmlsoap.org/ws/2002/04/dime/closed-layout"
 wsdl:required="true"/>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
</binding>

302 G. Xue, G.E. Pound, and S.J. Cox

ture (GSI) [12] is a security mechanism based on public key cryptography, and is
widely supported by the Grid community. In order to adopt GSI in the job submission
service, a standard mechanism is needed for the delivery of GSI certificates and proxy
certificates, which is the central part of GSI authentication. As a result, an implemen-
tation of the recently proposed Web services specification, WS-Security [13], has
been provided in our service.

WS-Security defines a message level security mechanism, which is independent
of the transport methods. Instead of defining a whole new solution, WS-Security fo-
cuses only on specifying how security information should be embedded in a SOAP
message. It is therefore an open protocol, which allows existing security solutions,
including Kerberos, X.509, and GSI to be leveraged.

When delivering GSI user credentials in WS-Security, the user certificates or
proxy certificates are contained in a BinarySecurityToken element, and is placed in
the wsse:Security SOAP header element. Since the GSI user certificates are encoded
in the X.509 format, they can be directly treated as standard WS-Security binary secu-
rity tokens1. As for GSI proxy certificates, an extension to WS-Security is defined for
the job submission service, which is illustrated in Fig. 5.

Fig. 5. Using GSI with WS-security

In addition to authentication, WS-Security also defines formal methods for en-
cryptions of important messages parts. The service and users can therefore use infor-
mation from the user accounts (the password) to encrypt/decrypt the security tokens,
so that user privacy can be protected. The GSI user certificates can also be applied in
asymmetric encryptions of important job information, such as the job handler, with
the public key in the certificate for encryption and the private key held by the service
client for decryption.

1 The WS-Security specification only defines three value types for binary security token:

wsse:509v3, wsse:Kerberosv5TGT, wsse:Kerberosv5ST.

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ref="http://schemas.xmlsopa.org/ws/2002/04/reference"
>
 <soap:header>
<wsse:Security
 xmlns:wsse=http://schemas.xmlsoap.org/ws/2002/07/secext
 soap:mustUnderstand=”1”>

<gsi:BinarySecurityToken gsi:ValueType="GlobusProxy"
 Id="dab19bd1-a680-4a98-aa81-562e0cb48e70"
 xmlns:gsi="http://www.globus.org/gsi">

 MIIB3TCCAUYCAwnAiDANBgkqhkiG9w0BAQQFAD...

 </gsi:BinarySecurityToken>
 </wsse:Security>
 </soap:header>
 <soap:Body>
 <JobSubmissionRequest
 xmlns="http://draco.sesnet.soton.ac.uk/ComputationService2/">

 </JobSubmissionRequest>
 </soap:Body>
</soap:Envelope>

Performing Grid Computation 303

2.3 Integration with General Grid Computing Environment

The purpose of the job submission service is to provide standard, transparent access to
computation resources in various Grid computing environments. One of the currently
most popular Grid environments is the Globus system. With the help of its middle-
ware collection, which provides core Grid functionalities including security (GSI),
resource allocation (GRAM), data transfer (GridFTP), and resource information ser-
vice (MDS), the Globus Toolkit [14] enables the construction of computational grids
through the aggregation of resources that are presented as Grid services. As compati-
bility with GSI has been achieved, it is feasible to integrate the job submission service
with the Globus environment, and therefore make the resources managed by Globus
accessible to client applications in a programming language and platform independent
fashion. This integration also solves some of the firewall problems associated with
Globus caused by proprietary network port settings in Globus system components
such as GASS and GridFTP.

The integration with Globus was accomplished with the help of the Commodity
Grid (CoG) kits [15], which provide core Globus functionalities as sets of client APIs
in ‘commodity technologies’ including Java, Python, CORBA and Perl. In our work
the Java CoG kit [16] is applied, as it is the most suitable one to work with our service.

3 The Client Tool for Service Oriented Grid Computing

As explained in the introduction, the language API-styled Web service invocation
technologies are not suitable for the Grid environment, which is vast in scale and an-
archic in nature. The true value of applying Web services for Grid computing is that it
provides a way of interaction between independent components that share a common
understanding of operational semantics, but are loosely-coupled at the interface level.
Web service client tools used in Grid computing must therefore be compliant with this
feature. As a result, our client tool for the job submission service has been imple-
mented in two parts - the client utility and the message processor.

The client utility exposes job submission functionalities to application programs
that need to perform computation tasks on the Grid. Different form normal service
proxies, it only represents the minimum semantics of the job submission operations
and procedures, and bears no information about the target service. The utility is there-
fore completely independent of the implementation of the computation resources, and
can remain unchanged in spite of the highly changeable Grid environment.

When the client utility is called, the operation instructions are passed on to the
message processor, which is responsible for the underlying interactions with targeted
services, and feeding the results back to the utility. The message processor does not
have a fixed composition. It is implemented as two dynamic chains of input and out-
put message filters. Each filter is responsible for the process of a specific message
part, or even the entire message. Important filters include the SOAP message handler,
the WS-Security handler, and DIME handler, etc. The filter chains are formed during
the runtime based on the information loaded from a configuration file, which is de-
tached from the client applications and can be modified to add or remove message
filters so as to adapt to any potential changes.

304 G. Xue, G.E. Pound, and S.J. Cox

Fig. 6. Configuration file for the client tool message processor

Figure 6 shows a sample configuration file, which provides the full names of the
filters and the locations of the libraries where the filter classes are contained. In the
current implementation, the information is used by object reflection technology to
dynamically generate filter instances and compose the filter chains.

A complete view of the client tool for the job submission service can be found in
Fig. 7. In addition, it is necessary to point out that the filters for the message processor
are not restricted to Web services messages. Custom filters can also be developed to
enable access to other computation services using the same client tool.

4 Exemplar of Grid Computing with Enhanced Web Services

In order to examine how our enhancements to the job submission service and the
integration with the Globus system work, the client tool, the job submission service
and a Globus system were put together to create a sample Grid computing scenario,
which is illustrated by the following figure.

C
lie

nt
 U

ti
lit

y

C
lie

nt
 A

pp
lic

at
io

n

SOAP
Request
Message

Ser vi ce
Request

Output Processor

S
O

A
P

 M
es

sa
ge

 B
ui

ld
er

W
S

-S
ec

ur
it

y
H

an
dl

er

D
IM

E
 H

an
dl

er

SOAP
Response
Message

Ser vi ce
Response

Input Processor

SO
A

P
 M

es
sa

ge
 P

ar
se

r

W
S

-S
ec

ur
ity

 H
an

dl
er

D
IM

E
 H

an
dl

er

Conf i gur at i on
Fi l e

Jo
b

Su
bm

is
si

on
 S

er
vi

ce

WS- Secur i t y
+ GSI

Gl obus Syst em

Fig. 7. The Grid computing scenario

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <soap>
 <outputfilters>
 <filter name="jobsubmissionservice.soapprocessor"
 assembly="C:\windows\system32\SOAPFilters.dll" />
 <filter name="WSSecurity.GlobusCertificateOutputFilter"
 assembly="C:\windows\system32\SOAPFilters.dll" />
 </outputfilters>
 </soap>
 <dime>
 <outputfilters>
 <filter name="dime.dimeoutputfilter"
 assembly="C:\windows\system32\DIMEFilters.dll" />
 </outputfilters>
 </dime>
</configuration>

Performing Grid Computation 305

A relatively simple computation task 2 was created and carried out under different
conditions to evaluate the effects on job submission operations with various service
technologies. The test results were shown in Fig. 8.

27.494 27.494

56.208
53.419

68.354
64.891

0

10

20

30

40

50

60

70

80

Invocation with
Client Tool

Direct Service
Invocation

T
ot

al
 S

ub
m

is
si

on
 T

im
e

(s
) Native Globus

Submission

Service Based
Submission with DIME

Service Based
Submission with Standard
SOAP

Fig. 8. Test results from sample job submissions 3

Although the results might vary due to differences in network conditions, com-
puter system statuses and service implementations, they in general show the cost of
Web service based job submission, and the difference in performance of the new
technologies. It also shows that the performance penalty of the filter-based service
client tool is less than anticipated.

5 Conclusion and Future Work

Recent developments in Web service technologies have provided better solutions to
issues unsolved by the basic standards. In this paper, we discussed and demonstrated
how these new technologies can be applied to improve the job submission service for
Grid computation. In the next stage of our work, we will try to extend the applications
to other Web service enabled components and operations on the Grid, while keeping
the services up-to-date with the latest developments in these technologies.

2 The job has a typical composition of an executable, a runtime library and an input file with

the total size of 8365961 bytes.
3 The test is conducted on a 100M LAN, with the job submission service running on a server

with a 900MHz CPU and 768M memory. The job submission procedure includes submission
request, job file transfer and job-start notification.

306 G. Xue, G.E. Pound, and S.J. Cox

References

[1] The GEODISE project: http://www.geodise.org
[2] Satoshi Shirasuna, Hidemoto Nakada, Satoshi Matsuoka, Satoshi Sekiguchi: Evaluating

Web Services Based Implementations of GridRPC. Proceedings of HPDC-11, Edinburgh,
Scotland, 2002.

[3] Kenneth Chiu, Madhusudhan Govindaraju, Randall Bramley: Investigating the Limeits of
SOAP Performance for Scientific Computing. Proceedings of HPDC-11, Edinburgh, Scot-
land, 2002.

[4] I. Foster, C. Kesselman, J. Nick, S. Tuecke: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Open Grid Service Infrastruc-
ture WG, Global Grid Forum, June 22, 2002.

[5] S.J. Cox, M.J. Fairman, G. Xue, J.L.Wason, and A.J. Keane. The Grid: Computational
and Data Resource Sharing in Engineering Optimisation and Design Search. IEEE Pro-
ceedings of the 2001 ICPP Workshops, Valencia, Spain, September 2001.

[6] Dan Davis, Manish Parashar: Latency Performance of SOAP Implementations. IEEE
Proceedings of CCGrid, Berlin, Germany, May 2002.

[7] Grid Security Infrasturcture. http://www.globus.org/security/
[8] Direct Internet Message Encapsulation.

http://www.ietf.org/internet-drafts/draft-nielsen-dime-02.txt
[9] Internet Engineering Task Force (IETF). http://www.ietf.org
[10] Jeannine Hall Gailey: Sending Files, Attachments, and SOAP Messages Via Direct Inter-

net Message Encapsulation. MSDN Magazine, 12/2002.
http://msdn.microsoft.com/msdnmag/issues/02/12/DIME/default.aspx

[11] Mike Deem: WSDL Extension for SOAP in DIME.
[12] http://www.gotdotnet.com/team/xml_wsspecs/dime/WSDL-Extension-for-

DIME.htm

[13] Grid Security Infrastructure. http://www.globus.org/security/
[14] WS-Security.

http://www-106.ibm.com/developerworks/library/ws-secure/
[15] The Globus Toolkit. http://www.globus.org/toolkit/
[16] Commodity Grid Kits. http://www-unix.globus.org/cog/
[17] Java CoG Kit version 0.9.13.

http://www-unix.globus.org/cog/java/index.php

	1 Introduction
	2 Enhancements to the Grid Job Submission Service
	2.1 Exploiting DIME for Data Transmission in Web Service Interactions
	2.2 Using WS-Security with the Grid Security Infrastructure
	2.3 Integration with General Grid Computing Environment

	3 The Client Tool for Service Oriented Grid Computing
	4 Exemplar of Grid Computing with Enhanced Web Services
	5 Conclusion and Future Work

